ppsspp/Core/MIPS/ARM64/Arm64Jit.cpp

485 lines
13 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "base/logging.h"
#include "Common/ChunkFile.h"
#include "Common/CPUDetect.h"
#include "Core/Reporting.h"
#include "Core/Config.h"
#include "Core/Core.h"
#include "Core/CoreTiming.h"
#include "Core/Debugger/SymbolMap.h"
#include "Core/MemMap.h"
#include "Core/MIPS/MIPS.h"
#include "Core/MIPS/MIPSCodeUtils.h"
#include "Core/MIPS/MIPSInt.h"
#include "Core/MIPS/MIPSTables.h"
#include "Core/HLE/ReplaceTables.h"
#include "Core/MIPS/ARM64/Arm64RegCache.h"
#include "Core/MIPS/ARM64/Arm64RegCacheFPU.h"
#include "Core/MIPS/ARM64/Arm64Jit.h"
#include "ext/disarm.h"
using namespace Arm64JitConstants;
void DisassembleArm64Print(const u8 *data, int size) {
ILOG("ARM64 TODO");
}
namespace MIPSComp
{
using namespace Arm64Gen;
using namespace Arm64JitConstants;
Arm64Jit::Arm64Jit(MIPSState *mips) : blocks(mips, this), gpr(mips, &js, &jo), fpr(mips, &js, &jo), mips_(mips) {
logBlocks = 0;
dontLogBlocks = 0;
blocks.Init();
gpr.SetEmitter(this);
fpr.SetEmitter(this);
AllocCodeSpace(1024 * 1024 * 16); // 32MB is the absolute max because that's what an ARM branch instruction can reach, backwards and forwards.
GenerateFixedCode();
js.startDefaultPrefix = mips_->HasDefaultPrefix();
}
Arm64Jit::~Arm64Jit() {
}
void Arm64Jit::DoState(PointerWrap &p)
{
auto s = p.Section("Jit", 1, 2);
if (!s)
return;
p.Do(js.startDefaultPrefix);
if (s >= 2) {
p.Do(js.hasSetRounding);
js.lastSetRounding = 0;
} else {
js.hasSetRounding = 1;
}
}
// This is here so the savestate matches between jit and non-jit.
void Arm64Jit::DoDummyState(PointerWrap &p)
{
auto s = p.Section("Jit", 1, 2);
if (!s)
return;
bool dummy = false;
p.Do(dummy);
if (s >= 2) {
dummy = true;
p.Do(dummy);
}
}
void Arm64Jit::FlushAll()
{
gpr.FlushAll();
fpr.FlushAll();
FlushPrefixV();
}
void Arm64Jit::FlushPrefixV()
{
if ((js.prefixSFlag & JitState::PREFIX_DIRTY) != 0) {
gpr.SetRegImm(SCRATCH1, js.prefixS);
STR(INDEX_UNSIGNED, SCRATCH1, CTXREG, offsetof(MIPSState, vfpuCtrl[VFPU_CTRL_SPREFIX]));
js.prefixSFlag = (JitState::PrefixState) (js.prefixSFlag & ~JitState::PREFIX_DIRTY);
}
if ((js.prefixTFlag & JitState::PREFIX_DIRTY) != 0) {
gpr.SetRegImm(SCRATCH1, js.prefixT);
STR(INDEX_UNSIGNED, SCRATCH1, CTXREG, offsetof(MIPSState, vfpuCtrl[VFPU_CTRL_TPREFIX]));
js.prefixTFlag = (JitState::PrefixState) (js.prefixTFlag & ~JitState::PREFIX_DIRTY);
}
if ((js.prefixDFlag & JitState::PREFIX_DIRTY) != 0) {
gpr.SetRegImm(SCRATCH1, js.prefixD);
STR(INDEX_UNSIGNED, SCRATCH1, CTXREG, offsetof(MIPSState, vfpuCtrl[VFPU_CTRL_DPREFIX]));
js.prefixDFlag = (JitState::PrefixState) (js.prefixDFlag & ~JitState::PREFIX_DIRTY);
}
}
void Arm64Jit::ClearCache()
{
blocks.Clear();
ClearCodeSpace();
GenerateFixedCode();
}
void Arm64Jit::InvalidateCache()
{
blocks.Clear();
}
void Arm64Jit::InvalidateCacheAt(u32 em_address, int length)
{
blocks.InvalidateICache(em_address, length);
}
void Arm64Jit::EatInstruction(MIPSOpcode op) {
MIPSInfo info = MIPSGetInfo(op);
if (info & DELAYSLOT) {
ERROR_LOG_REPORT_ONCE(ateDelaySlot, JIT, "Ate a branch op.");
}
if (js.inDelaySlot) {
ERROR_LOG_REPORT_ONCE(ateInDelaySlot, JIT, "Ate an instruction inside a delay slot.");
}
js.numInstructions++;
