mirror of
https://github.com/hrydgard/ppsspp.git
synced 2025-04-02 11:01:50 -04:00
570 lines
16 KiB
C++
570 lines
16 KiB
C++
// Copyright (c) 2012- PPSSPP Project.
|
|
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, version 2.0 or later versions.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License 2.0 for more details.
|
|
|
|
// A copy of the GPL 2.0 should have been included with the program.
|
|
// If not, see http://www.gnu.org/licenses/
|
|
|
|
// Official git repository and contact information can be found at
|
|
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
|
|
|
|
#include <cstring>
|
|
|
|
#include "base/logging.h"
|
|
#include "Common/CPUDetect.h"
|
|
#include "Core/MIPS/MIPS.h"
|
|
#include "Core/MIPS/ARM64/Arm64RegCacheFPU.h"
|
|
#include "Core/MIPS/ARM64/Arm64Jit.h"
|
|
#include "Core/MIPS/MIPSTables.h"
|
|
|
|
using namespace Arm64Gen;
|
|
using namespace Arm64JitConstants;
|
|
|
|
ArmRegCacheFPU::ArmRegCacheFPU(MIPSState *mips, MIPSComp::JitState *js, MIPSComp::Arm64JitOptions *jo) : mips_(mips), vr(mr + 32), js_(js), jo_(jo), initialReady(false) {
|
|
if (cpu_info.bNEON) {
|
|
numARMFpuReg_ = 32;
|
|
} else {
|
|
numARMFpuReg_ = 16;
|
|
}
|
|
}
|
|
|
|
void ArmRegCacheFPU::Start(MIPSAnalyst::AnalysisResults &stats) {
|
|
if (!initialReady) {
|
|
SetupInitialRegs();
|
|
initialReady = true;
|
|
}
|
|
|
|
memcpy(ar, arInitial, sizeof(ar));
|
|
memcpy(mr, mrInitial, sizeof(mr));
|
|
pendingFlush = false;
|
|
}
|
|
|
|
void ArmRegCacheFPU::SetupInitialRegs() {
|
|
for (int i = 0; i < numARMFpuReg_; i++) {
|
|
arInitial[i].mipsReg = -1;
|
|
arInitial[i].isDirty = false;
|
|
}
|
|
for (int i = 0; i < NUM_MIPSFPUREG; i++) {
|
|
mrInitial[i].loc = ML_MEM;
|
|
mrInitial[i].reg = INVALID_REG;
|
|
mrInitial[i].spillLock = false;
|
|
mrInitial[i].tempLock = false;
|
|
}
|
|
for (int i = 0; i < MAX_ARMQUADS; i++) {
|
|
qr[i].isDirty = false;
|
|
qr[i].mipsVec = -1;
|
|
qr[i].sz = V_Invalid;
|
|
qr[i].spillLock = false;
|
|
qr[i].isTemp = false;
|
|
memset(qr[i].vregs, 0xff, 4);
|
|
}
|
|
}
|
|
|
|
const ARM64Reg *ArmRegCacheFPU::GetMIPSAllocationOrder(int &count) {
|
|
// VFP mapping
|
|
// VFPU registers and regular FP registers are mapped interchangably on top of the standard
|
|
// 16 FPU registers.
|
|
|
|
// NEON mapping
|
|
// We map FPU and VFPU registers entirely separately. FPU is mapped to 12 of the bottom 16 S registers.
|
|
// VFPU is mapped to the upper 48 regs, 32 of which can only be reached through NEON
|
|
// (or D16-D31 as doubles, but not relevant).
|
|
// Might consider shifting the split in the future, giving more regs to NEON allowing it to map more quads.
|
|
|
|
// We should attempt to map scalars to low Q registers and wider things to high registers,
|
|
// as the NEON instructions are all 2-vector or 4-vector, they don't do scalar, we want to be
|
|
// able to use regular VFP instructions too.
