ppsspp/Common/Data/Convert/ColorConv.cpp
Unknown W. Brackets e3fdb183f6 Common: Remove some unused color conv funcs.
We already have versions of these doing other conversions.
2022-12-10 21:13:36 -08:00

651 lines
19 KiB
C++

// Copyright (c) 2015- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "ppsspp_config.h"
#include "Common/Data/Convert/ColorConv.h"
#include "Common/Data/Convert/SmallDataConvert.h"
#include "Common/Common.h"
#include "Common/CPUDetect.h"
#ifdef _M_SSE
#include <emmintrin.h>
#include <smmintrin.h>
#endif
#if PPSSPP_ARCH(ARM_NEON)
#if defined(_MSC_VER) && PPSSPP_ARCH(ARM64)
#include <arm64_neon.h>
#else
#include <arm_neon.h>
#endif
#endif
void ConvertBGRA8888ToRGBA8888(u32 *dst, const u32 *src, u32 numPixels) {
#ifdef _M_SSE
const __m128i maskGA = _mm_set1_epi32(0xFF00FF00);
const __m128i *srcp = (const __m128i *)src;
__m128i *dstp = (__m128i *)dst;
u32 sseChunks = numPixels / 4;
if (((intptr_t)src & 0xF) || ((intptr_t)dst & 0xF)) {
sseChunks = 0;
}
for (u32 i = 0; i < sseChunks; ++i) {
__m128i c = _mm_load_si128(&srcp[i]);
__m128i rb = _mm_andnot_si128(maskGA, c);
c = _mm_and_si128(c, maskGA);
__m128i b = _mm_srli_epi32(rb, 16);
__m128i r = _mm_slli_epi32(rb, 16);
c = _mm_or_si128(_mm_or_si128(c, r), b);
_mm_store_si128(&dstp[i], c);
}
// The remainder starts right after those done via SSE.
u32 i = sseChunks * 4;
#else
u32 i = 0;
#endif
for (; i < numPixels; i++) {
const u32 c = src[i];
dst[i] = ((c >> 16) & 0x000000FF) |
(c & 0xFF00FF00) |
((c << 16) & 0x00FF0000);
}
}
void ConvertBGRA8888ToRGB888(u8 *dst, const u32 *src, u32 numPixels) {
for (uint32_t x = 0; x < numPixels; ++x) {
uint32_t c = src[x];
dst[x * 3 + 0] = (c >> 16) & 0xFF;
dst[x * 3 + 1] = (c >> 8) & 0xFF;
dst[x * 3 + 2] = (c >> 0) & 0xFF;
}
}
#if defined(_M_SSE)
#if defined(__GNUC__) || defined(__clang__) || defined(__INTEL_COMPILER)
[[gnu::target("sse4.1")]]
#endif
static inline void ConvertRGBA8888ToRGBA5551_SSE4(__m128i *dstp, const __m128i *srcp, u32 sseChunks) {
const __m128i maskAG = _mm_set1_epi32(0x8000F800);
const __m128i maskRB = _mm_set1_epi32(0x00F800F8);
const __m128i mask = _mm_set1_epi32(0x0000FFFF);
for (u32 i = 0; i < sseChunks; i += 2) {
__m128i c1 = _mm_load_si128(&srcp[i + 0]);
__m128i c2 = _mm_load_si128(&srcp[i + 1]);
__m128i ag, rb;
ag = _mm_and_si128(c1, maskAG);
ag = _mm_or_si128(_mm_srli_epi32(ag, 16), _mm_srli_epi32(ag, 6));
rb = _mm_and_si128(c1, maskRB);
rb = _mm_or_si128(_mm_srli_epi32(rb, 3), _mm_srli_epi32(rb, 9));
c1 = _mm_and_si128(_mm_or_si128(ag, rb), mask);
ag = _mm_and_si128(c2, maskAG);
ag = _mm_or_si128(_mm_srli_epi32(ag, 16), _mm_srli_epi32(ag, 6));
rb = _mm_and_si128(c2, maskRB);
rb = _mm_or_si128(_mm_srli_epi32(rb, 3), _mm_srli_epi32(rb, 9));
c2 = _mm_and_si128(_mm_or_si128(ag, rb), mask);
_mm_store_si128(&dstp[i / 2], _mm_packus_epi32(c1, c2));
}
}
#endif
void ConvertRGBA8888ToRGBA5551(u16 *dst, const u32 *src, u32 numPixels) {
#if defined(_M_SSE)
const __m128i *srcp = (const __m128i *)src;
__m128i *dstp = (__m128i *)dst;
u32 sseChunks = (numPixels / 4) & ~1;
// SSE 4.1 required for _mm_packus_epi32.