js.compilerPC += 4;
js.downcountAmount += MIPSGetInstructionCycleEstimate(op);
}
void Arm64Jit::CompileDelaySlot(int flags)
{
// TODO ARM64
}
void Arm64Jit::Compile(u32 em_address) {
if (GetSpaceLeft() < 0x10000 || blocks.IsFull()) {
ClearCache();
}
int block_num = blocks.AllocateBlock(em_address);
JitBlock *b = blocks.GetBlock(block_num);
DoJit(em_address, b);
blocks.FinalizeBlock(block_num, jo.enableBlocklink);
bool cleanSlate = false;
if (js.hasSetRounding && !js.lastSetRounding) {
WARN_LOG(JIT, "Detected rounding mode usage, rebuilding jit with checks");
// Won't loop, since hasSetRounding is only ever set to 1.
js.lastSetRounding = js.hasSetRounding;
cleanSlate = true;
}
// Drat. The VFPU hit an uneaten prefix at the end of a block.
if (js.startDefaultPrefix && js.MayHavePrefix()) {
WARN_LOG(JIT, "An uneaten prefix at end of block: %08x", js.compilerPC - 4);
js.LogPrefix();
// Let's try that one more time. We won't get back here because we toggled the value.
js.startDefaultPrefix = false;
cleanSlate = true;
}
if (cleanSlate) {
// Our assumptions are all wrong so it's clean-slate time.
ClearCache();
Compile(em_address);
}
}
void Arm64Jit::RunLoopUntil(u64 globalticks)
{
((void (*)())enterCode)();
}
const u8 *Arm64Jit::DoJit(u32 em_address, JitBlock *b)
{
js.cancel = false;
js.blockStart = js.compilerPC = mips_->pc;
js.lastContinuedPC = 0;
js.initialBlockSize = 0;
js.nextExit = 0;
js.downcountAmount = 0;
js.curBlock = b;
js.compiling = true;
js.inDelaySlot = false;
js.PrefixStart();
// We add a downcount flag check before the block, used when entering from a linked block.
// The last block decremented downcounter, and the flag should still be available.
// Got three variants here of where we position the code, needs detailed benchmarking.
FixupBranch bail;
/*
if (jo.useBackJump) {
// Moves the MOVI2R and B *before* checkedEntry, and just branch backwards there.
// Speedup seems to be zero unfortunately but I guess it may vary from device to device.
// Not intrusive so keeping it around here to experiment with, may help on ARMv6 due to
// large/slow construction of 32-bit immediates?
JumpTarget backJump = GetCodePtr();
gpr.SetRegImm(R0, js.blockStart);
B((const void *)outerLoopPCInR0);
b->checkedEntry = GetCodePtr();
SetCC(CC_LT);
B(backJump);
SetCC(CC_AL);
} else if (jo.useForwardJump) {
b->checkedEntry = GetCodePtr();
SetCC(CC_LT);
bail = B();
SetCC(CC_AL);
} else {
b->checkedEntry = GetCodePtr();
SetCC(CC_LT);
gpr.SetRegImm(R0, js.blockStart);
B((const void *)outerLoopPCInR0);
SetCC(CC_AL);
}*/
// TODO ARM64
b->normalEntry = GetCodePtr();
// TODO: this needs work
MIPSAnalyst::AnalysisResults analysis; // = MIPSAnalyst::Analyze(em_address);
gpr.Start(analysis);
fpr.Start(analysis);
int partialFlushOffset = 0;
js.numInstructions = 0;
while (js.compiling)
{
gpr.SetCompilerPC(js.compilerPC); // Let it know for log messages
MIPSOpcode inst = Memory::Read_Opcode_JIT(js.compilerPC);
//MIPSInfo info = MIPSGetInfo(inst);
//if (info & IS_VFPU) {
// logBlocks = 1;
//}
js.downcountAmount += MIPSGetInstructionCycleEstimate(inst);
MIPSCompileOp(inst);
js.compilerPC += 4;
js.numInstructions++;
// Safety check, in case we get a bunch of really large jit ops without a lot of branching.
