ppsspp/Common/GPU/Vulkan/thin3d_vulkan.cpp
2025-03-26 18:14:24 +01:00

1927 lines
73 KiB
C++

// Copyright (c) 2015- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <cstdio>
#include <vector>
#include <string>
#include <map>
#include "Common/Log.h"
#include "Common/StringUtils.h"
#include "Common/System/Display.h"
#include "Common/Math/lin/matrix4x4.h"
#include "Common/Data/Convert/SmallDataConvert.h"
#include "Common/GPU/thin3d.h"
#include "Common/GPU/Vulkan/VulkanRenderManager.h"
#include "Common/GPU/Vulkan/VulkanContext.h"
#include "Common/GPU/Vulkan/VulkanImage.h"
#include "Common/GPU/Vulkan/VulkanMemory.h"
#include "Common/GPU/Vulkan/VulkanLoader.h"
#include "Common/Thread/Promise.h"
// For descriptor set 0 (the only one), we use a simple descriptor set for all thin3d rendering: 1 UBO binding point, 3 combined texture/samples.
//
// binding 0 - uniform buffer
// binding 1 - texture/sampler
// binding 2 - texture/sampler
// binding 3 - texture/sampler
//
// Vertex data lives in a separate namespace (location = 0, 1, etc).
using namespace PPSSPP_VK;
namespace Draw {
// This can actually be replaced with a cast as the values are in the right order.
static const VkCompareOp compToVK[] = {
VK_COMPARE_OP_NEVER,
VK_COMPARE_OP_LESS,
VK_COMPARE_OP_EQUAL,
VK_COMPARE_OP_LESS_OR_EQUAL,
VK_COMPARE_OP_GREATER,
VK_COMPARE_OP_NOT_EQUAL,
VK_COMPARE_OP_GREATER_OR_EQUAL,
VK_COMPARE_OP_ALWAYS
};
// So can this.
static const VkBlendOp blendEqToVk[] = {
VK_BLEND_OP_ADD,
VK_BLEND_OP_SUBTRACT,
VK_BLEND_OP_REVERSE_SUBTRACT,
VK_BLEND_OP_MIN,
VK_BLEND_OP_MAX,
};
static const VkBlendFactor blendFactorToVk[] = {
VK_BLEND_FACTOR_ZERO,
VK_BLEND_FACTOR_ONE,
VK_BLEND_FACTOR_SRC_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR,
VK_BLEND_FACTOR_DST_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR,
VK_BLEND_FACTOR_SRC_ALPHA,
VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA,
VK_BLEND_FACTOR_DST_ALPHA,
VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA,
VK_BLEND_FACTOR_CONSTANT_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR,
VK_BLEND_FACTOR_CONSTANT_ALPHA,
VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA,
VK_BLEND_FACTOR_SRC1_COLOR,
VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR,
VK_BLEND_FACTOR_SRC1_ALPHA,
VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA,
};
static const VkLogicOp logicOpToVK[] = {
VK_LOGIC_OP_CLEAR,
VK_LOGIC_OP_SET,
VK_LOGIC_OP_COPY,
VK_LOGIC_OP_COPY_INVERTED,
VK_LOGIC_OP_NO_OP,
VK_LOGIC_OP_INVERT,
VK_LOGIC_OP_AND,
VK_LOGIC_OP_NAND,
VK_LOGIC_OP_OR,
VK_LOGIC_OP_NOR,
VK_LOGIC_OP_XOR,
VK_LOGIC_OP_EQUIVALENT,
VK_LOGIC_OP_AND_REVERSE,
VK_LOGIC_OP_AND_INVERTED,
VK_LOGIC_OP_OR_REVERSE,
VK_LOGIC_OP_OR_INVERTED,
};
static const VkPrimitiveTopology primToVK[] = {
VK_PRIMITIVE_TOPOLOGY_POINT_LIST,
VK_PRIMITIVE_TOPOLOGY_LINE_LIST,
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN,
// Tesselation shader primitive.
VK_PRIMITIVE_TOPOLOGY_PATCH_LIST,
// The rest are for geometry shaders only.
VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY,
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY,
};
static const VkStencilOp stencilOpToVK[8] = {
VK_STENCIL_OP_KEEP,
VK_STENCIL_OP_ZERO,
VK_STENCIL_OP_REPLACE,
VK_STENCIL_OP_INCREMENT_AND_CLAMP,
VK_STENCIL_OP_DECREMENT_AND_CLAMP,
VK_STENCIL_OP_INVERT,
VK_STENCIL_OP_INCREMENT_AND_WRAP,
VK_STENCIL_OP_DECREMENT_AND_WRAP,
};
class VKBlendState : public BlendState {
public:
VkPipelineColorBlendStateCreateInfo info{ VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO };
std::vector<VkPipelineColorBlendAttachmentState> attachments;
};
class VKDepthStencilState : public DepthStencilState {
public:
VkPipelineDepthStencilStateCreateInfo info{ VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO };
};
class VKRasterState : public RasterState {
public:
VKRasterState(const RasterStateDesc &desc) {
cullFace = desc.cull;
frontFace = desc.frontFace;
}
Facing frontFace;
CullMode cullFace;
void ToVulkan(VkPipelineRasterizationStateCreateInfo *info) const {
memset(info, 0, sizeof(*info));
info->sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
info->frontFace = frontFace == Facing::CCW ? VK_FRONT_FACE_COUNTER_CLOCKWISE : VK_FRONT_FACE_CLOCKWISE;
switch (cullFace) {
case CullMode::BACK: info->cullMode = VK_CULL_MODE_BACK_BIT; break;
case CullMode::FRONT: info->cullMode = VK_CULL_MODE_FRONT_BIT; break;
case CullMode::FRONT_AND_BACK: info->cullMode = VK_CULL_MODE_FRONT_AND_BACK; break;
case CullMode::NONE: info->cullMode = VK_CULL_MODE_NONE; break;
}
info->polygonMode = VK_POLYGON_MODE_FILL;
info->lineWidth = 1.0f;
}
};
VkShaderStageFlagBits StageToVulkan(ShaderStage stage) {
switch (stage) {
case ShaderStage::Vertex: return VK_SHADER_STAGE_VERTEX_BIT;
case ShaderStage::Geometry: return VK_SHADER_STAGE_GEOMETRY_BIT;
case ShaderStage::Compute: return VK_SHADER_STAGE_COMPUTE_BIT;
case ShaderStage::Fragment: return VK_SHADER_STAGE_FRAGMENT_BIT;
}
return VK_SHADER_STAGE_FRAGMENT_BIT;
}
// Not registering this as a resource holder, instead the pipeline is registered. It will
// invoke Compile again to recreate the shader then link them together.
class VKShaderModule : public ShaderModule {
public:
VKShaderModule(ShaderStage stage, const std::string &tag) : stage_(stage), tag_(tag) {
vkstage_ = StageToVulkan(stage);
}
bool Compile(VulkanContext *vulkan, const uint8_t *data, size_t size);
const std::string &GetSource() const { return source_; }
~VKShaderModule() {
if (module_) {
VkShaderModule shaderModule = module_->BlockUntilReady();
vulkan_->Delete().QueueDeleteShaderModule(shaderModule);
vulkan_->Delete().QueueCallback([](VulkanContext *context, void *m) {
auto module = (Promise<VkShaderModule> *)m;
delete module;
}, module_);
}
}
Promise<VkShaderModule> *Get() const { return module_; }
ShaderStage GetStage() const override {
return stage_;
}
private:
VulkanContext *vulkan_ = nullptr;
Promise<VkShaderModule> *module_ = nullptr;
VkShaderStageFlagBits vkstage_;
bool ok_ = false;
ShaderStage stage_;
std::string source_; // So we can recompile in case of context loss.
std::string tag_;
};
bool VKShaderModule::Compile(VulkanContext *vulkan, const uint8_t *data, size_t size) {
// We'll need this to free it later.
vulkan_ = vulkan;
source_ = (const char *)data;
std::vector<uint32_t> spirv;
std::string errorMessage;
if (!GLSLtoSPV(vkstage_, source_.c_str(), GLSLVariant::VULKAN, spirv, &errorMessage)) {
WARN_LOG(Log::G3D, "Shader compile to module failed (%s): %s", tag_.c_str(), errorMessage.c_str());
return false;
}
// Just for kicks, sanity check the SPIR-V. The disasm isn't perfect
// but gives you some idea of what's going on.
#if 0
std::string disasm;
if (DisassembleSPIRV(spirv, &disasm)) {
OutputDebugStringA(disasm.c_str());
}
#endif
VkShaderModule shaderModule = VK_NULL_HANDLE;
if (vulkan->CreateShaderModule(spirv, &shaderModule, tag_.c_str())) {
module_ = Promise<VkShaderModule>::AlreadyDone(shaderModule);
ok_ = true;
} else {
WARN_LOG(Log::G3D, "vkCreateShaderModule failed (%s)", tag_.c_str());
ok_ = false;
}
return ok_;
}
class VKInputLayout : public InputLayout {
public:
VkVertexInputBindingDescription binding;
std::vector<VkVertexInputAttributeDescription> attributes;
VkPipelineVertexInputStateCreateInfo visc;
};
class VKPipeline : public Pipeline {
public:
VKPipeline(VulkanContext *vulkan, size_t size, PipelineFlags _flags, const char *tag) : vulkan_(vulkan), flags(_flags), tag_(tag) {
uboSize_ = (int)size;
ubo_ = new uint8_t[uboSize_];
vkrDesc = new VKRGraphicsPipelineDesc();
}
~VKPipeline() {
if (pipeline) {
pipeline->QueueForDeletion(vulkan_);
}
for (auto dep : deps) {
dep->Release();
}
delete[] ubo_;
vkrDesc->Release();
}
void SetDynamicUniformData(const void *data, size_t size) {
_dbg_assert_(size <= uboSize_);
memcpy(ubo_, data, size);
}
// Returns the binding offset, and the VkBuffer to bind.
size_t PushUBO(VulkanPushPool *buf, VulkanContext *vulkan, VkBuffer *vkbuf) {
return buf->Push(ubo_, uboSize_, vulkan->GetPhysicalDeviceProperties().properties.limits.minUniformBufferOffsetAlignment, vkbuf);
}
int GetUBOSize() const {
return uboSize_;
}
VKRGraphicsPipeline *pipeline = nullptr;
VKRGraphicsPipelineDesc *vkrDesc = nullptr;
PipelineFlags flags;
std::vector<VKShaderModule *> deps;
int stride = 0;
int dynamicUniformSize = 0;
bool usesStencil = false;
private:
VulkanContext *vulkan_;
uint8_t *ubo_;
int uboSize_;
std::string tag_;
};
class VKTexture;
class VKBuffer;
class VKSamplerState;
enum {
MAX_BOUND_TEXTURES = MAX_TEXTURE_SLOTS,
};
struct DescriptorSetKey {
VkImageView imageViews_[MAX_BOUND_TEXTURES];
VKSamplerState *samplers_[MAX_BOUND_TEXTURES];
VkBuffer buffer_;
bool operator < (const DescriptorSetKey &other) const {
for (int i = 0; i < MAX_BOUND_TEXTURES; ++i) {
if (imageViews_[i] < other.imageViews_[i]) return true; else if (imageViews_[i] > other.imageViews_[i]) return false;
if (samplers_[i] < other.samplers_[i]) return true; else if (samplers_[i] > other.samplers_[i]) return false;
}
if (buffer_ < other.buffer_) return true; else if (buffer_ > other.buffer_) return false;
return false;
}
};
class VKTexture : public Texture {
public:
VKTexture(VulkanContext *vulkan, const TextureDesc &desc)
: vulkan_(vulkan), mipLevels_(desc.mipLevels) {
format_ = desc.format;
}
bool Create(VkCommandBuffer cmd, VulkanBarrierBatch *postBarriers, VulkanPushPool *pushBuffer, const TextureDesc &desc);
void Update(VkCommandBuffer cmd, VulkanBarrierBatch *postBarriers, VulkanPushPool *pushBuffer, const uint8_t *const *data, TextureCallback callback, int numLevels);
~VKTexture() {
Destroy();
}
VkImageView GetImageView() {
if (vkTex_) {
return vkTex_->GetImageView();
}
return VK_NULL_HANDLE; // This would be bad.
