// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "base/logging.h" #include "Common/ChunkFile.h" #include "Common/CPUDetect.h" #include "Core/Reporting.h" #include "Core/Config.h" #include "Core/Core.h" #include "Core/CoreTiming.h" #include "Core/Debugger/SymbolMap.h" #include "Core/MemMap.h" #include "Core/MIPS/MIPS.h" #include "Core/MIPS/MIPSCodeUtils.h" #include "Core/MIPS/MIPSInt.h" #include "Core/MIPS/MIPSTables.h" #include "Core/HLE/ReplaceTables.h" #include "Core/MIPS/ARM64/Arm64RegCache.h" #include "Core/MIPS/ARM64/Arm64RegCacheFPU.h" #include "Core/MIPS/ARM64/Arm64Jit.h" #include "ext/disarm.h" using namespace Arm64JitConstants; void DisassembleArm64Print(const u8 *data, int size) { ILOG("ARM64 TODO"); } namespace MIPSComp { using namespace Arm64Gen; using namespace Arm64JitConstants; Arm64Jit::Arm64Jit(MIPSState *mips) : blocks(mips, this), gpr(mips, &js, &jo), fpr(mips, &js, &jo), mips_(mips) { logBlocks = 0; dontLogBlocks = 0; blocks.Init(); gpr.SetEmitter(this); fpr.SetEmitter(this); AllocCodeSpace(1024 * 1024 * 16); // 32MB is the absolute max because that's what an ARM branch instruction can reach, backwards and forwards. GenerateFixedCode(); js.startDefaultPrefix = mips_->HasDefaultPrefix(); } Arm64Jit::~Arm64Jit() { } void Arm64Jit::DoState(PointerWrap &p) { auto s = p.Section("Jit", 1, 2); if (!s) return; p.Do(js.startDefaultPrefix); if (s >= 2) { p.Do(js.hasSetRounding); js.lastSetRounding = 0; } else { js.hasSetRounding = 1; } } // This is here so the savestate matches between jit and non-jit. void Arm64Jit::DoDummyState(PointerWrap &p) { auto s = p.Section("Jit", 1, 2); if (!s) return; bool dummy = false; p.Do(dummy); if (s >= 2) { dummy = true; p.Do(dummy); } } void Arm64Jit::FlushAll() { gpr.FlushAll(); fpr.FlushAll(); FlushPrefixV(); } void Arm64Jit::FlushPrefixV() { if ((js.prefixSFlag & JitState::PREFIX_DIRTY) != 0) { gpr.SetRegImm(SCRATCH1, js.prefixS); STR(INDEX_UNSIGNED, SCRATCH1, CTXREG, offsetof(MIPSState, vfpuCtrl[VFPU_CTRL_SPREFIX])); js.prefixSFlag = (JitState::PrefixState) (js.prefixSFlag & ~JitState::PREFIX_DIRTY); } if ((js.prefixTFlag & JitState::PREFIX_DIRTY) != 0) { gpr.SetRegImm(SCRATCH1, js.prefixT); STR(INDEX_UNSIGNED, SCRATCH1, CTXREG, offsetof(MIPSState, vfpuCtrl[VFPU_CTRL_TPREFIX])); js.prefixTFlag = (JitState::PrefixState) (js.prefixTFlag & ~JitState::PREFIX_DIRTY); } if ((js.prefixDFlag & JitState::PREFIX_DIRTY) != 0) { gpr.SetRegImm(SCRATCH1, js.prefixD); STR(INDEX_UNSIGNED, SCRATCH1, CTXREG, offsetof(MIPSState, vfpuCtrl[VFPU_CTRL_DPREFIX])); js.prefixDFlag = (JitState::PrefixState) (js.prefixDFlag & ~JitState::PREFIX_DIRTY); } } void Arm64Jit::ClearCache() { blocks.Clear(); ClearCodeSpace(); GenerateFixedCode(); } void Arm64Jit::InvalidateCache() { blocks.Clear(); } void Arm64Jit::InvalidateCacheAt(u32 em_address, int length) { blocks.InvalidateICache(em_address, length); } void Arm64Jit::EatInstruction(MIPSOpcode op) { MIPSInfo info = MIPSGetInfo(op); if (info & DELAYSLOT) { ERROR_LOG_REPORT_ONCE(ateDelaySlot, JIT, "Ate a branch op."); } if (js.inDelaySlot) { ERROR_LOG_REPORT_ONCE(ateInDelaySlot, JIT, "Ate an instruction inside a delay slot."); } js.numInstructions++; js.compilerPC += 4; js.downcountAmount += MIPSGetInstructionCycleEstimate(op); } void Arm64Jit::CompileDelaySlot(int flags) { // TODO ARM64 } void Arm64Jit::Compile(u32 em_address) { if (GetSpaceLeft() < 0x10000 || blocks.IsFull()) { ClearCache(); } int block_num = blocks.AllocateBlock(em_address); JitBlock *b = blocks.GetBlock(block_num); DoJit(em_address, b); blocks.FinalizeBlock(block_num, jo.enableBlocklink); bool cleanSlate = false; if (js.hasSetRounding && !js.lastSetRounding) { WARN_LOG(JIT, "Detected rounding mode usage, rebuilding jit with checks"); // Won't loop, since hasSetRounding is only ever set to 1. js.lastSetRounding = js.hasSetRounding; cleanSlate = true; } // Drat. The VFPU hit an uneaten prefix at the end of