// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include "base/logging.h" #include "Common/CPUDetect.h" #include "Core/MIPS/MIPS.h" #include "Core/MIPS/ARM64/Arm64RegCacheFPU.h" #include "Core/MIPS/ARM64/Arm64Jit.h" #include "Core/MIPS/MIPSTables.h" using namespace Arm64Gen; using namespace Arm64JitConstants; ArmRegCacheFPU::ArmRegCacheFPU(MIPSState *mips, MIPSComp::JitState *js, MIPSComp::Arm64JitOptions *jo) : mips_(mips), vr(mr + 32), js_(js), jo_(jo), initialReady(false) { if (cpu_info.bNEON) { numARMFpuReg_ = 32; } else { numARMFpuReg_ = 16; } } void ArmRegCacheFPU::Start(MIPSAnalyst::AnalysisResults &stats) { if (!initialReady) { SetupInitialRegs(); initialReady = true; } memcpy(ar, arInitial, sizeof(ar)); memcpy(mr, mrInitial, sizeof(mr)); pendingFlush = false; } void ArmRegCacheFPU::SetupInitialRegs() { for (int i = 0; i < numARMFpuReg_; i++) { arInitial[i].mipsReg = -1; arInitial[i].isDirty = false; } for (int i = 0; i < NUM_MIPSFPUREG; i++) { mrInitial[i].loc = ML_MEM; mrInitial[i].reg = INVALID_REG; mrInitial[i].spillLock = false; mrInitial[i].tempLock = false; } for (int i = 0; i < MAX_ARMQUADS; i++) { qr[i].isDirty = false; qr[i].mipsVec = -1; qr[i].sz = V_Invalid; qr[i].spillLock = false; qr[i].isTemp = false; memset(qr[i].vregs, 0xff, 4); } } const ARM64Reg *ArmRegCacheFPU::GetMIPSAllocationOrder(int &count) { // VFP mapping // VFPU registers and regular FP registers are mapped interchangably on top of the standard // 16 FPU registers. // NEON mapping // We map FPU and VFPU registers entirely separately. FPU is mapped to 12 of the bottom 16 S registers. // VFPU is mapped to the upper 48 regs, 32 of which can only be reached through NEON // (or D16-D31 as doubles, but not relevant). // Might consider shifting the split in the future, giving more regs to NEON allowing it to map more quads. // We should attempt to map scalars to low Q registers and wider things to high registers, // as the NEON instructions are all 2-vector or 4-vector, they don't do scalar, we want to be // able to use regular VFP instructions too. static const ARM64Reg allocationOrder[] = { // Reserve four temp registers. Useful when building quads until we really figure out // how to do that best. S4, S5, S6, S7, // Q1 S8, S9, S10, S11, // Q2 S12, S13, S14, S15, // Q3 S16, S17, S18, S19, // Q4 S20, S21, S22, S23, // Q5 S24, S25, S26, S27, // Q6 S28, S29, S30, S31, // Q7 // Q8-Q15 free for NEON tricks }; static const ARM64Reg allocationOrderNEONVFPU[] = { // Reserve four temp registers. Useful when building quads until we really figure out // how to do that best. S4, S5, S6, S7, // Q1 S8, S9, S10, S11, // Q2 S12, S13, S14, S15, // Q3 // Q4-Q15 free for VFPU }; // NOTE: It's important that S2/S3 are not allocated with bNEON, even if !useNEONVFPU. // They are used by a few instructions, like vh2f. if (jo_->useNEONVFPU) { count = sizeof(allocationOrderNEONVFPU) / sizeof(const ARM64Reg); return