}
VkImageView GetImageArrayView() {
if (vkTex_) {
return vkTex_->GetImageArrayView();
}
return VK_NULL_HANDLE; // This would be bad.
}
int NumLevels() const {
return mipLevels_;
}
private:
void UpdateInternal(VkCommandBuffer cmd, VulkanPushPool *pushBuffer, const uint8_t *const *data, TextureCallback callback, int numLevels);
void Destroy() {
if (vkTex_) {
vkTex_->Destroy();
delete vkTex_;
vkTex_ = nullptr;
}
}
VulkanContext *vulkan_;
VulkanTexture *vkTex_ = nullptr;
int mipLevels_ = 0;
};
class VKFramebuffer;
class VKContext : public DrawContext {
public:
VKContext(VulkanContext *vulkan, bool useRenderThread);
~VKContext();
BackendState GetCurrentBackendState() const override {
return BackendState{
(u32)renderManager_.GetNumSteps(),
true, // Means that the other value is meaningful.
};
}
void DebugAnnotate(const char *annotation) override;
void Wait() override {
vkDeviceWaitIdle(vulkan_->GetDevice());
}
const DeviceCaps &GetDeviceCaps() const override {
return caps_;
}
std::vector<std::string> GetDeviceList() const override {
std::vector<std::string> list;
for (int i = 0; i < vulkan_->GetNumPhysicalDevices(); i++) {
list.emplace_back(vulkan_->GetPhysicalDeviceProperties(i).properties.deviceName);
}
return list;
}
std::vector<std::string> GetPresentModeList(std::string_view currentMarkerString) const override {
std::vector<std::string> list;
for (auto mode : vulkan_->GetAvailablePresentModes()) {
std::string str = VulkanPresentModeToString(mode);
if (mode == vulkan_->GetPresentMode()) {
str += std::string(" (") + std::string(currentMarkerString) + ")";
}
list.push_back(str);
}
return list;
}
std::vector<std::string> GetSurfaceFormatList() const override {
std::vector<std::string> list;
for (auto &format : vulkan_->SurfaceFormats()) {
std::string str = StringFromFormat("%s : %s", VulkanFormatToString(format.format), VulkanColorSpaceToString(format.colorSpace));
list.push_back(str);
}
return list;
}
uint32_t GetSupportedShaderLanguages() const override {
return (uint32_t)ShaderLanguage::GLSL_VULKAN;
}
uint32_t GetDataFormatSupport(DataFormat fmt) const override;
PresentMode GetPresentMode() const {
switch (vulkan_->GetPresentMode()) {
case VK_PRESENT_MODE_FIFO_KHR: return PresentMode::FIFO;
case VK_PRESENT_MODE_FIFO_RELAXED_KHR: return PresentMode::FIFO; // We treat is as FIFO for now (and won't ever enable it anyway...)
case VK_PRESENT_MODE_IMMEDIATE_KHR: return PresentMode::IMMEDIATE;
case VK_PRESENT_MODE_MAILBOX_KHR: return PresentMode::MAILBOX;
default: return PresentMode::FIFO;
}
}
DepthStencilState *CreateDepthStencilState(const DepthStencilStateDesc &desc) override;
BlendState *CreateBlendState(const BlendStateDesc &desc) override;
InputLayout *CreateInputLayout(const InputLayoutDesc &desc) override;
SamplerState *CreateSamplerState(const SamplerStateDesc &desc) override;
RasterState *CreateRasterState(const RasterStateDesc &desc) override;
Pipeline *CreateGraphicsPipeline(const PipelineDesc &desc, const char *tag) override;
ShaderModule *CreateShaderModule(ShaderStage stage, ShaderLanguage language, const uint8_t *data, size_t dataSize, const char *tag) override;
Texture *CreateTexture(const TextureDesc &desc) override;
Buffer *CreateBuffer(size_t size, uint32_t usageFlags) override;
Framebuffer *CreateFramebuffer(const FramebufferDesc &desc) override;
void UpdateBuffer(Buffer *buffer, const uint8_t *data, size_t offset, size_t size, UpdateBufferFlags flags) override;
void UpdateTextureLevels(Texture *texture, const uint8_t **data, TextureCallback initDataCallback, int numLevels) override;
void CopyFramebufferImage(Framebuffer *src, int level, int x, int y, int z, Framebuffer *dst, int dstLevel, int dstX, int dstY, int dstZ, int width, int height, int depth, Aspect aspects, const char *tag) override;
bool BlitFramebuffer(Framebuffer *src, int srcX1, int srcY1, int srcX2, int srcY2, Framebuffer *dst, int dstX1, int dstY1, int dstX2, int dstY2, Aspect aspects, FBBlitFilter filter, const char *tag) override;
bool CopyFramebufferToMemory(Framebuffer *src, Aspect aspects, int x, int y, int w, int h, Draw::DataFormat format, void *pixels, int pixelStride, ReadbackMode mode, const char *tag) override;
DataFormat PreferredFramebufferReadbackFormat(Framebuffer *src) override;
// These functions should be self explanatory.
void BindFramebufferAsRenderTarget(Framebuffer *fbo, const RenderPassInfo &rp, const char *tag) override;
void BindFramebufferAsTexture(Framebuffer *fbo, int binding, Aspect channelBit, int layer) override;
void GetFramebufferDimensions(Framebuffer *fbo, int *w, int *h) override;
void SetScissorRect(int left, int top, int width, int height) override;
void SetViewport(const Viewport &viewport) override;
void SetBlendFactor(float color[4]) override;
void SetStencilParams(uint8_t refValue, uint8_t writeMask, uint8_t compareMask) override;
void BindSamplerStates(int start, int count, SamplerState **state) override;
void BindTextures(int start, int count, Texture **textures, TextureBindFlags flags) override;
void BindNativeTexture(int sampler, void *nativeTexture) override;
void BindPipeline(Pipeline *pipeline) override {
curPipeline_ = (VKPipeline *)pipeline;
}
void BindVertexBuffer(Buffer *vertexBuffer, int offset) override {
curVBuffer_ = (VKBuffer *)vertexBuffer;
curVBufferOffset_ = offset;
}
void BindIndexBuffer(Buffer *indexBuffer, int offset) override {
curIBuffer_ = (VKBuffer *)indexBuffer;
curIBufferOffset_ = offset;
}
void UpdateDynamicUniformBuffer(const void *ub, size_t size) override;
// TODO: Add more sophisticated draws.
void Draw(int vertexCount, int offset) override;
void DrawIndexed(int vertexCount, int offset) override;
void DrawUP(const void *vdata, int vertexCount) override;
void DrawIndexedUP(const void *vdata, int vertexCount, const void *idata, int indexCount) override;
// Specialized for quick IMGUI drawing.
void DrawIndexedClippedBatchUP(const void *vdata, int vertexCount, const void *idata, int indexCount, Slice<ClippedDraw>, const void *dynUniforms, size_t size) override;
void BindCurrentPipeline();
void ApplyDynamicState();
void Clear(Aspect aspects, uint32_t colorval, float depthVal, int stencilVal) override;
void BeginFrame(DebugFlags debugFlags) override;
void EndFrame() override;
void Present(PresentMode presentMode, int vblanks) override;
int GetFrameCount() override {
return frameCount_;
}
void FlushState() override {}
void ResetStats() override {
renderManager_.ResetStats();
}
void StopThreads() override {
renderManager_.StopThreads();
}
void StartThreads() override {
renderManager_.StartThreads();
}
std::string GetInfoString(InfoField info) const override {
// TODO: Make these actually query the right information
switch (info) {
case InfoField::APINAME: return "Vulkan";
case InfoField::VENDORSTRING: return vulkan_->GetPhysicalDeviceProperties().properties.deviceName;
case InfoField::VENDOR: return VulkanVendorString(vulkan_->GetPhysicalDeviceProperties().properties.vendorID);
case InfoField::DRIVER: return FormatDriverVersion(vulkan_->GetPhysicalDeviceProperties().properties);
case InfoField::SHADELANGVERSION: return "N/A";;
case InfoField::APIVERSION: return FormatAPIVersion(vulkan_->InstanceApiVersion());
case InfoField::DEVICE_API_VERSION: return FormatAPIVersion(vulkan_->DeviceApiVersion());
default: return "?";
}
}
void BindDescriptors(VkBuffer buffer, PackedDescriptor descriptors[4]);
std::vector<std::string> GetFeatureList() const override;
std::vector<std::string> GetExtensionList(bool device, bool enabledOnly) const override;
uint64_t GetNativeObject(NativeObject obj, void *srcObject) override;
void HandleEvent(Event ev, int width, int height, void *param1, void *param2) override;
void Invalidate(InvalidationFlags flags) override;
void InvalidateFramebuffer(FBInvalidationStage stage, Aspect aspects) override;
void SetInvalidationCallback(InvalidationCallback callback) override {
renderManager_.SetInvalidationCallback(callback);
}
std::string GetGpuProfileString() const override {
return renderManager_.GetGpuProfileString();
}
private:
VulkanTexture *GetNullTexture();
VulkanContext *vulkan_ = nullptr;
int frameCount_ = 0;
VulkanRenderManager renderManager_;
VulkanTexture *nullTexture_ = nullptr;
AutoRef<VKPipeline> curPipeline_;
AutoRef<VKBuffer> curVBuffer_;
int curVBufferOffset_ = 0;
AutoRef<VKBuffer> curIBuffer_;
int curIBufferOffset_ = 0;
VKRPipelineLayout *pipelineLayout_ = nullptr;
VkPipelineCache pipelineCache_ = VK_NULL_HANDLE;
AutoRef<VKFramebuffer> curFramebuffer_;
VkDevice device_;
enum {
MAX_FRAME_COMMAND_BUFFERS = 256,
};
AutoRef<VKTexture> boundTextures_[MAX_BOUND_TEXTURES];
AutoRef<VKSamplerState> boundSamplers_[MAX_BOUND_TEXTURES];
VkImageView boundImageView_[MAX_BOUND_TEXTURES]{};
TextureBindFlags boundTextureFlags_[MAX_BOUND_TEXTURES]{};
VulkanPushPool *push_ = nullptr;
DeviceCaps caps_{};
uint8_t stencilRef_ = 0;
uint8_t stencilWriteMask_ = 0xFF;
uint8_t stencilCompareMask_ = 0xFF;
};
// Bits per pixel, not bytes.