if (GetSpaceLeft() < 0x800 || js.numInstructions >= JitBlockCache::MAX_BLOCK_INSTRUCTIONS)
{
FlushAll();
WriteExit(js.compilerPC, js.nextExit++);
js.compiling = false;
}
}
if (jo.useForwardJump) {
//SetJumpTarget(bail);
//gpr.SetRegImm(R0, js.blockStart);
//B((const void *)outerLoopPCInR0);
}
char temp[256];
if (logBlocks > 0 && dontLogBlocks == 0) {
INFO_LOG(JIT, "=============== mips ===============");
for (u32 cpc = em_address; cpc != js.compilerPC + 4; cpc += 4) {
MIPSDisAsm(Memory::Read_Opcode_JIT(cpc), cpc, temp, true);
INFO_LOG(JIT, "M: %08x %s", cpc, temp);
}
}
b->codeSize = GetCodePtr() - b->normalEntry;
if (logBlocks > 0 && dontLogBlocks == 0) {
INFO_LOG(JIT, "=============== ARM ===============");
DisassembleArm64Print(b->normalEntry, GetCodePtr() - b->normalEntry);
}
if (logBlocks > 0)
logBlocks--;
if (dontLogBlocks > 0)
dontLogBlocks--;
// Don't forget to zap the newly written instructions in the instruction cache!
FlushIcache();
if (js.lastContinuedPC == 0)
b->originalSize = js.numInstructions;
else
{
// We continued at least once. Add the last proxy and set the originalSize correctly.
blocks.ProxyBlock(js.blockStart, js.lastContinuedPC, (js.compilerPC - js.lastContinuedPC) / sizeof(u32), GetCodePtr());
b->originalSize = js.initialBlockSize;
}
return b->normalEntry;
}
void Arm64Jit::AddContinuedBlock(u32 dest)
{
// The first block is the root block. When we continue, we create proxy blocks after that.
if (js.lastContinuedPC == 0)
js.initialBlockSize = js.numInstructions;
else
blocks.ProxyBlock(js.blockStart, js.lastContinuedPC, (js.compilerPC - js.lastContinuedPC) / sizeof(u32), GetCodePtr());
js.lastContinuedPC = dest;
}
bool Arm64Jit::DescribeCodePtr(const u8 *ptr, std::string &name)
{
// TODO: Not used by anything yet.
return false;
}
void Arm64Jit::Comp_RunBlock(MIPSOpcode op)
{
// This shouldn't be necessary, the dispatcher should catch us before we get here.
ERROR_LOG(JIT, "Comp_RunBlock should never be reached!");
}
bool Arm64Jit::ReplaceJalTo(u32 dest) {
return false;
}
void Arm64Jit::Comp_ReplacementFunc(MIPSOpcode op)
{
// TODO ARM64
}
void Arm64Jit::Comp_Generic(MIPSOpcode op)
{
FlushAll();
MIPSInterpretFunc func = MIPSGetInterpretFunc(op);
if (func) {
SaveDowncount();
// TODO: Perhaps keep the rounding mode for interp?