allocationOrderNEONVFPU; } else { count = sizeof(allocationOrder) / sizeof(const ARM64Reg); return allocationOrder; } } bool ArmRegCacheFPU::IsMapped(MIPSReg r) { return mr[r].loc == ML_ARMREG; } ARM64Reg ArmRegCacheFPU::MapReg(MIPSReg mipsReg, int mapFlags) { // INFO_LOG(JIT, "FPR MapReg: %i flags=%i", mipsReg, mapFlags); if (jo_->useNEONVFPU && mipsReg >= 32) { ERROR_LOG(JIT, "Cannot map VFPU registers to ARM VFP registers in NEON mode. PC=%08x", js_->compilerPC); return S0; } pendingFlush = true; // Let's see if it's already mapped. If so we just need to update the dirty flag. // We don't need to check for ML_NOINIT because we assume that anyone who maps // with that flag immediately writes a "known" value to the register. if (mr[mipsReg].loc == ML_ARMREG) { if (ar[mr[mipsReg].reg].mipsReg != mipsReg) { ERROR_LOG(JIT, "Reg mapping out of sync! MR %i", mipsReg); } if (mapFlags & MAP_DIRTY) { ar[mr[mipsReg].reg].isDirty = true; } //INFO_LOG(JIT, "Already mapped %i to %i", mipsReg, mr[mipsReg].reg); return (ARM64Reg)(mr[mipsReg].reg + S0); } // Okay, not mapped, so we need to allocate an ARM register. int allocCount; const ARM64Reg *allocOrder = GetMIPSAllocationOrder(allocCount); allocate: for (int i = 0; i < allocCount; i++) { int reg = allocOrder[i] - S0; if (ar[reg].mipsReg == -1) { // That means it's free. Grab it, and load the value into it (if requested). ar[reg].isDirty = (mapFlags & MAP_DIRTY) ? true : false; if ((mapFlags & MAP_NOINIT) != MAP_NOINIT) { if (mr[mipsReg].loc == ML_MEM && mipsReg < TEMP0) { // emit_->VLDR((ARM64Reg)(reg + S0), CTXREG, GetMipsRegOffset(mipsReg)); } } ar[reg].mipsReg = mipsReg; mr[mipsReg].loc = ML_ARMREG; mr[mipsReg].reg = reg; //INFO_LOG(JIT, "Mapped %i to %i", mipsReg, mr[mipsReg].reg); return (ARM64Reg)(reg + S0); } } // Still nothing. Let's spill a reg and goto 10. // TODO: Use age or something to choose which register to spill? // TODO: Spill dirty regs first? or opposite? int bestToSpill = -1; for (int i = 0; i < allocCount; i++) { int reg = allocOrder[i] - S0; if (ar[reg].mipsReg != -1 && (mr[ar[reg].mipsReg].spillLock || mr[ar[reg].mipsReg].tempLock)) continue; bestToSpill = reg; break; } if (bestToSpill != -1) { FlushArmReg((ARM64Reg)(S0 + bestToSpill)); goto allocate; } // Uh oh, we have all them spilllocked.... ERROR_LOG(JIT, "Out of spillable registers at PC %08x!!!", js_->compilerPC); return INVALID_REG; } void ArmRegCacheFPU::MapInIn(MIPSReg rd, MIPSReg rs) { SpillLock(rd, rs); MapReg(rd); MapReg(rs); ReleaseSpillLock(rd); ReleaseSpillLock(rs); } void ArmRegCacheFPU::MapDirtyIn(MIPSReg rd, MIPSReg rs, bool avoidLoad) { SpillLock(rd, rs); bool overlap = avoidLoad && rd == rs; MapReg(rd, overlap ? MAP_DIRTY : MAP_NOINIT); MapReg(rs); ReleaseSpillLock(rd); ReleaseSpillLock(rs); } void ArmRegCacheFPU::MapDirtyInIn(MIPSReg rd, MIPSReg rs, MIPSReg rt, bool avoidLoad) { SpillLock(rd, rs, rt); bool overlap = avoidLoad && (rd == rs || rd == rt); MapReg(rd, overlap ? MAP_DIRTY : MAP_NOINIT); MapReg(rt); MapReg(rs); ReleaseSpillLock(rd); ReleaseSpillLock(rs); ReleaseSpillLock(rt); } void ArmRegCacheFPU::SpillLockV(const u8 *v, VectorSize sz) { for (int i = 0; i < GetNumVectorElements(sz); i++) { vr[v[i]].spillLock = true; } } void ArmRegCacheFPU::SpillLockV(int vec, VectorSize sz) { u8 v[4]; GetVectorRegs(v, sz, vec); SpillLockV(v, sz); } void ArmRegCacheFPU::MapRegV(int vreg, int flags) { MapReg(vreg + 32, flags); } void ArmRegCacheFPU::LoadToRegV(ARM64Reg armReg, int vreg) { if (vr[vreg].loc == ML_ARMREG) { // emit_->VMOV(armReg, (ARM64Reg)(S0 + vr[vreg].reg)); } else { MapRegV(vreg); // emit_->VMOV(armReg, V(vreg)); } } void ArmRegCacheFPU::MapRegsAndSpillLockV(int vec, VectorSize sz, int flags) { u8 v[4]; GetVectorRegs(v, sz, vec); SpillLockV(v, sz); for (int i = 0; i < GetNumVectorElements(sz); i++) { MapRegV(v[i], flags); } } void ArmRegCacheFPU::MapRegsAndSpillLockV(const u8 *v, VectorSize sz, int flags) { SpillLockV(v, sz); for (int i = 0; i < GetNumVectorElements(sz); i++) { MapRegV(v[i], flags); } } void ArmRegCacheFPU::MapInInV(int vs, int vt) { SpillLockV(vs); SpillLockV(vt); MapRegV(vs); MapRegV(vt); ReleaseSpillLockV(vs); ReleaseSpillLockV(vt); } void ArmRegCacheFPU::MapDirtyInV(int vd, int vs, bool avoidLoad) { bool overlap = avoidLoad && (vd == vs); SpillLockV(vd); SpillLockV(vs); MapRegV(vd, overlap ? MAP_DIRTY : MAP_NOINIT); MapRegV(vs); ReleaseSpillLockV(vd); ReleaseSpillLockV(vs); } void ArmRegCacheFPU::MapDirtyInInV(int vd, int vs, int vt, bool avoidLoad) { bool overlap = avoidLoad && ((vd == vs) || (vd == vt)); SpillLockV(vd); SpillLockV(vs); SpillLockV(vt); MapRegV(vd, overlap ? MAP_DIRTY : MAP_NOINIT); MapRegV(vs); MapRegV(vt); ReleaseSpillLockV(vd); ReleaseSpillLockV(vs); ReleaseSpillLockV(vt); } void ArmRegCacheFPU::FlushArmReg(ARM64Reg r) { if (r >= S0 && r <= S31) { int reg = r - S0; if (ar[reg].mipsReg == -1) { // Nothing to do, reg not mapped. return; } if (ar[reg].mipsReg != -1) { if (ar[reg].isDirty && mr[ar[reg].mipsReg].loc == ML_ARMREG) { //INFO_LOG(JIT, "Flushing ARM reg %i", reg); // emit_->VSTR(r, CTXREG, GetMipsRegOffset(ar[reg].mipsReg)); } // IMMs won't be in an ARM reg. mr[ar[reg].mipsReg].loc = ML_MEM; mr[ar[reg].mipsReg].reg = INVALID_REG; } else { ERROR_LOG(JIT, "Dirty but no mipsreg?"); } ar[reg].isDirty = false; ar[reg].mipsReg = -1; } } void ArmRegCacheFPU::FlushV(MIPSReg r) { FlushR(r + 32); } void ArmRegCacheFPU::FlushR(MIPSReg r) { switch (mr[r].loc) { case ML_IMM: // IMM is always "dirty". // IMM is not allowed for FP (yet). ERROR_LOG(JIT, "Imm in FP register?"); break; case ML_ARMREG: if (mr[r].reg == INVALID_REG) { ERROR_LOG(JIT, "FlushR: MipsReg had bad ArmReg"); } if (mr[r].reg >= Q0 && mr[r].reg <= Q15) { // This should happen rarely, but occasionally we need to flush a single stray // mipsreg that's been part of a quad. int quad = mr[r].reg - Q0; if (qr[quad].isDirty) { WARN_LOG(JIT, "FlushR found quad register %i - PC=%08x", quad, js_->compilerPC); //emit_->ADDI2R(R0, CTXREG, GetMipsRegOffset(r), R1); //emit_->VST1_lane(F_32, (ARM64Reg)mr[r].reg, R0, mr[r].lane, true); } } else { if (ar[mr[r].reg].isDirty) { //INFO_LOG(JIT, "Flushing dirty reg %i", mr[r].reg); // emit_->VSTR((ARM64Reg)(mr[r].reg + S0), CTXREG, GetMipsRegOffset(r)); ar[mr[r].reg].isDirty = false; } ar[mr[r].reg].mipsReg = -1; } break; case ML_MEM: // Already there, nothing to do. break; default: //BAD break; } mr[r].loc = ML_MEM; mr[r].reg = (int)INVALID_REG; } int ArmRegCacheFPU::GetNumARMFPURegs() { if (cpu_info.bNEON) return 32; else return 16; } // Scalar only. Need a similar one for sequential Q vectors. int ArmRegCacheFPU::FlushGetSequential(int a, int maxArmReg) { int c = 1; int lastMipsOffset = GetMipsRegOffset(ar[a].mipsReg); a++; while (a < maxArmReg) { if (!ar[a].isDirty || ar[a].mipsReg == -1) break; int mipsOffset = GetMipsRegOffset(ar[a].mipsReg); if (mipsOffset != lastMipsOffset + 4) { break; } lastMipsOffset = mipsOffset; a++; c++; } return c; } void ArmRegCacheFPU::FlushAll() { if (!pendingFlush) { // Nothing allocated. FPU regs are not nearly as common as GPR. return; } // Discard temps! for (int i = TEMP0; i < TEMP0 + NUM_TEMPS; i++) { DiscardR(i); } // Loop through the ARM registers, then use GetMipsRegOffset to determine if MIPS registers are // sequential. This is necessary because we store VFPU registers in a staggered order to get // columns sequential (most VFPU math in nearly all games is in columns, not rows). int numArmRegs; // We rely on the allocation order being sequential. const ARM64Reg baseReg = GetMIPSAllocationOrder(numArmRegs)[0]; for (int i = 0; i < numArmRegs; i++) { int a = (baseReg - S0) + i; int m = ar[a].mipsReg; if (ar[a].isDirty) { if (m == -1) { ILOG("ARM reg %i is dirty but has no mipsreg", a); continue; } int c = FlushGetSequential(a, GetNumARMFPURegs()); if (c == 1) { // ILOG("Got single register: %i (%i)", a, m); //emit_->VSTR((ARM64Reg)(a + S0), CTXREG, GetMipsRegOffset(m)); } else if (c == 2) { // Probably not worth using VSTMIA for two. int offset = GetMipsRegOffset(m); //emit_->VSTR((ARM64Reg)(a + S0), CTXREG, offset); //emit_->VSTR((ARM64Reg)(a + 1 + S0), CTXREG, offset + 4); } else { // ILOG("Got sequence: %i at %i (%i)", c, a, m); //emit_->ADDI2R(SCRATCHREG1, CTXREG, GetMipsRegOffset(m), SCRATCHREG2); // ILOG("VSTMIA R0, %i, %i", a, c); //emit_->VSTMIA(SCRATCHREG1, false, (ARM64Reg)(S0 + a), c); } // Skip past, and mark as non-dirty. for (int j = 0; j < c; j++) { int b = a + j; mr[ar[b].mipsReg].loc = ML_MEM; mr[ar[b].mipsReg].reg = (int)INVALID_REG; ar[a + j].mipsReg = -1; ar[a + j].isDirty = false; } i += c - 1; } else { if (m != -1) { mr[m].loc = ML_MEM; mr[m].reg = (int)INVALID_REG; } ar[a].mipsReg = -1; // already not dirty } } // Sanity check for (int i = 0; i < numARMFpuReg_; i++) { if (ar[i].mipsReg != -1) { ERROR_LOG(JIT, "Flush fail: ar[%i].mipsReg=%i", i, ar[i].mipsReg); } } pendingFlush = false; } void ArmRegCacheFPU::DiscardR(MIPSReg r) { switch (mr[r].loc) { case ML_IMM: // IMM is always "dirty". // IMM is not allowed for FP (yet). ERROR_LOG(JIT, "Imm in FP register?"); break; case ML_ARMREG: if (mr[r].reg == INVALID_REG) { ERROR_LOG(JIT, "DiscardR: MipsReg had bad ArmReg"); } else { // Note that we DO NOT write it back here. That's the whole point of Discard. ar[mr[r].reg].isDirty = false; ar[mr[r].reg].mipsReg = -1; } break; case ML_MEM: // Already there, nothing to do. break; default: //BAD break; } mr[r].loc = ML_MEM; mr[r].reg = (int)INVALID_REG; mr[r].tempLock = false; mr[r].spillLock = false; } bool ArmRegCacheFPU::IsTempX(ARM64Reg r) const { return ar[r - S0].mipsReg >= TEMP0; } int ArmRegCacheFPU::GetTempR() { if (jo_->useNEONVFPU) { ERROR_LOG(JIT, "VFP temps not allowed in NEON mode"); return 0; } pendingFlush = true; for (int r = TEMP0; r < TEMP0 + NUM_TEMPS; ++r) { if (mr[r].loc == ML_MEM && !mr[r].tempLock) { mr[r].tempLock = true; return r; } } ERROR_LOG(CPU, "Out of temp regs! Might need to DiscardR() some"); _assert_msg_(JIT, 0, "Regcache ran out of temp regs, might need to DiscardR() some."); return -1; } int ArmRegCacheFPU::GetMipsRegOffset(MIPSReg r) { // These are offsets within the MIPSState structure. First there are the GPRS, then FPRS, then the "VFPURs", then the VFPU ctrls. if (r < 0 || r > 32 + 128 + NUM_TEMPS) { ERROR_LOG(JIT, "bad mips register %i, out of range", r); return 0; // or what? } if (r < 32 || r >= 32 + 128) { return (32 + r) << 2; } else { // r is between 32 and 128 + 32 return (32 + 32 + voffset[r - 32]) << 2; } } void ArmRegCacheFPU::SpillLock(MIPSReg r1, MIPSReg r2, MIPSReg r3, MIPSReg r4) { mr[r1].spillLock = true; if (r2 != -1) mr[r2].spillLock = true; if (r3 != -1) mr[r3].spillLock = true; if (r4 != -1) mr[r4].spillLock = true; } // This is actually pretty slow with all the 160 regs... void ArmRegCacheFPU::ReleaseSpillLocksAndDiscardTemps() { for (int i = 0; i < NUM_MIPSFPUREG; i++) { mr[i].spillLock = false; } for (int i = TEMP0; i < TEMP0 + NUM_TEMPS; ++i) { DiscardR(i); } for (int i = 0; i < MAX_ARMQUADS; i++) { qr[i].spillLock = false; if (qr[i].isTemp) { qr[i].isTemp = false; qr[i].sz = V_Invalid; } } } ARM64Reg ArmRegCacheFPU::R(int mipsReg) { if (mr[mipsReg].loc == ML_ARMREG) { return (ARM64Reg)(mr[mipsReg].reg + S0); } else { if (mipsReg < 32) { ERROR_LOG(JIT, "FReg %i not in ARM reg. compilerPC = %08x : %s", mipsReg, js_->compilerPC, MIPSDisasmAt(js_->compilerPC)); } else if (mipsReg < 32 + 128) { ERROR_LOG(JIT, "VReg %i not in ARM reg. compilerPC = %08x : %s", mipsReg - 32, js_->compilerPC, MIPSDisasmAt(js_->compilerPC)); } else { ERROR_LOG(JIT, "Tempreg %i not in ARM reg. compilerPC = %08x : %s", mipsReg - 128 - 32, js_->compilerPC, MIPSDisasmAt(js_->compilerPC)); } return INVALID_REG; // BAAAD } }