// VERY incomplete!
static int GetBpp(VkFormat format) {
switch (format) {
case VK_FORMAT_R32_SFLOAT:
case VK_FORMAT_R8G8B8A8_UNORM:
case VK_FORMAT_B8G8R8A8_UNORM:
return 32;
case VK_FORMAT_R8_UNORM:
case VK_FORMAT_S8_UINT:
return 8;
case VK_FORMAT_R8G8_UNORM:
case VK_FORMAT_R16_SFLOAT:
case VK_FORMAT_R16_UNORM:
return 16;
case VK_FORMAT_R4G4B4A4_UNORM_PACK16:
case VK_FORMAT_B4G4R4A4_UNORM_PACK16:
case VK_FORMAT_R5G5B5A1_UNORM_PACK16:
case VK_FORMAT_R5G6B5_UNORM_PACK16:
case VK_FORMAT_B5G5R5A1_UNORM_PACK16:
case VK_FORMAT_B5G6R5_UNORM_PACK16:
case VK_FORMAT_A1R5G5B5_UNORM_PACK16:
return 16;
case VK_FORMAT_D24_UNORM_S8_UINT:
return 32;
case VK_FORMAT_D16_UNORM:
return 16;
case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
return 4;
case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK:
return 8;
case VK_FORMAT_ASTC_4x4_UNORM_BLOCK:
return 8;
case VK_FORMAT_BC1_RGBA_UNORM_BLOCK:
return 4;
case VK_FORMAT_BC2_UNORM_BLOCK:
case VK_FORMAT_BC3_UNORM_BLOCK:
case VK_FORMAT_BC4_UNORM_BLOCK:
case VK_FORMAT_BC5_UNORM_BLOCK:
case VK_FORMAT_BC7_UNORM_BLOCK:
return 8;
default:
return 0;
}
}
static VkFormat DataFormatToVulkan(DataFormat format) {
switch (format) {
case DataFormat::D16: return VK_FORMAT_D16_UNORM;
case DataFormat::D16_S8: return VK_FORMAT_D16_UNORM_S8_UINT;
case DataFormat::D24_S8: return VK_FORMAT_D24_UNORM_S8_UINT;
case DataFormat::D32F: return VK_FORMAT_D32_SFLOAT;
case DataFormat::D32F_S8: return VK_FORMAT_D32_SFLOAT_S8_UINT;
case DataFormat::S8: return VK_FORMAT_S8_UINT;
case DataFormat::R16_UNORM: return VK_FORMAT_R16_UNORM;
case DataFormat::R16_FLOAT: return VK_FORMAT_R16_SFLOAT;
case DataFormat::R16G16_FLOAT: return VK_FORMAT_R16G16_SFLOAT;
case DataFormat::R16G16B16A16_FLOAT: return VK_FORMAT_R16G16B16A16_SFLOAT;
case DataFormat::R8_UNORM: return VK_FORMAT_R8_UNORM;
case DataFormat::R8G8_UNORM: return VK_FORMAT_R8G8_UNORM;
case DataFormat::R8G8B8_UNORM: return VK_FORMAT_R8G8B8_UNORM;
case DataFormat::R8G8B8A8_UNORM: return VK_FORMAT_R8G8B8A8_UNORM;
case DataFormat::R4G4_UNORM_PACK8: return VK_FORMAT_R4G4_UNORM_PACK8;
// Note: A4R4G4B4_UNORM_PACK16 is not supported.
case DataFormat::R4G4B4A4_UNORM_PACK16: return VK_FORMAT_R4G4B4A4_UNORM_PACK16;
case DataFormat::B4G4R4A4_UNORM_PACK16: return VK_FORMAT_B4G4R4A4_UNORM_PACK16;
case DataFormat::R5G5B5A1_UNORM_PACK16: return VK_FORMAT_R5G5B5A1_UNORM_PACK16;
case DataFormat::B5G5R5A1_UNORM_PACK16: return VK_FORMAT_B5G5R5A1_UNORM_PACK16;
case DataFormat::R5G6B5_UNORM_PACK16: return VK_FORMAT_R5G6B5_UNORM_PACK16;
case DataFormat::B5G6R5_UNORM_PACK16: return VK_FORMAT_B5G6R5_UNORM_PACK16;
case DataFormat::A1R5G5B5_UNORM_PACK16: return VK_FORMAT_A1R5G5B5_UNORM_PACK16;
case DataFormat::R32_FLOAT: return VK_FORMAT_R32_SFLOAT;
case DataFormat::R32G32_FLOAT: return VK_FORMAT_R32G32_SFLOAT;
case DataFormat::R32G32B32_FLOAT: return VK_FORMAT_R32G32B32_SFLOAT;
case DataFormat::R32G32B32A32_FLOAT: return VK_FORMAT_R32G32B32A32_SFLOAT;
case DataFormat::BC1_RGBA_UNORM_BLOCK: return VK_FORMAT_BC1_RGBA_UNORM_BLOCK;
case DataFormat::BC2_UNORM_BLOCK: return VK_FORMAT_BC2_UNORM_BLOCK;
case DataFormat::BC3_UNORM_BLOCK: return VK_FORMAT_BC3_UNORM_BLOCK;
case DataFormat::BC4_UNORM_BLOCK: return VK_FORMAT_BC4_UNORM_BLOCK;
case DataFormat::BC5_UNORM_BLOCK: return VK_FORMAT_BC5_UNORM_BLOCK;
case DataFormat::BC7_UNORM_BLOCK: return VK_FORMAT_BC7_UNORM_BLOCK;
case DataFormat::ETC2_R8G8B8A1_UNORM_BLOCK: return VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK;
case DataFormat::ETC2_R8G8B8A8_UNORM_BLOCK: return VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK;
case DataFormat::ETC2_R8G8B8_UNORM_BLOCK: return VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK;
case DataFormat::ASTC_4x4_UNORM_BLOCK: return VK_FORMAT_ASTC_4x4_UNORM_BLOCK;
default:
return VK_FORMAT_UNDEFINED;
}
}
static inline VkSamplerAddressMode AddressModeToVulkan(Draw::TextureAddressMode mode) {
switch (mode) {
case TextureAddressMode::CLAMP_TO_BORDER: return VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
case TextureAddressMode::CLAMP_TO_EDGE: return VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
case TextureAddressMode::REPEAT_MIRROR: return VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT;
default:
case TextureAddressMode::REPEAT: return VK_SAMPLER_ADDRESS_MODE_REPEAT;
}
}
VulkanTexture *VKContext::GetNullTexture() {
if (!nullTexture_) {
VkCommandBuffer cmdInit = renderManager_.GetInitCmd();
nullTexture_ = new VulkanTexture(vulkan_, "Null");
int w = 8;
int h = 8;
VulkanBarrierBatch barrier;
nullTexture_->CreateDirect(w, h, 1, 1, VK_FORMAT_A8B8G8R8_UNORM_PACK32, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT, &barrier);
barrier.Flush(cmdInit);
uint32_t bindOffset;
VkBuffer bindBuf;
uint32_t *data = (uint32_t *)push_->Allocate(w * h * 4, 4, &bindBuf, &bindOffset);
_assert_(data != nullptr);
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
// data[y*w + x] = ((x ^ y) & 1) ? 0xFF808080 : 0xFF000000; // gray/black checkerboard
data[y*w + x] = 0; // black
}
}
TextureCopyBatch batch;
nullTexture_->CopyBufferToMipLevel(cmdInit, &batch, 0, w, h, 0, bindBuf, bindOffset, w);
nullTexture_->FinishCopyBatch(cmdInit, &batch);
nullTexture_->EndCreate(cmdInit, false, VK_PIPELINE_STAGE_TRANSFER_BIT);
}
return nullTexture_;
}
class VKSamplerState : public SamplerState {
public:
VKSamplerState(VulkanContext *vulkan, const SamplerStateDesc &desc) : vulkan_(vulkan) {
VkSamplerCreateInfo s = { VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO };
s.addressModeU = AddressModeToVulkan(desc.wrapU);
s.addressModeV = AddressModeToVulkan(desc.wrapV);
s.addressModeW = AddressModeToVulkan(desc.wrapW);
s.anisotropyEnable = desc.maxAniso > 1.0f;
s.maxAnisotropy = desc.maxAniso;
s.magFilter = desc.magFilter == TextureFilter::LINEAR ? VK_FILTER_LINEAR : VK_FILTER_NEAREST;
s.minFilter = desc.minFilter == TextureFilter::LINEAR ? VK_FILTER_LINEAR : VK_FILTER_NEAREST;
s.mipmapMode = desc.mipFilter == TextureFilter::LINEAR ? VK_SAMPLER_MIPMAP_MODE_LINEAR : VK_SAMPLER_MIPMAP_MODE_NEAREST;
s.maxLod = VK_LOD_CLAMP_NONE;
VkResult res = vkCreateSampler(vulkan_->GetDevice(), &s, nullptr, &sampler_);
_assert_(VK_SUCCESS == res);
}
~VKSamplerState() {
vulkan_->Delete().QueueDeleteSampler(sampler_);
}
VkSampler GetSampler() { return sampler_; }
private:
VulkanContext *vulkan_;
VkSampler sampler_;
};
SamplerState *VKContext::CreateSamplerState(const SamplerStateDesc &desc) {
return new VKSamplerState(vulkan_, desc);
}
RasterState *VKContext::CreateRasterState(const RasterStateDesc &desc) {
return new VKRasterState(desc);
}
void VKContext::BindSamplerStates(int start, int count, SamplerState **state) {
_assert_(start + count <= MAX_BOUND_TEXTURES);
for (int i = start; i < start + count; i++) {
boundSamplers_[i] = (VKSamplerState *)state[i - start];
}
}
enum class TextureState {
UNINITIALIZED,
STAGED,
INITIALIZED,
PENDING_DESTRUCTION,
};
bool VKTexture::Create(VkCommandBuffer cmd, VulkanBarrierBatch *postBarriers, VulkanPushPool *pushBuffer, const TextureDesc &desc) {
// Zero-sized textures not allowed.