if (((intptr_t)src & 0xF) || ((intptr_t)dst & 0xF) || !cpu_info.bSSE4_1) {
sseChunks = 0;
} else {
ConvertRGBA8888ToRGBA5551_SSE4(dstp, srcp, sseChunks);
}
// The remainder starts right after those done via SSE.
u32 i = sseChunks * 4;
#else
u32 i = 0;
#endif
for (; i < numPixels; i++) {
dst[i] = RGBA8888toRGBA5551(src[i]);
}
}
#if defined(_M_SSE)
#if defined(__GNUC__) || defined(__clang__) || defined(__INTEL_COMPILER)
[[gnu::target("sse4.1")]]
#endif
static inline void ConvertBGRA8888ToRGBA5551_SSE4(__m128i *dstp, const __m128i *srcp, u32 sseChunks) {
const __m128i maskAG = _mm_set1_epi32(0x8000F800);
const __m128i maskRB = _mm_set1_epi32(0x00F800F8);
const __m128i mask = _mm_set1_epi32(0x0000FFFF);
for (u32 i = 0; i < sseChunks; i += 2) {
__m128i c1 = _mm_load_si128(&srcp[i + 0]);
__m128i c2 = _mm_load_si128(&srcp[i + 1]);
__m128i ag, rb;
ag = _mm_and_si128(c1, maskAG);
ag = _mm_or_si128(_mm_srli_epi32(ag, 16), _mm_srli_epi32(ag, 6));
rb = _mm_and_si128(c1, maskRB);
rb = _mm_or_si128(_mm_srli_epi32(rb, 19), _mm_slli_epi32(rb, 7));
c1 = _mm_and_si128(_mm_or_si128(ag, rb), mask);
ag = _mm_and_si128(c2, maskAG);
ag = _mm_or_si128(_mm_srli_epi32(ag, 16), _mm_srli_epi32(ag, 6));
rb = _mm_and_si128(c2, maskRB);
rb = _mm_or_si128(_mm_srli_epi32(rb, 19), _mm_slli_epi32(rb, 7));
c2 = _mm_and_si128(_mm_or_si128(ag, rb), mask);
_mm_store_si128(&dstp[i / 2], _mm_packus_epi32(c1, c2));
}
}
#endif
void ConvertBGRA8888ToRGBA5551(u16 *dst, const u32 *src, u32 numPixels) {
#if defined(_M_SSE)
const __m128i *srcp = (const __m128i *)src;
__m128i *dstp = (__m128i *)dst;
u32 sseChunks = (numPixels / 4) & ~1;
// SSE 4.1 required for _mm_packus_epi32.
if (((intptr_t)src & 0xF) || ((intptr_t)dst & 0xF) || !cpu_info.bSSE4_1) {
sseChunks = 0;
} else {
ConvertBGRA8888ToRGBA5551_SSE4(dstp, srcp, sseChunks);
}
// The remainder starts right after those done via SSE.