|
|
static const ARM64Reg allocationOrder[] = {
|
|
// Reserve four temp registers. Useful when building quads until we really figure out
|
|
// how to do that best.
|
|
S4, S5, S6, S7, // Q1
|
|
S8, S9, S10, S11, // Q2
|
|
S12, S13, S14, S15, // Q3
|
|
S16, S17, S18, S19, // Q4
|
|
S20, S21, S22, S23, // Q5
|
|
S24, S25, S26, S27, // Q6
|
|
S28, S29, S30, S31, // Q7
|
|
// Q8-Q15 free for NEON tricks
|
|
};
|
|
|
|
static const ARM64Reg allocationOrderNEONVFPU[] = {
|
|
// Reserve four temp registers. Useful when building quads until we really figure out
|
|
// how to do that best.
|
|
S4, S5, S6, S7, // Q1
|
|
S8, S9, S10, S11, // Q2
|
|
S12, S13, S14, S15, // Q3
|
|
// Q4-Q15 free for VFPU
|
|
};
|
|
|
|
// NOTE: It's important that S2/S3 are not allocated with bNEON, even if !useNEONVFPU.
|
|
// They are used by a few instructions, like vh2f.
|
|
if (jo_->useNEONVFPU) {
|
|
count = sizeof(allocationOrderNEONVFPU) / sizeof(const ARM64Reg);
|
|
return allocationOrderNEONVFPU;
|
|
} else {
|
|
count = sizeof(allocationOrder) / sizeof(const ARM64Reg);
|
|
return allocationOrder;
|
|
}
|
|
}
|
|
|
|
bool ArmRegCacheFPU::IsMapped(MIPSReg r) {
|
|
return mr[r].loc == ML_ARMREG;
|
|
}
|
|
|
|
ARM64Reg ArmRegCacheFPU::MapReg(MIPSReg mipsReg, int mapFlags) {
|
|
// INFO_LOG(JIT, "FPR MapReg: %i flags=%i", mipsReg, mapFlags);
|
|
if (jo_->useNEONVFPU && mipsReg >= 32) {
|
|
ERROR_LOG(JIT, "Cannot map VFPU registers to ARM VFP registers in NEON mode. PC=%08x", js_->compilerPC);
|
|
return S0;
|
|
}
|
|
|
|
pendingFlush = true;
|
|
// Let's see if it's already mapped. If so we just need to update the dirty flag.
|
|
// We don't need to check for ML_NOINIT because we assume that anyone who maps
|
|
// with that flag immediately writes a "known" value to the register.
|
|
if (mr[mipsReg].loc == ML_ARMREG) {
|
|
if (ar[mr[mipsReg].reg].mipsReg != mipsReg) {
|
|
ERROR_LOG(JIT, "Reg mapping out of sync! MR %i", mipsReg);
|
|
}
|
|
if (mapFlags & MAP_DIRTY) {
|
|
ar[mr[mipsReg].reg].isDirty = true;
|
|
}
|
|
//INFO_LOG(JIT, "Already mapped %i to %i", mipsReg, mr[mipsReg].reg);
|
|
return (ARM64Reg)(mr[mipsReg].reg + S0);
|
|
}
|
|
|
|
// Okay, not mapped, so we need to allocate an ARM register.
|
|
|
|
int allocCount;
|
|
const ARM64Reg *allocOrder = GetMIPSAllocationOrder(allocCount);
|
|
|
|
allocate:
|
|
for (int i = 0; i < allocCount; i++) {
|
|
int reg = allocOrder[i] - S0;
|
|
|
|
if (ar[reg].mipsReg == -1) {
|
|
// That means it's free. Grab it, and load the value into it (if requested).