_assert_(desc.width * desc.height * desc.depth > 0); // remember to set depth to 1!
if (desc.width * desc.height * desc.depth <= 0) {
ERROR_LOG(Log::G3D, "Bad texture dimensions %dx%dx%d", desc.width, desc.height, desc.depth);
return false;
}
_dbg_assert_(pushBuffer);
format_ = desc.format;
mipLevels_ = desc.mipLevels;
width_ = desc.width;
height_ = desc.height;
depth_ = desc.depth;
vkTex_ = new VulkanTexture(vulkan_, desc.tag);
VkFormat vulkanFormat = DataFormatToVulkan(format_);
int usageBits = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
if (mipLevels_ > (int)desc.initData.size()) {
// Gonna have to generate some, which requires TRANSFER_SRC
usageBits |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
}
VkComponentMapping r8AsAlpha[4] = { {VK_COMPONENT_SWIZZLE_ONE, VK_COMPONENT_SWIZZLE_ONE, VK_COMPONENT_SWIZZLE_ONE, VK_COMPONENT_SWIZZLE_R} };
VkComponentMapping r8AsColor[4] = { {VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_ONE} };
VkComponentMapping *swizzle = nullptr;
switch (desc.swizzle) {
case TextureSwizzle::R8_AS_ALPHA: swizzle = r8AsAlpha; break;
case TextureSwizzle::R8_AS_GRAYSCALE: swizzle = r8AsColor; break;
case TextureSwizzle::DEFAULT:
break;
}
VulkanBarrierBatch barrier;
if (!vkTex_->CreateDirect(width_, height_, 1, mipLevels_, vulkanFormat, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, usageBits, &barrier, swizzle)) {
ERROR_LOG(Log::G3D, "Failed to create VulkanTexture: %dx%dx%d fmt %d, %d levels", width_, height_, depth_, (int)vulkanFormat, mipLevels_);
return false;
}
barrier.Flush(cmd);
VkImageLayout layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
if (desc.initData.size()) {
UpdateInternal(cmd, pushBuffer, desc.initData.data(), desc.initDataCallback, (int)desc.initData.size());
// Generate the rest of the mips automatically.
if (desc.initData.size() < mipLevels_) {
vkTex_->GenerateMips(cmd, (int)desc.initData.size(), false);
layout = VK_IMAGE_LAYOUT_GENERAL;
}
}
vkTex_->EndCreate(cmd, false, VK_PIPELINE_STAGE_TRANSFER_BIT, layout);
return true;
}
void VKTexture::Update(VkCommandBuffer cmd, VulkanBarrierBatch *postBarriers, VulkanPushPool *pushBuffer, const uint8_t * const *data, TextureCallback initDataCallback, int numLevels) {
// Before we can use UpdateInternal, we need to transition the image to the same state as after CreateDirect,
// making it ready for writing.
vkTex_->PrepareForTransferDst(cmd, numLevels);
UpdateInternal(cmd, pushBuffer, data, initDataCallback, numLevels);
vkTex_->RestoreAfterTransferDst(numLevels, postBarriers);
}
void VKTexture::UpdateInternal(VkCommandBuffer cmd, VulkanPushPool *pushBuffer, const uint8_t * const *data, TextureCallback initDataCallback, int numLevels) {
int w = width_;
int h = height_;
int d = depth_;
VkFormat vulkanFormat = DataFormatToVulkan(format_);
int bpp = GetBpp(vulkanFormat);
_dbg_assert_(bpp != 0);
int bytesPerPixel = bpp / 8;
TextureCopyBatch batch;
batch.reserve(numLevels);
for (int i = 0; i < numLevels; i++) {
uint32_t offset;
VkBuffer buf;
size_t size = w * h * d * bytesPerPixel;
uint8_t *dest = (uint8_t *)pushBuffer->Allocate(size, 16, &buf, &offset);
if (initDataCallback) {
_assert_(dest != nullptr);
if (!initDataCallback(dest, data[i], w, h, d, w * bytesPerPixel, h * w * bytesPerPixel)) {
memcpy(dest, data[i], size);
}
} else {
memcpy(dest, data[i], size);
}
vkTex_->CopyBufferToMipLevel(cmd, &batch, i, w, h, 0, buf, offset, w);
w = (w + 1) / 2;
h = (h + 1) / 2;
d = (d + 1) / 2;
}
vkTex_->FinishCopyBatch(cmd, &batch);
}
static DataFormat DataFormatFromVulkanDepth(VkFormat fmt) {
switch (fmt) {
case VK_FORMAT_D24_UNORM_S8_UINT:
return DataFormat::D24_S8;
case VK_FORMAT_D16_UNORM:
return DataFormat::D16;
case VK_FORMAT_D32_SFLOAT:
return DataFormat::D32F;
case VK_FORMAT_D32_SFLOAT_S8_UINT:
return DataFormat::D32F_S8;
case VK_FORMAT_D16_UNORM_S8_UINT:
return DataFormat::D16_S8;
default:
break;
}
return DataFormat::UNDEFINED;
}
VKContext::VKContext(VulkanContext *vulkan, bool useRenderThread)
: vulkan_(vulkan), renderManager_(vulkan, useRenderThread, frameTimeHistory_) {
shaderLanguageDesc_.Init(GLSL_VULKAN);
INFO_LOG(Log::G3D, "Determining Vulkan device caps");
caps_.coordConvention = CoordConvention::Vulkan;
caps_.setMaxFrameLatencySupported = true;
caps_.anisoSupported = vulkan->GetDeviceFeatures().enabled.standard.samplerAnisotropy != 0;
caps_.geometryShaderSupported = vulkan->GetDeviceFeatures().enabled.standard.geometryShader != 0;
caps_.tesselationShaderSupported = vulkan->GetDeviceFeatures().enabled.standard.tessellationShader != 0;
caps_.dualSourceBlend = vulkan->GetDeviceFeatures().enabled.standard.dualSrcBlend != 0;
caps_.depthClampSupported = vulkan->GetDeviceFeatures().enabled.standard.depthClamp != 0;
// Comment out these two to test geometry shader culling on any geometry shader-supporting hardware.
caps_.clipDistanceSupported = vulkan->GetDeviceFeatures().enabled.standard.shaderClipDistance != 0;
caps_.cullDistanceSupported = vulkan->GetDeviceFeatures().enabled.standard.shaderCullDistance != 0;
caps_.framebufferBlitSupported = true;
caps_.framebufferCopySupported = true;
caps_.framebufferDepthBlitSupported = vulkan->GetDeviceInfo().canBlitToPreferredDepthStencilFormat;
caps_.framebufferStencilBlitSupported = caps_.framebufferDepthBlitSupported;
caps_.framebufferDepthCopySupported = true; // Will pretty much always be the case.
caps_.framebufferSeparateDepthCopySupported = true; // Will pretty much always be the case.
// This doesn't affect what depth/stencil format is actually used, see VulkanQueueRunner.
caps_.preferredDepthBufferFormat = DataFormatFromVulkanDepth(vulkan->GetDeviceInfo().preferredDepthStencilFormat);
caps_.texture3DSupported = true;
caps_.textureDepthSupported = true;
caps_.fragmentShaderInt32Supported = true;
caps_.textureNPOTFullySupported = true;
caps_.fragmentShaderDepthWriteSupported = true;
caps_.fragmentShaderStencilWriteSupported = vulkan->Extensions().EXT_shader_stencil_export;
caps_.blendMinMaxSupported = true;
caps_.logicOpSupported = vulkan->GetDeviceFeatures().enabled.standard.logicOp != 0;
caps_.multiViewSupported = vulkan->GetDeviceFeatures().enabled.multiview.multiview != 0;
caps_.sampleRateShadingSupported = vulkan->GetDeviceFeatures().enabled.standard.sampleRateShading != 0;
caps_.textureSwizzleSupported = true;
// Note that it must also be enabled on the pipelines (which we do).
caps_.provokingVertexLast = vulkan->GetDeviceFeatures().enabled.provokingVertex.provokingVertexLast;
// Present mode stuff
caps_.presentMaxInterval = 1;
caps_.presentInstantModeChange = false; // TODO: Fix this with some work in VulkanContext
caps_.presentModesSupported = (PresentMode)0;
for (auto mode : vulkan->GetAvailablePresentModes()) {
switch (mode) {
case VK_PRESENT_MODE_FIFO_KHR: caps_.presentModesSupported |= PresentMode::FIFO; break;
case VK_PRESENT_MODE_IMMEDIATE_KHR: caps_.presentModesSupported |= PresentMode::IMMEDIATE; break;
case VK_PRESENT_MODE_MAILBOX_KHR: caps_.presentModesSupported |= PresentMode::MAILBOX; break;
default: break; // Ignore any other modes.
}
}
const auto &limits = vulkan->GetPhysicalDeviceProperties().properties.limits;
auto deviceProps = vulkan->GetPhysicalDeviceProperties(vulkan_->GetCurrentPhysicalDeviceIndex()).properties;
switch (deviceProps.vendorID) {
case VULKAN_VENDOR_AMD: caps_.vendor = GPUVendor::VENDOR_AMD; break;
case VULKAN_VENDOR_ARM: caps_.vendor = GPUVendor::VENDOR_ARM; break;
case VULKAN_VENDOR_IMGTEC: caps_.vendor = GPUVendor::VENDOR_IMGTEC; break;
case VULKAN_VENDOR_NVIDIA: caps_.vendor = GPUVendor::VENDOR_NVIDIA; break;
case VULKAN_VENDOR_QUALCOMM: caps_.vendor = GPUVendor::VENDOR_QUALCOMM; break;
case VULKAN_VENDOR_INTEL: caps_.vendor = GPUVendor::VENDOR_INTEL; break;
case VULKAN_VENDOR_APPLE: caps_.vendor = GPUVendor::VENDOR_APPLE; break;
case VULKAN_VENDOR_MESA: caps_.vendor = GPUVendor::VENDOR_MESA; break;
default:
WARN_LOG(Log::G3D, "Unknown vendor ID %08x", deviceProps.vendorID);
caps_.vendor = GPUVendor::VENDOR_UNKNOWN;
break;
}
switch (caps_.vendor) {
case GPUVendor::VENDOR_ARM:
case GPUVendor::VENDOR_IMGTEC:
case GPUVendor::VENDOR_QUALCOMM:
caps_.isTilingGPU = true;
break;
default:
caps_.isTilingGPU = false;
break;
}
if (caps_.vendor == GPUVendor::VENDOR_IMGTEC) {
// Enable some things that cut down pipeline counts but may have other costs.
caps_.verySlowShaderCompiler = true;
}
// VkSampleCountFlagBits is arranged correctly for our purposes.
// Only support MSAA levels that have support for all three of color, depth, stencil.
bool multisampleAllowed = true;
caps_.deviceID = deviceProps.deviceID;
if (caps_.vendor == GPUVendor::VENDOR_QUALCOMM) {
if (caps_.deviceID < 0x6000000) { // On sub 6xx series GPUs, disallow multisample.
INFO_LOG(Log::G3D, "Multisampling was disabled due to old driver version (Adreno)");
multisampleAllowed = false;
}
// Adreno 5xx devices, all known driver versions, fail to discard stencil when depth write is off.
// See: https://github.com/hrydgard/ppsspp/pull/11684
if (deviceProps.deviceID >= 0x05000000 && deviceProps.deviceID < 0x06000000) {
if (deviceProps.driverVersion < 0x80180000) {
bugs_.Infest(Bugs::NO_DEPTH_CANNOT_DISCARD_STENCIL_ADRENO);
}
}
// Color write mask not masking write in certain scenarios with a depth test, see #10421.
// Known still present on driver 0x80180000 and Adreno 5xx (possibly more.)