RestoreRoundingMode();
// gpr.SetRegImm(SCRATCHREG1, js.compilerPC);
// MovToPC(SCRATCHREG1);
//gpr.SetRegImm(R0, op.encoding);
//QuickCallFunction(R1, (void *)func);
// TODO ARM64
ApplyRoundingMode();
RestoreDowncount();
}
const MIPSInfo info = MIPSGetInfo(op);
if ((info & IS_VFPU) != 0 && (info & VFPU_NO_PREFIX) == 0)
{
// If it does eat them, it'll happen in MIPSCompileOp().
if ((info & OUT_EAT_PREFIX) == 0)
js.PrefixUnknown();
}
}
void Arm64Jit::MovFromPC(ARM64Reg r) {
LDR(INDEX_UNSIGNED, r, CTXREG, offsetof(MIPSState, pc));
}
void Arm64Jit::MovToPC(ARM64Reg r) {
STR(INDEX_UNSIGNED, r, CTXREG, offsetof(MIPSState, pc));
}
void Arm64Jit::SaveDowncount() {
if (jo.downcountInRegister)
STR(INDEX_UNSIGNED, DOWNCOUNTREG, CTXREG, offsetof(MIPSState, downcount));
}
void Arm64Jit::RestoreDowncount() {
if (jo.downcountInRegister)
LDR(INDEX_UNSIGNED, DOWNCOUNTREG, CTXREG, offsetof(MIPSState, downcount));
}
void Arm64Jit::WriteDownCount(int offset) {
// TODO ARM64
}
// Abuses R2
void Arm64Jit::WriteDownCountR(ARM64Reg reg) {
if (jo.downcountInRegister) {
SUBS(DOWNCOUNTREG, DOWNCOUNTREG, reg);
} else {
LDR(INDEX_UNSIGNED, X2, CTXREG, offsetof(MIPSState, downcount));
SUBS(X2, X2, reg);
STR(INDEX_UNSIGNED, X2, CTXREG, offsetof(MIPSState, downcount));
}
}
void Arm64Jit::RestoreRoundingMode(bool force) {
// TODO ARM64
}
void Arm64Jit::ApplyRoundingMode(bool force) {
// TODO ARM64
}
void Arm64Jit::UpdateRoundingMode() {
// TODO ARM64
}
// IDEA - could have a WriteDualExit that takes two destinations and two condition flags,
// and just have conditional that set PC "twice". This only works when we fall back to dispatcher
// though, as we need to have the SUBS flag set in the end. So with block linking in the mix,
// I don't think this gives us that much benefit.
void Arm64Jit::WriteExit(u32 destination, int exit_num)
{
WriteDownCount();
//If nobody has taken care of this yet (this can be removed when all branches are done)
JitBlock *b = js.curBlock;
b->exitAddress[exit_num] = destination;
b->exitPtrs[exit_num] = GetWritableCodePtr();
// Link opportunity!
int block = blocks.GetBlockNumberFromStartAddress(destination);
if (block >= 0 && jo.enableBlocklink) {
// It exists! Joy of joy!
B(blocks.GetBlock(block)->checkedEntry);
b->linkStatus[exit_num] = true;
} else {
gpr.SetRegImm(X0, destination);
B((const void *)dispatcherPCInSCRATCH1);
}
}
void Arm64Jit::WriteExitDestInR(ARM64Reg Reg)
{
MovToPC(Reg);
WriteDownCount();
// TODO: shouldn't need an indirect branch here...
B((const void *)dispatcher);
}
void Arm64Jit::WriteSyscallExit()
{
WriteDownCount();
B((const void *)dispatcherCheckCoreState);
}
void Arm64Jit::Comp_DoNothing(MIPSOpcode op) { }
#define _RS ((op>>21) & 0x1F)
#define _RT ((op>>16) & 0x1F)
#define _RD ((op>>11) & 0x1F)
#define _FS ((op>>11) & 0x1F)
#define _FT ((op>>16) & 0x1F)
#define _FD ((op>>6) & 0x1F)
#define _POS ((op>>6) & 0x1F)
#define _SIZE ((op>>11) & 0x1F)
//memory regions:
//
// 08-0A
// 48-4A
// 04-05
// 44-45
// mov eax, addrreg
// shr eax, 28
// mov eax, [table+eax]
// mov dreg, [eax+offreg]
}