u32 i = sseChunks * 4;
#else
u32 i = 0;
#endif
for (; i < numPixels; i++) {
dst[i] = BGRA8888toRGBA5551(src[i]);
}
}
void ConvertBGRA8888ToRGB565(u16 *dst, const u32 *src, u32 numPixels) {
for (u32 i = 0; i < numPixels; i++) {
dst[i] = BGRA8888toRGB565(src[i]);
}
}
void ConvertBGRA8888ToRGBA4444(u16 *dst, const u32 *src, u32 numPixels) {
for (u32 i = 0; i < numPixels; i++) {
dst[i] = BGRA8888toRGBA4444(src[i]);
}
}
void ConvertRGBA8888ToRGB565(u16 *dst, const u32 *src, u32 numPixels) {
for (u32 x = 0; x < numPixels; ++x) {
dst[x] = RGBA8888toRGB565(src[x]);
}
}
void ConvertRGBA8888ToRGBA4444(u16 *dst, const u32 *src, u32 numPixels) {
for (u32 x = 0; x < numPixels; ++x) {
dst[x] = RGBA8888toRGBA4444(src[x]);
}
}
void ConvertRGBA8888ToRGB888(u8 *dst, const u32 *src, u32 numPixels) {
for (uint32_t x = 0; x < numPixels; ++x) {
memcpy(dst + x * 3, src + x, 3);
}
}
void ConvertRGB565ToRGBA8888(u32 *dst32, const u16 *src, u32 numPixels) {
#ifdef _M_SSE
const __m128i mask5 = _mm_set1_epi16(0x001f);
const __m128i mask6 = _mm_set1_epi16(0x003f);
const __m128i mask8 = _mm_set1_epi16(0x00ff);
const __m128i *srcp = (const __m128i *)src;
__m128i *dstp = (__m128i *)dst32;
u32 sseChunks = numPixels / 8;
if (((intptr_t)src & 0xF) || ((intptr_t)dst32 & 0xF)) {
sseChunks = 0;
}
for (u32 i = 0; i < sseChunks; ++i) {
const __m128i c = _mm_load_si128(&srcp[i]);
// Swizzle, resulting in RR00 RR00.
__m128i r = _mm_and_si128(c, mask5);
r = _mm_or_si128(_mm_slli_epi16(r, 3), _mm_srli_epi16(r, 2));
r = _mm_and_si128(r, mask8);
// This one becomes 00GG 00GG.
__m128i g = _mm_and_si128(_mm_srli_epi16(c, 5), mask6);
g = _mm_or_si128(_mm_slli_epi16(g, 2), _mm_srli_epi16(g, 4));
g = _mm_slli_epi16(g, 8);
// Almost done, we aim for BB00 BB00 again here.
__m128i b = _mm_and_si128(_mm_srli_epi16(c, 11), mask5);
b = _mm_or_si128(_mm_slli_epi16(b, 3), _mm_srli_epi16(b, 2));
b = _mm_and_si128(b, mask8);
// Always set alpha to 00FF 00FF.
__m128i a = _mm_slli_epi16(mask8, 8);
// Now combine them, RRGG RRGG and BBAA BBAA, and then interleave.
const __m128i rg = _mm_or_si128(r, g);
const __m128i ba = _mm_or_si128(b, a);
_mm_store_si128(&dstp[i * 2 + 0], _mm_unpacklo_epi16(rg, ba));
_mm_store_si128(&dstp[i * 2 + 1], _mm_unpackhi_epi16(rg, ba));
}
u32 i = sseChunks * 8;
#else
u32 i = 0;
#endif
u8 *dst = (u8 *)dst32;
for (u32 x = i; x < numPixels; x++) {
u16 col = src[x];
dst[x * 4] = Convert5To8((col) & 0x1f);
dst[x * 4 + 1] = Convert6To8((col >> 5) & 0x3f);
dst[x * 4 + 2] = Convert5To8((col >> 11) & 0x1f);
dst[x * 4 + 3] = 255;
}
}
void ConvertRGBA5551ToRGBA8888(u32 *dst32, const u16 *src, u32 numPixels) {
#ifdef _M_SSE
const __m128i mask5 = _mm_set1_epi16(0x001f);
const __m128i mask8 = _mm_set1_epi16(0x00ff);
const __m128i *srcp = (const __m128i *)src;
__m128i *dstp = (__m128i *)dst32;
u32 sseChunks = numPixels / 8;
if (((intptr_t)src & 0xF) || ((intptr_t)dst32 & 0xF)) {
sseChunks = 0;
}
for (u32 i = 0; i < sseChunks; ++i) {
const __m128i c = _mm_load_si128(&srcp[i]);
// Swizzle, resulting in RR00 RR00.