// Known working on driver 0x801EA000 and Adreno 620.
if (deviceProps.driverVersion < 0x801EA000 || deviceProps.deviceID < 0x06000000)
bugs_.Infest(Bugs::COLORWRITEMASK_BROKEN_WITH_DEPTHTEST);
// Trying to follow all the rules in https://registry.khronos.org/vulkan/specs/1.3/html/vkspec.html#synchronization-pipeline-barriers-subpass-self-dependencies
// and https://registry.khronos.org/vulkan/specs/1.3/html/vkspec.html#renderpass-feedbackloop, but still it doesn't
// quite work - artifacts on triangle boundaries on Adreno.
bugs_.Infest(Bugs::SUBPASS_FEEDBACK_BROKEN);
} else if (caps_.vendor == GPUVendor::VENDOR_AMD) {
// See issue #10074, and also #10065 (AMD) and #10109 for the choice of the driver version to check for.
if (deviceProps.driverVersion < 0x00407000) {
bugs_.Infest(Bugs::DUAL_SOURCE_BLENDING_BROKEN);
}
} else if (caps_.vendor == GPUVendor::VENDOR_INTEL) {
// Workaround for Intel driver bug. TODO: Re-enable after some driver version
bugs_.Infest(Bugs::DUAL_SOURCE_BLENDING_BROKEN);
} else if (caps_.vendor == GPUVendor::VENDOR_ARM) {
// Really old Vulkan drivers for Mali didn't have proper versions. We try to detect that (can't be 100% but pretty good).
bool isOldVersion = IsHashMaliDriverVersion(deviceProps);
int majorVersion = VK_API_VERSION_MAJOR(deviceProps.driverVersion);
// These GPUs (up to some certain hardware version?) have a bug where draws where gl_Position.w == .z
// corrupt the depth buffer. This is easily worked around by simply scaling Z down a tiny bit when this case
// is detected. See: https://github.com/hrydgard/ppsspp/issues/11937
bugs_.Infest(Bugs::EQUAL_WZ_CORRUPTS_DEPTH);
// Nearly identical to the the Adreno bug, see #13833 (Midnight Club map broken) and other issues.
// It has the additional caveat that combining depth writes with NEVER depth tests crashes the driver.
// Reported fixed in major version 40 - let's add a check once confirmed.
bugs_.Infest(Bugs::NO_DEPTH_CANNOT_DISCARD_STENCIL_MALI);
// This started in driver 31 or 32, fixed in 40 - let's add a check once confirmed.
if (majorVersion >= 32) {
bugs_.Infest(Bugs::MALI_CONSTANT_LOAD_BUG); // See issue #15661
}
// Older ARM devices have very slow geometry shaders, not worth using. At least before 15.
// Also seen to cause weird issues on 18, so let's lump it in.
if (majorVersion <= 18 || isOldVersion) {
bugs_.Infest(Bugs::GEOMETRY_SHADERS_SLOW_OR_BROKEN);
}
// Attempt to workaround #17386
if (isOldVersion) {
if (!strcmp(deviceProps.deviceName, "Mali-T880") ||
!strcmp(deviceProps.deviceName, "Mali-T860") ||
!strcmp(deviceProps.deviceName, "Mali-T830")) {
bugs_.Infest(Bugs::UNIFORM_INDEXING_BROKEN);
}
}
if (isOldVersion) {
// Very rough heuristic.
multisampleAllowed = false;
}
} else if (caps_.vendor == GPUVendor::VENDOR_IMGTEC) {
// Not sure about driver versions, so let's just ban, impact is tiny.
bugs_.Infest(Bugs::PVR_BAD_16BIT_TEXFORMATS);
}
if (!vulkan->Extensions().KHR_depth_stencil_resolve) {
INFO_LOG(Log::G3D, "KHR_depth_stencil_resolve not supported, disabling multisampling");
multisampleAllowed = false;
}
if (!vulkan->Extensions().KHR_create_renderpass2) {
WARN_LOG(Log::G3D, "KHR_create_renderpass2 not supported, disabling multisampling");
multisampleAllowed = false;
} else {
_dbg_assert_(vkCreateRenderPass2 != nullptr);
}
// We limit multisampling functionality to reasonably recent and known-good tiling GPUs.
if (multisampleAllowed) {
// Check for depth stencil resolve. Without it, depth textures won't work, and we don't want that mess
// of compatibility reports, so we'll just disable multisampling in this case for now.
// There are potential workarounds for devices that don't support it, but those are nearly non-existent now.
const auto &resolveProperties = vulkan->GetPhysicalDeviceProperties().depthStencilResolve;
if (((resolveProperties.supportedDepthResolveModes & resolveProperties.supportedStencilResolveModes) & VK_RESOLVE_MODE_SAMPLE_ZERO_BIT) != 0) {
caps_.multiSampleLevelsMask = (limits.framebufferColorSampleCounts & limits.framebufferDepthSampleCounts & limits.framebufferStencilSampleCounts);
INFO_LOG(Log::G3D, "Multisample levels mask: %d", caps_.multiSampleLevelsMask);
} else {
INFO_LOG(Log::G3D, "Not enough depth/stencil resolve modes supported, disabling multisampling. Color: %d Depth: %d Stencil: %d",
limits.framebufferColorSampleCounts, limits.framebufferDepthSampleCounts, limits.framebufferStencilSampleCounts);
caps_.multiSampleLevelsMask = 1;
}
} else {
caps_.multiSampleLevelsMask = 1;
}
// Vulkan can support this through input attachments and various extensions, but not worth
// the trouble.
caps_.framebufferFetchSupported = false;
device_ = vulkan->GetDevice();
VkBufferUsageFlags usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
push_ = new VulkanPushPool(vulkan_, "pushBuffer", 4 * 1024 * 1024, usage);
// binding 0 - uniform data
// binding 1 - combined sampler/image 0
// binding 2 - combined sampler/image 1
// ...etc
BindingType bindings[MAX_BOUND_TEXTURES + 1];
bindings[0] = BindingType::UNIFORM_BUFFER_DYNAMIC_ALL;
for (int i = 0; i < MAX_BOUND_TEXTURES; ++i) {
bindings[1 + i] = BindingType::COMBINED_IMAGE_SAMPLER;
}
pipelineLayout_ = renderManager_.CreatePipelineLayout(bindings, ARRAY_SIZE(bindings), caps_.geometryShaderSupported, "thin3d_layout");
VkPipelineCacheCreateInfo pc{ VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO };
VkResult res = vkCreatePipelineCache(vulkan_->GetDevice(), &pc, nullptr, &pipelineCache_);
_assert_(VK_SUCCESS == res);
}
VKContext::~VKContext() {
DestroyPresets();
delete nullTexture_;
push_->Destroy();
delete push_;
renderManager_.DestroyPipelineLayout(pipelineLayout_);
vulkan_->Delete().QueueDeletePipelineCache(pipelineCache_);
}
void VKContext::BeginFrame(DebugFlags debugFlags) {
renderManager_.BeginFrame(debugFlags & DebugFlags::PROFILE_TIMESTAMPS, debugFlags & DebugFlags::PROFILE_SCOPES);
push_->BeginFrame();
}
void VKContext::EndFrame() {
// Do all the work to submit the command buffers etc.
renderManager_.Finish();
// Unbind stuff, to avoid accidentally relying on it across frames (and provide some protection against forgotten unbinds of deleted things).
Invalidate(InvalidationFlags::CACHED_RENDER_STATE);
}
void VKContext::Present(PresentMode presentMode, int vblanks) {
if (presentMode == PresentMode::FIFO) {
_dbg_assert_(vblanks == 0 || vblanks == 1);
}
renderManager_.Present();
frameCount_++;
}
void VKContext::Invalidate(InvalidationFlags flags) {
if (flags & InvalidationFlags::CACHED_RENDER_STATE) {
curPipeline_ = nullptr;
for (auto &view : boundImageView_) {
view = VK_NULL_HANDLE;
}
for (auto &sampler : boundSamplers_) {
sampler = nullptr;
}
for (auto &texture : boundTextures_) {
texture = nullptr;
}
}
}
void VKContext::BindDescriptors(VkBuffer buf, PackedDescriptor descriptors[4]) {
descriptors[0].buffer.buffer = buf;
descriptors[0].buffer.offset = 0; // dynamic
descriptors[0].buffer.range = curPipeline_->GetUBOSize();
for (int i = 0; i < MAX_BOUND_TEXTURES; ++i) {
VkImageView view;
VkSampler sampler;
if (boundTextures_[i]) {
view = (boundTextureFlags_[i] & TextureBindFlags::VULKAN_BIND_ARRAY) ? boundTextures_[i]->GetImageArrayView() : boundTextures_[i]->GetImageView();
} else {
view = boundImageView_[i];
}
sampler = boundSamplers_[i] ? boundSamplers_[i]->GetSampler() : VK_NULL_HANDLE;
if (view && sampler) {
descriptors[i + 1].image.view = view;
descriptors[i + 1].image.sampler = sampler;
} else {
descriptors[i + 1].image.view = VK_NULL_HANDLE;
descriptors[i + 1].image.sampler = VK_NULL_HANDLE;
}
}
}
Pipeline *VKContext::CreateGraphicsPipeline(const PipelineDesc &desc, const char *tag) {
VKInputLayout *input = (VKInputLayout *)desc.inputLayout;
VKBlendState *blend = (VKBlendState *)desc.blend;
VKDepthStencilState *depth = (VKDepthStencilState *)desc.depthStencil;
VKRasterState *raster = (VKRasterState *)desc.raster;
PipelineFlags pipelineFlags = (PipelineFlags)0;
if (depth->info.depthTestEnable || depth->info.stencilTestEnable) {
pipelineFlags |= PipelineFlags::USES_DEPTH_STENCIL;
}
// TODO: We need code to set USES_BLEND_CONSTANT here too, if we're ever gonna use those in thin3d code.
VKPipeline *pipeline = new VKPipeline(vulkan_, desc.uniformDesc ? desc.uniformDesc->uniformBufferSize : 16 * sizeof(float), pipelineFlags, tag);
VKRGraphicsPipelineDesc &gDesc = *pipeline->vkrDesc;
std::vector<VkPipelineShaderStageCreateInfo> stages;
stages.resize(desc.shaders.size());
for (auto &iter : desc.shaders) {
VKShaderModule *vkshader = (VKShaderModule *)iter;
vkshader->AddRef();
pipeline->deps.push_back(vkshader);
if (vkshader->GetStage() == ShaderStage::Vertex) {
gDesc.vertexShader = vkshader->Get();
} else if (vkshader->GetStage() == ShaderStage::Fragment) {
gDesc.fragmentShader = vkshader->Get();
} else {
ERROR_LOG(Log::G3D, "Bad stage");
delete pipeline;
return nullptr;
}
}
_dbg_assert_(input);
_dbg_assert_((int)input->attributes.size() == (int)input->visc.vertexAttributeDescriptionCount);
pipeline->stride = input->binding.stride;
gDesc.ibd = input->binding;
for (size_t i = 0; i < input->attributes.size(); i++) {
gDesc.attrs[i] = input->attributes[i];
}
gDesc.vis.vertexAttributeDescriptionCount = input->visc.vertexAttributeDescriptionCount;
gDesc.vis.vertexBindingDescriptionCount = input->visc.vertexBindingDescriptionCount;
gDesc.vis.pVertexBindingDescriptions = &gDesc.ibd;
gDesc.vis.pVertexAttributeDescriptions = gDesc.attrs;
gDesc.blend0 = blend->attachments[0];
gDesc.cbs = blend->info;
gDesc.cbs.pAttachments = &gDesc.blend0;
gDesc.dss = depth->info;
// Copy bindings from input layout.
gDesc.topology = primToVK[(int)desc.prim];
// We treat the three stencil states as a unit in other places, so let's do that here too.
const VkDynamicState dynamics[] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, VK_DYNAMIC_STATE_STENCIL_REFERENCE, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK };
gDesc.ds.dynamicStateCount = depth->info.stencilTestEnable ? ARRAY_SIZE(dynamics) : 2;
for (size_t i = 0; i < gDesc.ds.dynamicStateCount; i++) {
gDesc.dynamicStates[i] = dynamics[i];
}
gDesc.ds.pDynamicStates = gDesc.dynamicStates;
gDesc.views.viewportCount = 1;
gDesc.views.scissorCount = 1;
gDesc.views.pViewports = nullptr; // dynamic
gDesc.views.pScissors = nullptr; // dynamic
gDesc.pipelineLayout = pipelineLayout_;
raster->ToVulkan(&gDesc.rs);
if (renderManager_.GetVulkanContext()->GetDeviceFeatures().enabled.provokingVertex.provokingVertexLast) {
ChainStruct(gDesc.rs, &gDesc.rs_provoking);
gDesc.rs_provoking.provokingVertexMode = VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT;
}
pipeline->pipeline = renderManager_.CreateGraphicsPipeline(&gDesc, pipelineFlags, 1 << (size_t)RenderPassType::BACKBUFFER, VK_SAMPLE_COUNT_1_BIT, false, tag ? tag : "thin3d");
if (desc.uniformDesc) {
pipeline->dynamicUniformSize = (int)desc.uniformDesc->uniformBufferSize;
}
if (depth->info.stencilTestEnable) {
pipeline->usesStencil = true;
}
return pipeline;
}
void VKContext::SetScissorRect(int left, int top, int width, int height) {
renderManager_.SetScissor(left, top, width, height);
}
void VKContext::SetViewport(const Viewport &viewport) {
// Ignore viewports more than the first.