|
|
ar[reg].isDirty = (mapFlags & MAP_DIRTY) ? true : false;
|
|
if ((mapFlags & MAP_NOINIT) != MAP_NOINIT) {
|
|
if (mr[mipsReg].loc == ML_MEM && mipsReg < TEMP0) {
|
|
// emit_->VLDR((ARM64Reg)(reg + S0), CTXREG, GetMipsRegOffset(mipsReg));
|
|
}
|
|
}
|
|
ar[reg].mipsReg = mipsReg;
|
|
mr[mipsReg].loc = ML_ARMREG;
|
|
mr[mipsReg].reg = reg;
|
|
//INFO_LOG(JIT, "Mapped %i to %i", mipsReg, mr[mipsReg].reg);
|
|
return (ARM64Reg)(reg + S0);
|
|
}
|
|
}
|
|
|
|
|
|
// Still nothing. Let's spill a reg and goto 10.
|
|
// TODO: Use age or something to choose which register to spill?
|
|
// TODO: Spill dirty regs first? or opposite?
|
|
int bestToSpill = -1;
|
|
for (int i = 0; i < allocCount; i++) {
|
|
int reg = allocOrder[i] - S0;
|
|
if (ar[reg].mipsReg != -1 && (mr[ar[reg].mipsReg].spillLock || mr[ar[reg].mipsReg].tempLock))
|
|
continue;
|
|
bestToSpill = reg;
|
|
break;
|
|
}
|
|
|
|
if (bestToSpill != -1) {
|
|
FlushArmReg((ARM64Reg)(S0 + bestToSpill));
|
|
goto allocate;
|
|
}
|
|
|
|
// Uh oh, we have all them spilllocked....
|
|
ERROR_LOG(JIT, "Out of spillable registers at PC %08x!!!", js_->compilerPC);
|
|
return INVALID_REG;
|
|
}
|
|
|
|
void ArmRegCacheFPU::MapInIn(MIPSReg rd, MIPSReg rs) {
|
|
SpillLock(rd, rs);
|
|
MapReg(rd);
|
|
MapReg(rs);
|
|
ReleaseSpillLock(rd);
|
|
ReleaseSpillLock(rs);
|
|
}
|
|
|
|
void ArmRegCacheFPU::MapDirtyIn(MIPSReg rd, MIPSReg rs, bool avoidLoad) {
|
|
SpillLock(rd, rs);
|
|
bool overlap = avoidLoad && rd == rs;
|
|
MapReg(rd, overlap ? MAP_DIRTY : MAP_NOINIT);
|
|
MapReg(rs);
|
|
ReleaseSpillLock(rd);
|
|
ReleaseSpillLock(rs);
|
|
}
|
|
|
|
void ArmRegCacheFPU::MapDirtyInIn(MIPSReg rd, MIPSReg rs, MIPSReg rt, bool avoidLoad) {
|
|
SpillLock(rd, rs, rt);
|
|
bool overlap = avoidLoad && (rd == rs || rd == rt);
|
|
MapReg(rd, overlap ? MAP_DIRTY : MAP_NOINIT);
|
|
MapReg(rt);
|
|
MapReg(rs);
|
|
ReleaseSpillLock(rd);
|
|
ReleaseSpillLock(rs);
|
|
ReleaseSpillLock(rt);
|
|
}
|
|
|
|
void ArmRegCacheFPU::SpillLockV(const u8 *v, VectorSize sz) {
|
|
for (int i = 0; i < GetNumVectorElements(sz); i++) {
|
|
vr[v[i]].spillLock = true;
|
|
}
|
|
}
|
|
|
|
void ArmRegCacheFPU::SpillLockV(int vec, VectorSize sz) {
|
|
u8 v[4];
|
|
GetVectorRegs(v, sz, vec);
|
|
SpillLockV(v, sz);
|
|
}
|
|
|
|
void ArmRegCacheFPU::MapRegV(int vreg, int flags) {
|
|
MapReg(vreg + 32, flags);
|
|
}
|
|
|
|