__m128i r = _mm_and_si128(c, mask5);
r = _mm_or_si128(_mm_slli_epi16(r, 3), _mm_srli_epi16(r, 2));
r = _mm_and_si128(r, mask8);
// This one becomes 00GG 00GG.
__m128i g = _mm_and_si128(_mm_srli_epi16(c, 5), mask5);
g = _mm_or_si128(_mm_slli_epi16(g, 3), _mm_srli_epi16(g, 2));
g = _mm_slli_epi16(g, 8);
// Almost done, we aim for BB00 BB00 again here.
__m128i b = _mm_and_si128(_mm_srli_epi16(c, 10), mask5);
b = _mm_or_si128(_mm_slli_epi16(b, 3), _mm_srli_epi16(b, 2));
b = _mm_and_si128(b, mask8);
// 1 bit A to 00AA 00AA.
__m128i a = _mm_srai_epi16(c, 15);
a = _mm_slli_epi16(a, 8);
// Now combine them, RRGG RRGG and BBAA BBAA, and then interleave.
const __m128i rg = _mm_or_si128(r, g);
const __m128i ba = _mm_or_si128(b, a);
_mm_store_si128(&dstp[i * 2 + 0], _mm_unpacklo_epi16(rg, ba));
_mm_store_si128(&dstp[i * 2 + 1], _mm_unpackhi_epi16(rg, ba));
}
u32 i = sseChunks * 8;
#else
u32 i = 0;
#endif
u8 *dst = (u8 *)dst32;
for (u32 x = i; x < numPixels; x++) {
u16 col = src[x];
dst[x * 4] = Convert5To8((col) & 0x1f);
dst[x * 4 + 1] = Convert5To8((col >> 5) & 0x1f);
dst[x * 4 + 2] = Convert5To8((col >> 10) & 0x1f);
dst[x * 4 + 3] = (col >> 15) ? 255 : 0;
}
}
void ConvertRGBA4444ToRGBA8888(u32 *dst32, const u16 *src, u32 numPixels) {
#ifdef _M_SSE
const __m128i mask4 = _mm_set1_epi16(0x000f);
const __m128i *srcp = (const __m128i *)src;
__m128i *dstp = (__m128i *)dst32;
u32 sseChunks = numPixels / 8;
if (((intptr_t)src & 0xF) || ((intptr_t)dst32 & 0xF)) {
sseChunks = 0;
}
for (u32 i = 0; i < sseChunks; ++i) {
const __m128i c = _mm_load_si128(&srcp[i]);
// Let's just grab R000 R000, without swizzling yet.
__m128i r = _mm_and_si128(c, mask4);
// And then 00G0 00G0.
__m128i g = _mm_and_si128(_mm_srli_epi16(c, 4), mask4);
g = _mm_slli_epi16(g, 8);
// Now B000 B000.
__m128i b = _mm_and_si128(_mm_srli_epi16(c, 8), mask4);
// And lastly 00A0 00A0. No mask needed, we have a wall.
__m128i a = _mm_srli_epi16(c, 12);
a = _mm_slli_epi16(a, 8);
// We swizzle after combining - R0G0 R0G0 and B0A0 B0A0 -> RRGG RRGG and BBAA BBAA.
__m128i rg = _mm_or_si128(r, g);
__m128i ba = _mm_or_si128(b, a);
rg = _mm_or_si128(rg, _mm_slli_epi16(rg, 4));
ba = _mm_or_si128(ba, _mm_slli_epi16(ba, 4));
// And then we can store.