VkViewport vkViewport;
vkViewport.x = viewport.TopLeftX;
vkViewport.y = viewport.TopLeftY;
vkViewport.width = viewport.Width;
vkViewport.height = viewport.Height;
vkViewport.minDepth = viewport.MinDepth;
vkViewport.maxDepth = viewport.MaxDepth;
renderManager_.SetViewport(vkViewport);
}
void VKContext::SetBlendFactor(float color[4]) {
uint32_t col = Float4ToUint8x4(color);
renderManager_.SetBlendFactor(col);
}
void VKContext::SetStencilParams(uint8_t refValue, uint8_t writeMask, uint8_t compareMask) {
if (curPipeline_->usesStencil)
renderManager_.SetStencilParams(writeMask, compareMask, refValue);
stencilRef_ = refValue;
stencilWriteMask_ = writeMask;
stencilCompareMask_ = compareMask;
}
InputLayout *VKContext::CreateInputLayout(const InputLayoutDesc &desc) {
VKInputLayout *vl = new VKInputLayout();
vl->visc = { VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO };
vl->visc.flags = 0;
vl->visc.vertexBindingDescriptionCount = 1;
vl->visc.vertexAttributeDescriptionCount = (uint32_t)desc.attributes.size();
vl->attributes.resize(vl->visc.vertexAttributeDescriptionCount);
vl->visc.pVertexBindingDescriptions = &vl->binding;
vl->visc.pVertexAttributeDescriptions = vl->attributes.data();
for (size_t i = 0; i < desc.attributes.size(); i++) {
vl->attributes[i].binding = 0;
vl->attributes[i].format = DataFormatToVulkan(desc.attributes[i].format);
vl->attributes[i].location = desc.attributes[i].location;
vl->attributes[i].offset = desc.attributes[i].offset;
}
vl->binding.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
vl->binding.binding = 0;
vl->binding.stride = desc.stride;
return vl;
}
Texture *VKContext::CreateTexture(const TextureDesc &desc) {
VkCommandBuffer initCmd = renderManager_.GetInitCmd();
if (!push_ || !initCmd) {
// Too early! Fail.
ERROR_LOG(Log::G3D, "Can't create textures before the first frame has started.");
return nullptr;
}
VKTexture *tex = new VKTexture(vulkan_, desc);
if (tex->Create(initCmd, &renderManager_.PostInitBarrier(), push_, desc)) {
return tex;
} else {
ERROR_LOG(Log::G3D, "Failed to create texture");
tex->Release();
return nullptr;
}
}
void VKContext::UpdateTextureLevels(Texture *texture, const uint8_t **data, TextureCallback initDataCallback, int numLevels) {
VkCommandBuffer initCmd = renderManager_.GetInitCmd();
if (!push_ || !initCmd) {
// Too early! Fail.
ERROR_LOG(Log::G3D, "Can't create textures before the first frame has started.");
return;
}
VKTexture *tex = (VKTexture *)texture;
_dbg_assert_(numLevels <= tex->NumLevels());
tex->Update(initCmd, &renderManager_.PostInitBarrier(), push_, data, initDataCallback, numLevels);
}
static inline void CopySide(VkStencilOpState &dest, const StencilSetup &src) {
dest.compareOp = compToVK[(int)src.compareOp];
dest.failOp = stencilOpToVK[(int)src.failOp];
dest.passOp = stencilOpToVK[(int)src.passOp];
dest.depthFailOp = stencilOpToVK[(int)src.depthFailOp];
}
DepthStencilState *VKContext::CreateDepthStencilState(const DepthStencilStateDesc &desc) {
VKDepthStencilState *ds = new VKDepthStencilState();
ds->info.depthCompareOp = compToVK[(int)desc.depthCompare];
ds->info.depthTestEnable = desc.depthTestEnabled;
ds->info.depthWriteEnable = desc.depthWriteEnabled;
ds->info.stencilTestEnable = desc.stencilEnabled;
ds->info.depthBoundsTestEnable = false;
if (ds->info.stencilTestEnable) {
CopySide(ds->info.front, desc.stencil);
CopySide(ds->info.back, desc.stencil);
}
return ds;
}
BlendState *VKContext::CreateBlendState(const BlendStateDesc &desc) {
VKBlendState *bs = new VKBlendState();
bs->info.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
bs->info.attachmentCount = 1;
bs->info.logicOp = logicOpToVK[(int)desc.logicOp];
bs->info.logicOpEnable = desc.logicEnabled;
bs->attachments.resize(1);
bs->attachments[0].blendEnable = desc.enabled;
bs->attachments[0].colorBlendOp = blendEqToVk[(int)desc.eqCol];
bs->attachments[0].alphaBlendOp = blendEqToVk[(int)desc.eqAlpha];
bs->attachments[0].colorWriteMask = desc.colorMask;
bs->attachments[0].dstAlphaBlendFactor = blendFactorToVk[(int)desc.dstAlpha];
bs->attachments[0].dstColorBlendFactor = blendFactorToVk[(int)desc.dstCol];
bs->attachments[0].srcAlphaBlendFactor = blendFactorToVk[(int)desc.srcAlpha];
bs->attachments[0].srcColorBlendFactor = blendFactorToVk[(int)desc.srcCol];
bs->info.pAttachments = bs->attachments.data();
return bs;
}
// Very simplistic buffer that will simply copy its contents into our "pushbuffer" when it's time to draw,
// to avoid synchronization issues.
class VKBuffer : public Buffer {
public:
VKBuffer(size_t size) : dataSize_(size) {
data_ = new uint8_t[size];
}
~VKBuffer() {
delete[] data_;
}
size_t GetSize() const { return dataSize_; }
const uint8_t *GetData() const { return data_; }
uint8_t *data_;
size_t dataSize_;
};
Buffer *VKContext::CreateBuffer(size_t size, uint32_t usageFlags) {
return new VKBuffer(size);
}
void VKContext::UpdateBuffer(Buffer *buffer, const uint8_t *data, size_t offset, size_t size, UpdateBufferFlags flags) {
VKBuffer *buf = (VKBuffer *)buffer;
memcpy(buf->data_ + offset, data, size);
}
void VKContext::BindTextures(int start, int count, Texture **textures, TextureBindFlags flags) {
_assert_(start + count <= MAX_BOUND_TEXTURES);
for (int i = start; i < start + count; i++) {
_dbg_assert_(i >= 0 && i < MAX_BOUND_TEXTURES);
boundTextures_[i] = static_cast<VKTexture *>(textures[i - start]);
boundTextureFlags_[i] = flags;
if (boundTextures_[i]) {
// If a texture is bound, we set these up in BindDescriptors too.
// But we might need to set the view here anyway so it can be queried using GetNativeObject.
if (flags & TextureBindFlags::VULKAN_BIND_ARRAY) {
boundImageView_[i] = boundTextures_[i]->GetImageArrayView();
} else {
boundImageView_[i] = boundTextures_[i]->GetImageView();
}
} else {
if (flags & TextureBindFlags::VULKAN_BIND_ARRAY) {
boundImageView_[i] = GetNullTexture()->GetImageArrayView();
} else {
boundImageView_[i] = GetNullTexture()->GetImageView();
}
}
}
}
void VKContext::BindNativeTexture(int sampler, void *nativeTexture) {
_dbg_assert_(sampler >= 0 && sampler < MAX_BOUND_TEXTURES);
boundTextures_[sampler] = nullptr;
boundImageView_[sampler] = (VkImageView)nativeTexture;
}
ShaderModule *VKContext::CreateShaderModule(ShaderStage stage, ShaderLanguage language, const uint8_t *data, size_t size, const char *tag) {
VKShaderModule *shader = new VKShaderModule(stage, tag);
if (shader->Compile(vulkan_, data, size)) {
return shader;
} else {
ERROR_LOG(Log::G3D, "Failed to compile shader %s:\n%s", tag, (const char *)LineNumberString((const char *)data).c_str());
shader->Release();
return nullptr;
}
}
void VKContext::UpdateDynamicUniformBuffer(const void *ub, size_t size) {
curPipeline_->SetDynamicUniformData(ub, size);
}
void VKContext::ApplyDynamicState() {
// TODO: blend constants, stencil, viewports should be here, after bindpipeline..