a block. if (js.startDefaultPrefix && js.MayHavePrefix()) { WARN_LOG(JIT, "An uneaten prefix at end of block: %08x", js.compilerPC - 4); js.LogPrefix(); // Let's try that one more time. We won't get back here because we toggled the value. js.startDefaultPrefix = false; cleanSlate = true; } if (cleanSlate) { // Our assumptions are all wrong so it's clean-slate time. ClearCache(); Compile(em_address); } } void Arm64Jit::RunLoopUntil(u64 globalticks) { ((void (*)())enterCode)(); } const u8 *Arm64Jit::DoJit(u32 em_address, JitBlock *b) { js.cancel = false; js.blockStart = js.compilerPC = mips_->pc; js.lastContinuedPC = 0; js.initialBlockSize = 0; js.nextExit = 0; js.downcountAmount = 0; js.curBlock = b; js.compiling = true; js.inDelaySlot = false; js.PrefixStart(); // We add a downcount flag check before the block, used when entering from a linked block. // The last block decremented downcounter, and the flag should still be available. // Got three variants here of where we position the code, needs detailed benchmarking. FixupBranch bail; /* if (jo.useBackJump) { // Moves the MOVI2R and B *before* checkedEntry, and just branch backwards there. // Speedup seems to be zero unfortunately but I guess it may vary from device to device. // Not intrusive so keeping it around here to experiment with, may help on ARMv6 due to // large/slow construction of 32-bit immediates? JumpTarget backJump = GetCodePtr(); gpr.SetRegImm(R0, js.blockStart); B((const void *)outerLoopPCInR0); b->checkedEntry = GetCodePtr(); SetCC(CC_LT); B(backJump); SetCC(CC_AL); } else if (jo.useForwardJump) { b->checkedEntry = GetCodePtr(); SetCC(CC_LT); bail = B(); SetCC(CC_AL); } else { b->checkedEntry = GetCodePtr(); SetCC(CC_LT); gpr.SetRegImm(R0, js.blockStart); B((const void *)outerLoopPCInR0); SetCC(CC_AL); }*/ // TODO ARM64 b->normalEntry = GetCodePtr(); // TODO: this needs work MIPSAnalyst::AnalysisResults analysis; // = MIPSAnalyst::Analyze(em_address); gpr.Start(analysis); fpr.Start(analysis); int partialFlushOffset = 0; js.numInstructions = 0; while (js.compiling) { gpr.SetCompilerPC(js.compilerPC); // Let it know for log messages MIPSOpcode inst = Memory::Read_Opcode_JIT(js.compilerPC); //MIPSInfo info = MIPSGetInfo(inst); //if (info & IS_VFPU) { // logBlocks = 1; //} js.downcountAmount += MIPSGetInstructionCycleEstimate(inst); MIPSCompileOp(inst); js.compilerPC += 4; js.numInstructions++; // Safety check, in case we get a bunch of really large jit ops without a lot of branching. if (GetSpaceLeft() < 0x800 || js.numInstructions >= JitBlockCache::MAX_BLOCK_INSTRUCTIONS) { FlushAll(); WriteExit(js.compilerPC, js.nextExit++); js.compiling = false; } } if (jo.useForwardJump) { //SetJumpTarget(bail); //gpr.SetRegImm(R0, js.blockStart); //B((const void *)outerLoopPCInR0); } char temp[256]; if (logBlocks > 0 && dontLogBlocks == 0) { INFO_LOG(JIT, "=============== mips ==============="); for (u32 cpc = em_address; cpc != js.compilerPC + 4; cpc += 4) { MIPSDisAsm(Memory::Read_Opcode_JIT(cpc), cpc, temp, true); INFO_LOG(JIT, "M: %08x %s", cpc, temp); } } b->codeSize = GetCodePtr() - b->normalEntry; if (logBlocks > 0 && dontLogBlocks == 0) { INFO_LOG(JIT, "=============== ARM ==============="); DisassembleArm64Print(b->normalEntry, GetCodePtr() - b->normalEntry); } if (logBlocks > 0) logBlocks--; if (dontLogBlocks > 0) dontLogBlocks--; // Don't forget to zap the newly written instructions in the instruction cache! FlushIcache(); if (js.lastContinuedPC == 0) b->originalSize = js.numInstructions; else { // We continued at least once. Add the last proxy and set the originalSize correctly. blocks.ProxyBlock(js.blockStart, js.lastContinuedPC, (js.compilerPC - js.lastContinuedPC) / sizeof(u32), GetCodePtr()); b->originalSize = js.initialBlockSize; } return b->normalEntry; } void Arm64Jit::AddContinuedBlock(u32 dest) { // The first block is the root block. When we continue, we create proxy blocks