_mm_store_si128(&dstp[i * 2 + 0], _mm_unpacklo_epi16(rg, ba));
_mm_store_si128(&dstp[i * 2 + 1], _mm_unpackhi_epi16(rg, ba));
}
u32 i = sseChunks * 8;
#else
u32 i = 0;
#endif
u8 *dst = (u8 *)dst32;
for (u32 x = i; x < numPixels; x++) {
u16 col = src[x];
dst[x * 4] = Convert4To8(col & 0xf);
dst[x * 4 + 1] = Convert4To8((col >> 4) & 0xf);
dst[x * 4 + 2] = Convert4To8((col >> 8) & 0xf);
dst[x * 4 + 3] = Convert4To8(col >> 12);
}
}
void ConvertBGR565ToRGBA8888(u32 *dst32, const u16 *src, u32 numPixels) {
u8 *dst = (u8 *)dst32;
for (u32 x = 0; x < numPixels; x++) {
u16 col = src[x];
dst[x * 4] = Convert5To8((col >> 11) & 0x1f);
dst[x * 4 + 1] = Convert6To8((col >> 5) & 0x3f);
dst[x * 4 + 2] = Convert5To8((col) & 0x1f);
dst[x * 4 + 3] = 255;
}
}
void ConvertABGR1555ToRGBA8888(u32 *dst32, const u16 *src, u32 numPixels) {
u8 *dst = (u8 *)dst32;
for (u32 x = 0; x < numPixels; x++) {
u16 col = src[x];
dst[x * 4] = Convert5To8((col >> 11) & 0x1f);
dst[x * 4 + 1] = Convert5To8((col >> 6) & 0x1f);
dst[x * 4 + 2] = Convert5To8((col >> 1) & 0x1f);
dst[x * 4 + 3] = (col & 1) ? 255 : 0;
}
}
void ConvertABGR4444ToRGBA8888(u32 *dst32, const u16 *src, u32 numPixels) {
u8 *dst = (u8 *)dst32;
for (u32 x = 0; x < numPixels; x++) {
u16 col = src[x];
dst[x * 4] = Convert4To8(col >> 12);
dst[x * 4 + 1] = Convert4To8((col >> 8) & 0xf);
dst[x * 4 + 2] = Convert4To8((col >> 4) & 0xf);
dst[x * 4 + 3] = Convert4To8(col & 0xf);
}
}
void ConvertRGBA4444ToBGRA8888(u32 *dst, const u16 *src, u32 numPixels) {
for (u32 x = 0; x < numPixels; x++) {
u16 c = src[x];
u32 r = Convert4To8(c & 0x000f);
u32 g = Convert4To8((c >> 4) & 0x000f);
u32 b = Convert4To8((c >> 8) & 0x000f);
u32 a = Convert4To8((c >> 12) & 0x000f);
dst[x] = (a << 24) | (r << 16) | (g << 8) | b;
}
}
void ConvertRGBA5551ToBGRA8888(u32 *dst, const u16 *src, u32 numPixels) {
for (u32 x = 0; x < numPixels; x++) {
u16 c = src[x];
u32 r = Convert5To8(c & 0x001f);
u32 g = Convert5To8((c >> 5) & 0x001f);
u32 b = Convert5To8((c >> 10) & 0x001f);
// We force an arithmetic shift to get the sign bits.
u32 a = SignExtend16ToU32(c) & 0xff000000;
dst[x] = a | (r << 16) | (g << 8) | b;
}
}
void ConvertRGB565ToBGRA8888(u32 *dst, const u16 *src, u32 numPixels) {
for (u32 x = 0; x < numPixels; x++) {
u16 c = src[x];
u32 r = Convert5To8(c & 0x001f);
u32 g = Convert6To8((c >> 5) & 0x003f);
u32 b = Convert5To8((c >> 11) & 0x001f);
dst[x] = 0xFF000000 | (r << 16) | (g << 8) | b;
}
}
void ConvertRGBA4444ToABGR4444(u16 *dst, const u16 *src, u32 numPixels) {
#ifdef _M_SSE
const __m128i mask0040 = _mm_set1_epi16(0x00F0);
const __m128i *srcp = (const __m128i *)src;
__m128i *dstp = (__m128i *)dst;
u32 sseChunks = numPixels / 8;
if (((intptr_t)src & 0xF) || ((intptr_t)dst & 0xF)) {
sseChunks = 0;
}
for (u32 i = 0; i < sseChunks; ++i) {
const __m128i c = _mm_load_si128(&srcp[i]);
__m128i v = _mm_srli_epi16(c, 12);
v = _mm_or_si128(v, _mm_and_si128(_mm_srli_epi16(c, 4), mask0040));
v = _mm_or_si128(v, _mm_slli_epi16(_mm_and_si128(c, mask0040), 4));
v = _mm_or_si128(v, _mm_slli_epi16(c, 12));
_mm_store_si128(&dstp[i], v);
}
// The remainder is done in chunks of 2, SSE was chunks of 8.