void ArmRegCacheFPU::LoadToRegV(ARM64Reg armReg, int vreg) {
|
|
if (vr[vreg].loc == ML_ARMREG) {
|
|
// emit_->VMOV(armReg, (ARM64Reg)(S0 + vr[vreg].reg));
|
|
} else {
|
|
MapRegV(vreg);
|
|
// emit_->VMOV(armReg, V(vreg));
|
|
}
|
|
}
|
|
|
|
void ArmRegCacheFPU::MapRegsAndSpillLockV(int vec, VectorSize sz, int flags) {
|
|
u8 v[4];
|
|
GetVectorRegs(v, sz, vec);
|
|
SpillLockV(v, sz);
|
|
for (int i = 0; i < GetNumVectorElements(sz); i++) {
|
|
MapRegV(v[i], flags);
|
|
}
|
|
}
|
|
|
|
void ArmRegCacheFPU::MapRegsAndSpillLockV(const u8 *v, VectorSize sz, int flags) {
|
|
SpillLockV(v, sz);
|
|
for (int i = 0; i < GetNumVectorElements(sz); i++) {
|
|
MapRegV(v[i], flags);
|
|
}
|
|
}
|
|
|
|
void ArmRegCacheFPU::MapInInV(int vs, int vt) {
|
|
SpillLockV(vs);
|
|
SpillLockV(vt);
|
|
MapRegV(vs);
|
|
MapRegV(vt);
|
|
ReleaseSpillLockV(vs);
|
|
ReleaseSpillLockV(vt);
|
|
}
|
|
|
|
void ArmRegCacheFPU::MapDirtyInV(int vd, int vs, bool avoidLoad) {
|
|
bool overlap = avoidLoad && (vd == vs);
|
|
SpillLockV(vd);
|
|
SpillLockV(vs);
|
|
MapRegV(vd, overlap ? MAP_DIRTY : MAP_NOINIT);
|
|
MapRegV(vs);
|
|
ReleaseSpillLockV(vd);
|
|
ReleaseSpillLockV(vs);
|
|
}
|
|
|
|
void ArmRegCacheFPU::MapDirtyInInV(int vd, int vs, int vt, bool avoidLoad) {
|
|
bool overlap = avoidLoad && ((vd == vs) || (vd == vt));
|
|
SpillLockV(vd);
|
|
SpillLockV(vs);
|
|
SpillLockV(vt);
|
|
MapRegV(vd, overlap ? MAP_DIRTY : MAP_NOINIT);
|
|
MapRegV(vs);
|
|
MapRegV(vt);
|
|
ReleaseSpillLockV(vd);
|
|
ReleaseSpillLockV(vs);
|
|
ReleaseSpillLockV(vt);
|
|
}
|
|
|
|
void ArmRegCacheFPU::FlushArmReg(ARM64Reg r) {
|
|
if (r >= S0 && r <= S31) {
|
|
int reg = r - S0;
|
|
if (ar[reg].mipsReg == -1) {
|
|
// Nothing to do, reg not mapped.
|
|
return;
|
|
}
|
|
if (ar[reg].mipsReg != -1) {
|
|
if (ar[reg].isDirty && mr[ar[reg].mipsReg].loc == ML_ARMREG)
|
|
{
|
|
//INFO_LOG(JIT, "Flushing ARM reg %i", reg);
|
|
// emit_->VSTR(r, CTXREG, GetMipsRegOffset(ar[reg].mipsReg));
|
|
}
|
|
// IMMs won't be in an ARM reg.
|
|
mr[ar[reg].mipsReg].loc = ML_MEM;
|
|
mr[ar[reg].mipsReg].reg = INVALID_REG;
|
|
} else {
|
|
ERROR_LOG(JIT, "Dirty but no mipsreg?");
|
|
}
|
|
ar[reg].isDirty = false;
|
|
ar[reg].mipsReg = -1;
|
|
}
|
|
}
|
|
|
|
void ArmRegCacheFPU::FlushV(MIPSReg r) {
|
|
FlushR(r + 32);
|
|
}
|
|
|
|
void ArmRegCacheFPU::FlushR(MIPSReg r) {
|
|
switch (mr[r].loc) {
|
|
case ML_IMM:
|
|
// IMM is always "dirty".