after that. if (js.lastContinuedPC == 0) js.initialBlockSize = js.numInstructions; else blocks.ProxyBlock(js.blockStart, js.lastContinuedPC, (js.compilerPC - js.lastContinuedPC) / sizeof(u32), GetCodePtr()); js.lastContinuedPC = dest; } bool Arm64Jit::DescribeCodePtr(const u8 *ptr, std::string &name) { // TODO: Not used by anything yet. return false; } void Arm64Jit::Comp_RunBlock(MIPSOpcode op) { // This shouldn't be necessary, the dispatcher should catch us before we get here. ERROR_LOG(JIT, "Comp_RunBlock should never be reached!"); } bool Arm64Jit::ReplaceJalTo(u32 dest) { return false; } void Arm64Jit::Comp_ReplacementFunc(MIPSOpcode op) { // TODO ARM64 } void Arm64Jit::Comp_Generic(MIPSOpcode op) { FlushAll(); MIPSInterpretFunc func = MIPSGetInterpretFunc(op); if (func) { SaveDowncount(); // TODO: Perhaps keep the rounding mode for interp? RestoreRoundingMode(); // gpr.SetRegImm(SCRATCHREG1, js.compilerPC); // MovToPC(SCRATCHREG1); //gpr.SetRegImm(R0, op.encoding); //QuickCallFunction(R1, (void *)func); // TODO ARM64 ApplyRoundingMode(); RestoreDowncount(); } const MIPSInfo info = MIPSGetInfo(op); if ((info & IS_VFPU) != 0 && (info & VFPU_NO_PREFIX) == 0) { // If it does eat them, it'll happen in MIPSCompileOp(). if ((info & OUT_EAT_PREFIX) == 0) js.PrefixUnknown(); } } void Arm64Jit::MovFromPC(ARM64Reg r) { LDR(INDEX_UNSIGNED, r, CTXREG, offsetof(MIPSState, pc)); } void Arm64Jit::MovToPC(ARM64Reg r) { STR(INDEX_UNSIGNED, r, CTXREG, offsetof(MIPSState, pc)); } void Arm64Jit::SaveDowncount() { if (jo.downcountInRegister) STR(INDEX_UNSIGNED, DOWNCOUNTREG, CTXREG, offsetof(MIPSState, downcount)); } void Arm64Jit::RestoreDowncount() { if (jo.downcountInRegister) LDR(INDEX_UNSIGNED, DOWNCOUNTREG, CTXREG, offsetof(MIPSState, downcount)); } void Arm64Jit::WriteDownCount(int offset) { // TODO ARM64 } // Abuses R2 void Arm64Jit::WriteDownCountR(ARM64Reg reg) { if (jo.downcountInRegister) { SUBS(DOWNCOUNTREG, DOWNCOUNTREG, reg); } else { LDR(INDEX_UNSIGNED, X2, CTXREG, offsetof(MIPSState, downcount)); SUBS(X2, X2, reg); STR(INDEX_UNSIGNED, X2, CTXREG, offsetof(MIPSState, downcount)); } } void Arm64Jit::RestoreRoundingMode(bool force) { // TODO ARM64 } void Arm64Jit::ApplyRoundingMode(bool force) { // TODO ARM64 } void Arm64Jit::UpdateRoundingMode() { // TODO ARM64 } // IDEA - could have a WriteDualExit that takes two destinations and two condition flags, // and just have conditional that set PC "twice". This only works when we fall back to dispatcher // though, as we need to have the SUBS flag set in the end. So with block linking in the mix, // I don't think this gives us that much benefit. void Arm64Jit::WriteExit(u32 destination, int exit_num) { WriteDownCount(); //If nobody has taken care of this yet (this can be removed when all branches are done) JitBlock *b = js.curBlock; b->exitAddress[exit_num] = destination; b->exitPtrs[exit_num] = GetWritableCodePtr(); // Link opportunity! int block = blocks.GetBlockNumberFromStartAddress(destination); if (block >= 0 && jo.enableBlocklink) { // It exists! Joy of joy! B(blocks.GetBlock(block)->checkedEntry); b->linkStatus[exit_num] = true; } else { gpr.SetRegImm(X0, destination); B((const void *)dispatcherPCInSCRATCH1); } } void Arm64Jit::WriteExitDestInR(ARM64Reg Reg) { MovToPC(Reg); WriteDownCount(); // TODO: shouldn't need an indirect branch here... B((const void *)dispatcher); } void Arm64Jit::WriteSyscallExit() { WriteDownCount(); B((const void *)dispatcherCheckCoreState); } void Arm64Jit::Comp_DoNothing(MIPSOpcode op) { } #define _RS ((op>>21) & 0x1F) #define _RT ((op>>16) & 0x1F) #define _RD ((op>>11) & 0x1F) #define _FS ((op>>11) & 0x1F) #define _FT ((op>>16) & 0x1F) #define _FD ((op>>6) & 0x1F) #define _POS ((op>>6) & 0x1F) #define _SIZE ((op>>11) & 0x1F) //memory regions: // // 08-0A // 48-4A // 04-05 // 44-45 // mov eax, addrreg // shr eax, 28 // mov eax, [table+eax] // mov dreg, [eax+offreg] }