u32 i = sseChunks * 8 / 2;
#elif PPSSPP_ARCH(ARM_NEON)
const uint16x8_t mask0040 = vdupq_n_u16(0x00F0);
if (((uintptr_t)dst & 15) == 0 && ((uintptr_t)src & 15) == 0) {
u32 simdable = (numPixels / 8) * 8;
for (u32 i = 0; i < simdable; i += 8) {
uint16x8_t c = vld1q_u16(src);
const uint16x8_t a = vshrq_n_u16(c, 12);
const uint16x8_t b = vandq_u16(vshrq_n_u16(c, 4), mask0040);
const uint16x8_t g = vshlq_n_u16(vandq_u16(c, mask0040), 4);
const uint16x8_t r = vshlq_n_u16(c, 12);
uint16x8_t res = vorrq_u16(vorrq_u16(r, g), vorrq_u16(b, a));
vst1q_u16(dst, res);
src += 8;
dst += 8;
}
numPixels -= simdable;
}
u32 i = 0; // already moved the pointers forward
#else
u32 i = 0;
#endif
const u32 *src32 = (const u32 *)src;
u32 *dst32 = (u32 *)dst;
for (; i < numPixels / 2; i++) {
const u32 c = src32[i];
dst32[i] = ((c >> 12) & 0x000F000F) |
((c >> 4) & 0x00F000F0) |
((c << 4) & 0x0F000F00) |
((c << 12) & 0xF000F000);
}
if (numPixels & 1) {
const u32 i = numPixels - 1;
const u16 c = src[i];
dst[i] = ((c >> 12) & 0x000F) |
((c >> 4) & 0x00F0) |
((c << 4) & 0x0F00) |
((c << 12) & 0xF000);
}
}
void ConvertRGBA5551ToABGR1555(u16 *dst, const u16 *src, u32 numPixels) {
#ifdef _M_SSE
const __m128i maskB = _mm_set1_epi16(0x003E);
const __m128i maskG = _mm_set1_epi16(0x07C0);
const __m128i *srcp = (const __m128i *)src;
__m128i *dstp = (__m128i *)dst;
u32 sseChunks = numPixels / 8;
if (((intptr_t)src & 0xF) || ((intptr_t)dst & 0xF)) {
sseChunks = 0;
}
for (u32 i = 0; i < sseChunks; ++i) {
const __m128i c = _mm_load_si128(&srcp[i]);
__m128i v = _mm_srli_epi16(c, 15);
v = _mm_or_si128(v, _mm_and_si128(_mm_srli_epi16(c, 9), maskB));
v = _mm_or_si128(v, _mm_and_si128(_mm_slli_epi16(c, 1), maskG));
v = _mm_or_si128(v, _mm_slli_epi16(c, 11));
_mm_store_si128(&dstp[i], v);
}
// The remainder is done in chunks of 2, SSE was chunks of 8.