|
|
// IMM is not allowed for FP (yet).
|
|
ERROR_LOG(JIT, "Imm in FP register?");
|
|
break;
|
|
|
|
case ML_ARMREG:
|
|
if (mr[r].reg == INVALID_REG) {
|
|
ERROR_LOG(JIT, "FlushR: MipsReg had bad ArmReg");
|
|
}
|
|
|
|
if (mr[r].reg >= Q0 && mr[r].reg <= Q15) {
|
|
// This should happen rarely, but occasionally we need to flush a single stray
|
|
// mipsreg that's been part of a quad.
|
|
int quad = mr[r].reg - Q0;
|
|
if (qr[quad].isDirty) {
|
|
WARN_LOG(JIT, "FlushR found quad register %i - PC=%08x", quad, js_->compilerPC);
|
|
//emit_->ADDI2R(R0, CTXREG, GetMipsRegOffset(r), R1);
|
|
//emit_->VST1_lane(F_32, (ARM64Reg)mr[r].reg, R0, mr[r].lane, true);
|
|
}
|
|
} else {
|
|
if (ar[mr[r].reg].isDirty) {
|
|
//INFO_LOG(JIT, "Flushing dirty reg %i", mr[r].reg);
|
|
// emit_->VSTR((ARM64Reg)(mr[r].reg + S0), CTXREG, GetMipsRegOffset(r));
|
|
ar[mr[r].reg].isDirty = false;
|
|
}
|
|
ar[mr[r].reg].mipsReg = -1;
|
|
}
|
|
break;
|
|
|
|
case ML_MEM:
|
|
// Already there, nothing to do.
|
|
break;
|
|
|
|
default:
|
|
//BAD
|
|
break;
|
|
}
|
|
mr[r].loc = ML_MEM;
|
|
mr[r].reg = (int)INVALID_REG;
|
|
}
|
|
|
|
int ArmRegCacheFPU::GetNumARMFPURegs() {
|
|
if (cpu_info.bNEON)
|
|
return 32;
|
|
else
|
|
return 16;
|
|
}
|
|
|
|
// Scalar only. Need a similar one for sequential Q vectors.
|
|
int ArmRegCacheFPU::FlushGetSequential(int a, int maxArmReg) {
|
|
int c = 1;
|
|
int lastMipsOffset = GetMipsRegOffset(ar[a].mipsReg);
|
|
a++;
|
|
while (a < maxArmReg) {
|
|
if (!ar[a].isDirty || ar[a].mipsReg == -1)
|
|
break;
|
|
int mipsOffset = GetMipsRegOffset(ar[a].mipsReg);
|
|
if (mipsOffset != lastMipsOffset + 4) {
|
|
break;
|
|
}
|
|
|
|
lastMipsOffset = mipsOffset;
|
|
a++;
|
|
c++;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
void ArmRegCacheFPU::FlushAll() {
|
|
if (!pendingFlush) {
|
|
// Nothing allocated. FPU regs are not nearly as common as GPR.
|
|
return;
|
|
}
|
|
|
|
// Discard temps!
|
|
for (int i = TEMP0; i < TEMP0 + NUM_TEMPS; i++) {
|
|
DiscardR(i);
|
|
}
|
|
|
|
// Loop through the ARM registers, then use GetMipsRegOffset to determine if MIPS registers are
|
|
// sequential. This is necessary because we store VFPU registers in a staggered order to get
|
|
// columns sequential (most VFPU math in nearly all games is in columns, not rows).
|
|
|
|
int numArmRegs;
|
|
// We rely on the allocation order being sequential.