if (curPipeline_->usesStencil) {
renderManager_.SetStencilParams(stencilWriteMask_, stencilCompareMask_, stencilRef_);
}
}
void VKContext::Draw(int vertexCount, int offset) {
VKBuffer *vbuf = curVBuffer_;
VkBuffer vulkanVbuf;
VkBuffer vulkanUBObuf;
uint32_t ubo_offset = (uint32_t)curPipeline_->PushUBO(push_, vulkan_, &vulkanUBObuf);
size_t vbBindOffset = push_->Push(vbuf->GetData(), vbuf->GetSize(), 4, &vulkanVbuf);
BindCurrentPipeline();
ApplyDynamicState();
int descSetIndex;
PackedDescriptor *descriptors = renderManager_.PushDescriptorSet(4, &descSetIndex);
BindDescriptors(vulkanUBObuf, descriptors);
renderManager_.Draw(descSetIndex, 1, &ubo_offset, vulkanVbuf, (int)vbBindOffset + curVBufferOffset_, vertexCount, offset);
}
void VKContext::DrawIndexed(int vertexCount, int offset) {
VKBuffer *ibuf = curIBuffer_;
VKBuffer *vbuf = curVBuffer_;
VkBuffer vulkanVbuf, vulkanIbuf, vulkanUBObuf;
uint32_t ubo_offset = (uint32_t)curPipeline_->PushUBO(push_, vulkan_, &vulkanUBObuf);
size_t vbBindOffset = push_->Push(vbuf->GetData(), vbuf->GetSize(), 4, &vulkanVbuf);
size_t ibBindOffset = push_->Push(ibuf->GetData(), ibuf->GetSize(), 4, &vulkanIbuf);
BindCurrentPipeline();
ApplyDynamicState();
int descSetIndex;
PackedDescriptor *descriptors = renderManager_.PushDescriptorSet(4, &descSetIndex);
BindDescriptors(vulkanUBObuf, descriptors);
renderManager_.DrawIndexed(descSetIndex, 1, &ubo_offset, vulkanVbuf, (int)vbBindOffset + curVBufferOffset_, vulkanIbuf, (int)ibBindOffset + offset * sizeof(uint32_t), vertexCount, 1);
}
void VKContext::DrawUP(const void *vdata, int vertexCount) {
_dbg_assert_(vertexCount >= 0);
if (vertexCount <= 0) {
return;
}
VkBuffer vulkanVbuf, vulkanUBObuf;
size_t dataSize = vertexCount * curPipeline_->stride;
uint32_t vbBindOffset;
uint8_t *dataPtr = push_->Allocate(dataSize, 4, &vulkanVbuf, &vbBindOffset);
_assert_(dataPtr != nullptr);
memcpy(dataPtr, vdata, dataSize);
uint32_t ubo_offset = (uint32_t)curPipeline_->PushUBO(push_, vulkan_, &vulkanUBObuf);
BindCurrentPipeline();
ApplyDynamicState();
int descSetIndex;
PackedDescriptor *descriptors = renderManager_.PushDescriptorSet(4, &descSetIndex);
BindDescriptors(vulkanUBObuf, descriptors);
renderManager_.Draw(descSetIndex, 1, &ubo_offset, vulkanVbuf, (int)vbBindOffset, vertexCount);
}
void VKContext::DrawIndexedUP(const void *vdata, int vertexCount, const void *idata, int indexCount) {
_dbg_assert_(vertexCount >= 0);
_dbg_assert_(indexCount >= 0);
if (vertexCount <= 0 || indexCount <= 0) {
return;
}
VkBuffer vulkanVbuf, vulkanIbuf, vulkanUBObuf;
size_t vdataSize = vertexCount * curPipeline_->stride;
uint32_t vbBindOffset;
uint8_t *vdataPtr = push_->Allocate(vdataSize, 4, &vulkanVbuf, &vbBindOffset);
_assert_(vdataPtr != nullptr);
memcpy(vdataPtr, vdata, vdataSize);
size_t idataSize = indexCount * sizeof(u16);
uint32_t ibBindOffset;
uint8_t *idataPtr = push_->Allocate(idataSize, 4, &vulkanIbuf, &ibBindOffset);
_assert_(idataPtr != nullptr);
memcpy(idataPtr, vdata, idataSize);
uint32_t ubo_offset = (uint32_t)curPipeline_->PushUBO(push_, vulkan_, &vulkanUBObuf);
BindCurrentPipeline();
ApplyDynamicState();
int descSetIndex;
PackedDescriptor *descriptors = renderManager_.PushDescriptorSet(4, &descSetIndex);
BindDescriptors(vulkanUBObuf, descriptors);
renderManager_.DrawIndexed(descSetIndex, 1, &ubo_offset, vulkanVbuf, (int)vbBindOffset, vulkanIbuf, (int)ibBindOffset, indexCount, 1);
}
void VKContext::DrawIndexedClippedBatchUP(const void *vdata, int vertexCount, const void *idata, int indexCount, Slice<ClippedDraw> draws, const void *ub, size_t ubSize) {
_dbg_assert_(vertexCount >= 0);
_dbg_assert_(indexCount >= 0);
if (vertexCount <= 0 || indexCount <= 0 || draws.is_empty()) {
return;
}
curPipeline_ = (VKPipeline *)draws[0].pipeline;
VkBuffer vulkanVbuf, vulkanIbuf, vulkanUBObuf;
size_t vdataSize = vertexCount * curPipeline_->stride;
uint32_t vbBindOffset;
uint8_t *vdataPtr = push_->Allocate(vdataSize, 4, &vulkanVbuf, &vbBindOffset);
_assert_(vdataPtr != nullptr);
memcpy(vdataPtr, vdata, vdataSize);
constexpr int indexSize = sizeof(u16);
size_t idataSize = indexCount * indexSize;
uint32_t ibBindOffset;
uint8_t *idataPtr = push_->Allocate(idataSize, 4, &vulkanIbuf, &ibBindOffset);
_assert_(idataPtr != nullptr);
memcpy(idataPtr, idata, idataSize);
curPipeline_->SetDynamicUniformData(ub, ubSize);
uint32_t ubo_offset = (uint32_t)curPipeline_->PushUBO(push_, vulkan_, &vulkanUBObuf);
BindCurrentPipeline();
ApplyDynamicState();
for (auto &draw : draws) {
if (draw.pipeline != curPipeline_) {
VKPipeline *vkPipe = (VKPipeline *)draw.pipeline;
renderManager_.BindPipeline(vkPipe->pipeline, vkPipe->flags, pipelineLayout_);
curPipeline_ = (VKPipeline *)draw.pipeline;
curPipeline_->SetDynamicUniformData(ub, ubSize);
}
// TODO: Dirty-check these.
if (draw.bindTexture) {
BindTexture(0, draw.bindTexture);
} else if (draw.bindFramebufferAsTex) {
BindFramebufferAsTexture(draw.bindFramebufferAsTex, 0, draw.aspect, 0);
} else if (draw.bindNativeTexture) {
BindNativeTexture(0, draw.bindNativeTexture);
}
Draw::SamplerState *sstate = draw.samplerState;
BindSamplerStates(0, 1, &sstate);
int descSetIndex;
PackedDescriptor *descriptors = renderManager_.PushDescriptorSet(4, &descSetIndex);
BindDescriptors(vulkanUBObuf, descriptors);
renderManager_.SetScissor(draw.clipx, draw.clipy, draw.clipw, draw.cliph);
renderManager_.DrawIndexed(descSetIndex, 1, &ubo_offset, vulkanVbuf, (int)vbBindOffset, vulkanIbuf,
(int)ibBindOffset + draw.indexOffset * indexSize, draw.indexCount, 1);
}
}
void VKContext::BindCurrentPipeline() {
renderManager_.BindPipeline(curPipeline_->pipeline, curPipeline_->flags, pipelineLayout_);
}
void VKContext::Clear(Aspect aspects, uint32_t colorval, float depthVal, int stencilVal) {
int mask = 0;
if (aspects & Aspect::COLOR_BIT)
mask |= VK_IMAGE_ASPECT_COLOR_BIT;
if (aspects & Aspect::DEPTH_BIT)
mask |= VK_IMAGE_ASPECT_DEPTH_BIT;
if (aspects & Aspect::STENCIL_BIT)
mask |= VK_IMAGE_ASPECT_STENCIL_BIT;
renderManager_.Clear(colorval, depthVal, stencilVal, mask);
}
DrawContext *T3DCreateVulkanContext(VulkanContext *vulkan, bool useRenderThread) {
return new VKContext(vulkan, useRenderThread);
}
void AddFeature(std::vector<std::string> &features, const char *name, VkBool32 available, VkBool32 enabled) {
char buf[512];
snprintf(buf, sizeof(buf), "%s: Available: %d Enabled: %d", name, (int)available, (int)enabled);
features.push_back(buf);
}
std::vector<std::string> VKContext::GetFeatureList() const {
const VkPhysicalDeviceFeatures &available = vulkan_->GetDeviceFeatures().available.standard;
const VkPhysicalDeviceFeatures &enabled = vulkan_->GetDeviceFeatures().enabled.standard;
std::vector<std::string> features;
AddFeature(features, "dualSrcBlend", available.dualSrcBlend, enabled.dualSrcBlend);
AddFeature(features, "logicOp", available.logicOp, enabled.logicOp);
AddFeature(features, "geometryShader", available.geometryShader, enabled.geometryShader);
AddFeature(features, "depthBounds", available.depthBounds, enabled.depthBounds);
AddFeature(features, "depthClamp", available.depthClamp, enabled.depthClamp);
AddFeature(features, "pipelineStatisticsQuery", available.pipelineStatisticsQuery, enabled.pipelineStatisticsQuery);
AddFeature(features, "samplerAnisotropy", available.samplerAnisotropy, enabled.samplerAnisotropy);
AddFeature(features, "textureCompressionBC", available.textureCompressionBC, enabled.textureCompressionBC);
AddFeature(features, "textureCompressionETC2", available.textureCompressionETC2, enabled.textureCompressionETC2);
AddFeature(features, "textureCompressionASTC_LDR", available.textureCompressionASTC_LDR, enabled.textureCompressionASTC_LDR);
AddFeature(features, "shaderClipDistance", available.shaderClipDistance, enabled.shaderClipDistance);
AddFeature(features, "shaderCullDistance", available.shaderCullDistance, enabled.shaderCullDistance);
AddFeature(features, "occlusionQueryPrecise", available.occlusionQueryPrecise, enabled.occlusionQueryPrecise);
AddFeature(features, "multiDrawIndirect", available.multiDrawIndirect, enabled.multiDrawIndirect);
AddFeature(features, "robustBufferAccess", available.robustBufferAccess, enabled.robustBufferAccess);
AddFeature(features, "fullDrawIndexUint32", available.fullDrawIndexUint32, enabled.fullDrawIndexUint32);
AddFeature(features, "fragmentStoresAndAtomics", available.fragmentStoresAndAtomics, enabled.fragmentStoresAndAtomics);
AddFeature(features, "shaderInt16", available.shaderInt16, enabled.shaderInt16);
AddFeature(features, "multiview", vulkan_->GetDeviceFeatures().available.multiview.multiview, vulkan_->GetDeviceFeatures().enabled.multiview.multiview);
AddFeature(features, "multiviewGeometryShader", vulkan_->GetDeviceFeatures().available.multiview.multiviewGeometryShader, vulkan_->GetDeviceFeatures().enabled.multiview.multiviewGeometryShader);
AddFeature(features, "presentId", vulkan_->GetDeviceFeatures().available.presentId.presentId, vulkan_->GetDeviceFeatures().enabled.presentId.presentId);
AddFeature(features, "presentWait", vulkan_->GetDeviceFeatures().available.presentWait.presentWait, vulkan_->GetDeviceFeatures().enabled.presentWait.presentWait);
AddFeature(features, "provokingVertexLast", vulkan_->GetDeviceFeatures().available.provokingVertex.provokingVertexLast, vulkan_->GetDeviceFeatures().enabled.provokingVertex.provokingVertexLast);
features.emplace_back(std::string("Preferred depth buffer format: ") + VulkanFormatToString(vulkan_->GetDeviceInfo().preferredDepthStencilFormat));
return features;
}
std::vector<std::string> VKContext::GetExtensionList(bool device, bool enabledOnly) const {
std::vector<std::string> extensions;
if (enabledOnly) {
const auto& enabled = (device ? vulkan_->GetDeviceExtensionsEnabled() : vulkan_->GetInstanceExtensionsEnabled());
extensions.reserve(enabled.size());
for (auto &iter : enabled) {
extensions.push_back(iter);
}
} else {
const auto& available = (device ? vulkan_->GetDeviceExtensionsAvailable() : vulkan_->GetInstanceExtensionsAvailable());
extensions.reserve(available.size());
for (auto &iter : available) {
extensions.push_back(iter.extensionName);
}
}
return extensions;
}
uint32_t VKContext::GetDataFormatSupport(DataFormat fmt) const {
VkFormat vulkan_format = DataFormatToVulkan(fmt);
VkFormatProperties properties;
vkGetPhysicalDeviceFormatProperties(vulkan_->GetCurrentPhysicalDevice(), vulkan_format, &properties);
uint32_t flags = 0;
if (properties.optimalTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) {
flags |= FMT_RENDERTARGET;
}
if (properties.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) {
flags |= FMT_DEPTHSTENCIL;
}
if (properties.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) {
flags |= FMT_TEXTURE;
}
if (properties.bufferFeatures & VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT) {
flags |= FMT_INPUTLAYOUT;
}
if ((properties.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_SRC_BIT) && (properties.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_DST_BIT)) {
flags |= FMT_BLIT;
}
if (properties.optimalTilingFeatures & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT) {
flags |= FMT_STORAGE_IMAGE;
}
return flags;
}
// A VKFramebuffer is a VkFramebuffer (note caps difference) plus all the textures it owns.