u32 i = sseChunks * 8 / 2;
#elif PPSSPP_ARCH(ARM_NEON)
const uint16x8_t maskB = vdupq_n_u16(0x003E);
const uint16x8_t maskG = vdupq_n_u16(0x07C0);
if (((uintptr_t)dst & 15) == 0 && ((uintptr_t)src & 15) == 0) {
u32 simdable = (numPixels / 8) * 8;
for (u32 i = 0; i < simdable; i += 8) {
uint16x8_t c = vld1q_u16(src);
const uint16x8_t a = vshrq_n_u16(c, 15);
const uint16x8_t b = vandq_u16(vshrq_n_u16(c, 9), maskB);
const uint16x8_t g = vandq_u16(vshlq_n_u16(c, 1), maskG);
const uint16x8_t r = vshlq_n_u16(c, 11);
uint16x8_t res = vorrq_u16(vorrq_u16(r, g), vorrq_u16(b, a));
vst1q_u16(dst, res);
src += 8;
dst += 8;
}
numPixels -= simdable;
}
u32 i = 0;
#else
u32 i = 0;
#endif
const u32 *src32 = (const u32 *)src;
u32 *dst32 = (u32 *)dst;
for (; i < numPixels / 2; i++) {
const u32 c = src32[i];
dst32[i] = ((c >> 15) & 0x00010001) |
((c >> 9) & 0x003E003E) |
((c << 1) & 0x07C007C0) |
((c << 11) & 0xF800F800);
}
if (numPixels & 1) {
const u32 i = numPixels - 1;
const u16 c = src[i];
dst[i] = ((c >> 15) & 0x0001) |
((c >> 9) & 0x003E) |
((c << 1) & 0x07C0) |
((c << 11) & 0xF800);
}
}
void ConvertRGB565ToBGR565(u16 *dst, const u16 *src, u32 numPixels) {
#ifdef _M_SSE
const __m128i maskG = _mm_set1_epi16(0x07E0);
const __m128i *srcp = (const __m128i *)src;
__m128i *dstp = (__m128i *)dst;
u32 sseChunks = numPixels / 8;
if (((intptr_t)src & 0xF) || ((intptr_t)dst & 0xF)) {
sseChunks = 0;
}
for (u32 i = 0; i < sseChunks; ++i) {
const __m128i c = _mm_load_si128(&srcp[i]);
__m128i v = _mm_srli_epi16(c, 11);
v = _mm_or_si128(v, _mm_and_si128(c, maskG));
v = _mm_or_si128(v, _mm_slli_epi16(c, 11));
_mm_store_si128(&dstp[i], v);
}
// The remainder is done in chunks of 2, SSE was chunks of 8.
u32 i = sseChunks * 8 / 2;
#elif PPSSPP_ARCH(ARM_NEON)
const uint16x8_t maskG = vdupq_n_u16(0x07E0);
if (((uintptr_t)dst & 15) == 0 && ((uintptr_t)src & 15) == 0) {
u32 simdable = (numPixels / 8) * 8;
for (u32 i = 0; i < simdable; i += 8) {
uint16x8_t c = vld1q_u16(src);
const uint16x8_t b = vshrq_n_u16(c, 11);
const uint16x8_t g = vandq_u16(c, maskG);
const uint16x8_t r = vshlq_n_u16(c, 11);
uint16x8_t res = vorrq_u16(vorrq_u16(r, g), b);
vst1q_u16(dst, res);
src += 8;
dst += 8;
}
numPixels -= simdable;
}
u32 i = 0;
#else
u32 i = 0;
#endif
const u32 *src32 = (const u32 *)src;
u32 *dst32 = (u32 *)dst;
for (; i < numPixels / 2; i++) {
const u32 c = src32[i];
dst32[i] = ((c >> 11) & 0x001F001F) |
((c >> 0) & 0x07E007E0) |
((c << 11) & 0xF800F800);
}
if (numPixels & 1) {
const u32 i = numPixels - 1;
const u16 c = src[i];
dst[i] = ((c >> 11) & 0x001F) |
((c >> 0) & 0x07E0) |
((c << 11) & 0xF800);
}
}
void ConvertBGRA5551ToABGR1555(u16 *dst, const u16 *src, u32 numPixels) {
const u32 *src32 = (const u32 *)src;
u32 *dst32 = (u32 *)dst;
for (u32 i = 0; i < numPixels / 2; i++) {
const u32 c = src32[i];
dst32[i] = ((c >> 15) & 0x00010001) | ((c << 1) & 0xFFFEFFFE);
}
if (numPixels & 1) {
const u32 i = numPixels - 1;
const u16 c = src[i];
dst[i] = (c >> 15) | (c << 1);
}
}