|
|
const ARM64Reg baseReg = GetMIPSAllocationOrder(numArmRegs)[0];
|
|
|
|
for (int i = 0; i < numArmRegs; i++) {
|
|
int a = (baseReg - S0) + i;
|
|
int m = ar[a].mipsReg;
|
|
|
|
if (ar[a].isDirty) {
|
|
if (m == -1) {
|
|
ILOG("ARM reg %i is dirty but has no mipsreg", a);
|
|
continue;
|
|
}
|
|
|
|
int c = FlushGetSequential(a, GetNumARMFPURegs());
|
|
if (c == 1) {
|
|
// ILOG("Got single register: %i (%i)", a, m);
|
|
//emit_->VSTR((ARM64Reg)(a + S0), CTXREG, GetMipsRegOffset(m));
|
|
} else if (c == 2) {
|
|
// Probably not worth using VSTMIA for two.
|
|
int offset = GetMipsRegOffset(m);
|
|
//emit_->VSTR((ARM64Reg)(a + S0), CTXREG, offset);
|
|
//emit_->VSTR((ARM64Reg)(a + 1 + S0), CTXREG, offset + 4);
|
|
} else {
|
|
// ILOG("Got sequence: %i at %i (%i)", c, a, m);
|
|
//emit_->ADDI2R(SCRATCHREG1, CTXREG, GetMipsRegOffset(m), SCRATCHREG2);
|
|
// ILOG("VSTMIA R0, %i, %i", a, c);
|
|
//emit_->VSTMIA(SCRATCHREG1, false, (ARM64Reg)(S0 + a), c);
|
|
}
|
|
|
|
// Skip past, and mark as non-dirty.
|
|
for (int j = 0; j < c; j++) {
|
|
int b = a + j;
|
|
mr[ar[b].mipsReg].loc = ML_MEM;
|
|
mr[ar[b].mipsReg].reg = (int)INVALID_REG;
|
|
ar[a + j].mipsReg = -1;
|
|
ar[a + j].isDirty = false;
|
|
}
|
|
i += c - 1;
|
|
} else {
|
|
if (m != -1) {
|
|
mr[m].loc = ML_MEM;
|
|
mr[m].reg = (int)INVALID_REG;
|
|
}
|
|
ar[a].mipsReg = -1;
|
|
// already not dirty
|
|
}
|
|
}
|
|
|
|
// Sanity check
|
|
for (int i = 0; i < numARMFpuReg_; i++) {
|
|
if (ar[i].mipsReg != -1) {
|
|
ERROR_LOG(JIT, "Flush fail: ar[%i].mipsReg=%i", i, ar[i].mipsReg);
|
|
}
|
|
}
|
|
pendingFlush = false;
|
|
}
|
|
|
|
void ArmRegCacheFPU::DiscardR(MIPSReg r) {
|
|
switch (mr[r].loc) {
|
|
case ML_IMM:
|
|
// IMM is always "dirty".
|
|
// IMM is not allowed for FP (yet).
|
|
ERROR_LOG(JIT, "Imm in FP register?");
|
|
break;
|
|
|
|
case ML_ARMREG:
|
|
if (mr[r].reg == INVALID_REG) {
|
|
ERROR_LOG(JIT, "DiscardR: MipsReg had bad ArmReg");
|
|
} else {
|
|
// Note that we DO NOT write it back here. That's the whole point of Discard.
|
|
ar[mr[r].reg].isDirty = false;
|
|
ar[mr[r].reg].mipsReg = -1;
|
|
}
|
|
break;
|
|
|
|
case ML_MEM:
|
|
// Already there, nothing to do.