// It also has a reference to the command buffer that it was last rendered to with.
// If it needs to be transitioned, and the frame number matches, use it, otherwise
// use this frame's init command buffer.
class VKFramebuffer : public Framebuffer {
public:
VKFramebuffer(VKRFramebuffer *fb, int multiSampleLevel) : buf_(fb) {
_assert_msg_(fb, "Null fb in VKFramebuffer constructor");
width_ = fb->width;
height_ = fb->height;
layers_ = fb->numLayers;
multiSampleLevel_ = multiSampleLevel;
}
~VKFramebuffer() {
_assert_msg_(buf_, "Null buf_ in VKFramebuffer - double delete?");
buf_->Vulkan()->Delete().QueueCallback([](VulkanContext *vulkan, void *fb) {
VKRFramebuffer *vfb = static_cast<VKRFramebuffer *>(fb);
delete vfb;
}, buf_);
buf_ = nullptr;
}
VKRFramebuffer *GetFB() const { return buf_; }
void UpdateTag(const char *newTag) override {
buf_->UpdateTag(newTag);
}
const char *Tag() const override {
return buf_->Tag();
}
private:
VKRFramebuffer *buf_;
};
Framebuffer *VKContext::CreateFramebuffer(const FramebufferDesc &desc) {
_assert_(desc.multiSampleLevel >= 0);
_assert_(desc.numLayers > 0);
_assert_(desc.width > 0);
_assert_(desc.height > 0);
VKRFramebuffer *vkrfb = new VKRFramebuffer(vulkan_, &renderManager_.PostInitBarrier(), desc.width, desc.height, desc.numLayers, desc.multiSampleLevel, desc.z_stencil, desc.tag);
return new VKFramebuffer(vkrfb, desc.multiSampleLevel);
}
void VKContext::CopyFramebufferImage(Framebuffer *srcfb, int level, int x, int y, int z, Framebuffer *dstfb, int dstLevel, int dstX, int dstY, int dstZ, int width, int height, int depth, Aspect aspects, const char *tag) {
VKFramebuffer *src = (VKFramebuffer *)srcfb;
VKFramebuffer *dst = (VKFramebuffer *)dstfb;
int aspectMask = 0;
if (aspects & Aspect::COLOR_BIT) aspectMask |= VK_IMAGE_ASPECT_COLOR_BIT;
if (aspects & Aspect::DEPTH_BIT) aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
if (aspects & Aspect::STENCIL_BIT) aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
renderManager_.CopyFramebuffer(src->GetFB(), VkRect2D{ {x, y}, {(uint32_t)width, (uint32_t)height } }, dst->GetFB(), VkOffset2D{ dstX, dstY }, aspectMask, tag);
}
bool VKContext::BlitFramebuffer(Framebuffer *srcfb, int srcX1, int srcY1, int srcX2, int srcY2, Framebuffer *dstfb, int dstX1, int dstY1, int dstX2, int dstY2, Aspect aspects, FBBlitFilter filter, const char *tag) {
VKFramebuffer *src = (VKFramebuffer *)srcfb;
VKFramebuffer *dst = (VKFramebuffer *)dstfb;
int aspectMask = 0;
if (aspects & Aspect::COLOR_BIT) aspectMask |= VK_IMAGE_ASPECT_COLOR_BIT;
if (aspects & Aspect::DEPTH_BIT) aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
if (aspects & Aspect::STENCIL_BIT) aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
renderManager_.BlitFramebuffer(src->GetFB(), VkRect2D{ {srcX1, srcY1}, {(uint32_t)(srcX2 - srcX1), (uint32_t)(srcY2 - srcY1) } }, dst->GetFB(), VkRect2D{ {dstX1, dstY1}, {(uint32_t)(dstX2 - dstX1), (uint32_t)(dstY2 - dstY1) } }, aspectMask, filter == FB_BLIT_LINEAR ? VK_FILTER_LINEAR : VK_FILTER_NEAREST, tag);
return true;
}
bool VKContext::CopyFramebufferToMemory(Framebuffer *srcfb, Aspect aspects, int x, int y, int w, int h, Draw::DataFormat format, void *pixels, int pixelStride, ReadbackMode mode, const char *tag) {
VKFramebuffer *src = (VKFramebuffer *)srcfb;
int aspectMask = 0;
if (aspects & Aspect::COLOR_BIT) aspectMask |= VK_IMAGE_ASPECT_COLOR_BIT;
if (aspects & Aspect::DEPTH_BIT) aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
if (aspects & Aspect::STENCIL_BIT) aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
return renderManager_.CopyFramebufferToMemory(src ? src->GetFB() : nullptr, aspectMask, x, y, w, h, format, (uint8_t *)pixels, pixelStride, mode, tag);
}
DataFormat VKContext::PreferredFramebufferReadbackFormat(Framebuffer *src) {
if (src) {
return DrawContext::PreferredFramebufferReadbackFormat(src);
}
if (vulkan_->GetSwapchainFormat() == VK_FORMAT_B8G8R8A8_UNORM) {
return Draw::DataFormat::B8G8R8A8_UNORM;
}
return DrawContext::PreferredFramebufferReadbackFormat(src);
}
void VKContext::BindFramebufferAsRenderTarget(Framebuffer *fbo, const RenderPassInfo &rp, const char *tag) {
VKFramebuffer *fb = (VKFramebuffer *)fbo;
VKRRenderPassLoadAction color = (VKRRenderPassLoadAction)rp.color;
VKRRenderPassLoadAction depth = (VKRRenderPassLoadAction)rp.depth;
VKRRenderPassLoadAction stencil = (VKRRenderPassLoadAction)rp.stencil;
renderManager_.BindFramebufferAsRenderTarget(fb ? fb->GetFB() : nullptr, color, depth, stencil, rp.clearColor, rp.clearDepth, rp.clearStencil, tag);
curFramebuffer_ = fb;
}
void VKContext::BindFramebufferAsTexture(Framebuffer *fbo, int binding, Aspect channelBit, int layer) {
VKFramebuffer *fb = (VKFramebuffer *)fbo;
_assert_(binding >= 0 && binding < MAX_BOUND_TEXTURES);
// TODO: There are cases where this is okay, actually. But requires layout transitions and stuff -
// we're not ready for this.
_assert_(fb != curFramebuffer_);
int aspect = 0;
switch (channelBit) {
case Aspect::COLOR_BIT:
aspect = VK_IMAGE_ASPECT_COLOR_BIT;
break;
case Aspect::DEPTH_BIT:
aspect = VK_IMAGE_ASPECT_DEPTH_BIT;
break;
default:
// Hm, can we texture from stencil?
_assert_(false);
break;
}
boundTextures_[binding].reset(nullptr);
boundImageView_[binding] = renderManager_.BindFramebufferAsTexture(fb->GetFB(), binding, aspect, layer);
}
void VKContext::GetFramebufferDimensions(Framebuffer *fbo, int *w, int *h) {
VKFramebuffer *fb = (VKFramebuffer *)fbo;
if (fb) {
*w = fb->GetFB()->width;
*h = fb->GetFB()->height;
} else {
*w = vulkan_->GetBackbufferWidth();
*h = vulkan_->GetBackbufferHeight();
}
}
void VKContext::HandleEvent(Event ev, int width, int height, void *param1, void *param2) {
switch (ev) {
case Event::LOST_BACKBUFFER:
renderManager_.DestroyBackbuffers();
break;
case Event::GOT_BACKBUFFER:
renderManager_.CreateBackbuffers();
break;
default:
_assert_(false);
break;
}
}
void VKContext::InvalidateFramebuffer(FBInvalidationStage stage, Aspect aspects) {
VkImageAspectFlags flags = 0;
if (aspects & Aspect::COLOR_BIT)
flags |= VK_IMAGE_ASPECT_COLOR_BIT;
if (aspects & Aspect::DEPTH_BIT)
flags |= VK_IMAGE_ASPECT_DEPTH_BIT;
if (aspects & Aspect::STENCIL_BIT)
flags |= VK_IMAGE_ASPECT_STENCIL_BIT;
if (stage == FB_INVALIDATION_LOAD) {
renderManager_.SetLoadDontCare(flags);
} else if (stage == FB_INVALIDATION_STORE) {
renderManager_.SetStoreDontCare(flags);
}
}
uint64_t VKContext::GetNativeObject(NativeObject obj, void *srcObject) {
switch (obj) {
case NativeObject::CONTEXT:
return (uint64_t)vulkan_;
case NativeObject::INIT_COMMANDBUFFER:
return (uint64_t)renderManager_.GetInitCmd();
case NativeObject::BOUND_TEXTURE0_IMAGEVIEW:
return (uint64_t)boundImageView_[0];
case NativeObject::BOUND_TEXTURE1_IMAGEVIEW:
return (uint64_t)boundImageView_[1];
case NativeObject::RENDER_MANAGER:
return (uint64_t)(uintptr_t)&renderManager_;
case NativeObject::NULL_IMAGEVIEW:
return (uint64_t)GetNullTexture()->GetImageView();
case NativeObject::NULL_IMAGEVIEW_ARRAY:
return (uint64_t)GetNullTexture()->GetImageArrayView();
case NativeObject::TEXTURE_VIEW:
return (uint64_t)(((VKTexture *)srcObject)->GetImageView());
case NativeObject::BOUND_FRAMEBUFFER_COLOR_IMAGEVIEW_ALL_LAYERS:
return (uint64_t)curFramebuffer_->GetFB()->color.texAllLayersView;
case NativeObject::BOUND_FRAMEBUFFER_COLOR_IMAGEVIEW_RT:
return (uint64_t)curFramebuffer_->GetFB()->GetRTView();
case NativeObject::THIN3D_PIPELINE_LAYOUT:
return (uint64_t)pipelineLayout_;
case NativeObject::PUSH_POOL:
return (uint64_t)push_;
default:
Crash();
return 0;
}
}
void VKContext::DebugAnnotate(const char *annotation) {
renderManager_.DebugAnnotate(annotation);
}
} // namespace Draw