|
|
break;
|
|
|
|
default:
|
|
//BAD
|
|
break;
|
|
}
|
|
mr[r].loc = ML_MEM;
|
|
mr[r].reg = (int)INVALID_REG;
|
|
mr[r].tempLock = false;
|
|
mr[r].spillLock = false;
|
|
}
|
|
|
|
bool ArmRegCacheFPU::IsTempX(ARM64Reg r) const {
|
|
return ar[r - S0].mipsReg >= TEMP0;
|
|
}
|
|
|
|
int ArmRegCacheFPU::GetTempR() {
|
|
if (jo_->useNEONVFPU) {
|
|
ERROR_LOG(JIT, "VFP temps not allowed in NEON mode");
|
|
return 0;
|
|
}
|
|
pendingFlush = true;
|
|
for (int r = TEMP0; r < TEMP0 + NUM_TEMPS; ++r) {
|
|
if (mr[r].loc == ML_MEM && !mr[r].tempLock) {
|
|
mr[r].tempLock = true;
|
|
return r;
|
|
}
|
|
}
|
|
|
|
ERROR_LOG(CPU, "Out of temp regs! Might need to DiscardR() some");
|
|
_assert_msg_(JIT, 0, "Regcache ran out of temp regs, might need to DiscardR() some.");
|
|
return -1;
|
|
}
|
|
|
|
int ArmRegCacheFPU::GetMipsRegOffset(MIPSReg r) {
|
|
// These are offsets within the MIPSState structure. First there are the GPRS, then FPRS, then the "VFPURs", then the VFPU ctrls.
|
|
if (r < 0 || r > 32 + 128 + NUM_TEMPS) {
|
|
ERROR_LOG(JIT, "bad mips register %i, out of range", r);
|
|
return 0; // or what?
|
|
}
|
|
|
|
if (r < 32 || r >= 32 + 128) {
|
|
return (32 + r) << 2;
|
|
} else {
|
|
// r is between 32 and 128 + 32
|
|
return (32 + 32 + voffset[r - 32]) << 2;
|
|
}
|
|
}
|
|
|
|
void ArmRegCacheFPU::SpillLock(MIPSReg r1, MIPSReg r2, MIPSReg r3, MIPSReg r4) {
|
|
mr[r1].spillLock = true;
|
|
if (r2 != -1) mr[r2].spillLock = true;
|
|
if (r3 != -1) mr[r3].spillLock = true;
|
|
if (r4 != -1) mr[r4].spillLock = true;
|
|
}
|
|
|
|
// This is actually pretty slow with all the 160 regs...
|
|
void ArmRegCacheFPU::ReleaseSpillLocksAndDiscardTemps() {
|
|
for (int i = 0; i < NUM_MIPSFPUREG; i++) {
|
|
mr[i].spillLock = false;
|
|
}
|
|
for (int i = TEMP0; i < TEMP0 + NUM_TEMPS; ++i) {
|
|
DiscardR(i);
|
|
}
|
|
for (int i = 0; i < MAX_ARMQUADS; i++) {
|
|
qr[i].spillLock = false;
|
|
if (qr[i].isTemp) {
|
|
qr[i].isTemp = false;
|
|
qr[i].sz = V_Invalid;
|
|
}
|
|
}
|
|
}
|
|
|
|
ARM64Reg ArmRegCacheFPU::R(int mipsReg) {
|
|
if (mr[mipsReg].loc == ML_ARMREG) {
|
|
return (ARM64Reg)(mr[mipsReg].reg + S0);
|
|
} else {
|
|
if (mipsReg < 32) {
|
|
ERROR_LOG(JIT, "FReg %i not in ARM reg. compilerPC = %08x : %s", mipsReg, js_->compilerPC, MIPSDisasmAt(js_->compilerPC));
|
|
} else if (mipsReg < 32 + 128) {
|
|
ERROR_LOG(JIT, "VReg %i not in ARM reg. compilerPC = %08x : %s", mipsReg - 32, js_->compilerPC, MIPSDisasmAt(js_->compilerPC));
|
|
} else {
|
|
ERROR_LOG(JIT, "Tempreg %i not in ARM reg. compilerPC = %08x : %s", mipsReg - 128 - 32, js_->compilerPC, MIPSDisasmAt(js_->compilerPC));
|
|
}
|
|
return INVALID_REG; // BAAAD
|
|
}
|
|
}
|