mupen64plus-oldsvn/debugger/memory.c

407 lines
10 KiB
C

/***************************************************************************
debugger/memory.c - handle debugger memory access in Mupen64Plus
-------------------
begin : Wed 7 May 2008
copyright : (C) 2008 by DarkJezter
***************************************************************************/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
#include "memory.h"
#include "../r4300/r4300.h"
#include "../r4300/ops.h"
#if !defined(NO_ASM) && (defined(__i386__) || defined(__x86_64__))
#include <dis-asm.h>
#include <stdarg.h>
int lines_recompiled;
uint32 addr_recompiled;
int num_decoded;
char opcode_recompiled[564][MAX_DISASSEMBLY];
char args_recompiled[564][MAX_DISASSEMBLY*4];
int opaddr_recompiled[564];
disassemble_info dis_info;
#define CHECK_MEM(address) \
if (!invalid_code[(address) >> 12] && blocks[(address) >> 12]->block[((address) & 0xFFF) / 4].ops != NOTCOMPILED) \
invalid_code[(address) >> 12] = 1;
void process_opcode_out(void *strm, const char *fmt, ...){
va_list ap = {0};
va_start(ap, fmt);
char *arg;
char buff[256];
if(num_decoded==0)
{
if(strcmp(fmt,"%s")==0)
{
arg = va_arg(ap, char*);
strcpy(opcode_recompiled[lines_recompiled],arg);
}
else
strcpy(opcode_recompiled[lines_recompiled],"OPCODE-X");
num_decoded++;
*(args_recompiled[lines_recompiled])=0;
}
else
{
vsprintf(buff, fmt, ap);
sprintf(args_recompiled[lines_recompiled],"%s%s",
args_recompiled[lines_recompiled],buff);
}
va_end(ap);
}
// Callback function that will be called by libopcodes to read the
// bytes to disassemble ('read_memory_func' member of 'disassemble_info').
int read_memory_func(bfd_vma memaddr, bfd_byte *myaddr,
unsigned int length, disassemble_info *info) {
char* from = (char*)(memaddr);
char* to = (char*)myaddr;
while (length-- != 0) {
*to++ = *from++;
}
return (0);
}
void init_host_disassembler(void){
INIT_DISASSEMBLE_INFO(dis_info, stderr, process_opcode_out);
dis_info.fprintf_func = process_opcode_out;
dis_info.stream = stderr;
dis_info.bytes_per_line=1;
dis_info.endian = 1;
dis_info.mach = bfd_mach_i386_i8086;
dis_info.disassembler_options = (char*) "i386,suffix";
dis_info.read_memory_func = read_memory_func;
}
void decode_recompiled(uint32 addr)
{
unsigned char *assemb, *end_addr;
unsigned char *as_inc;
lines_recompiled=0;
if(blocks[addr>>12] == NULL)
return;
if(blocks[addr>>12]->block[(addr&0xFFF)/4].ops == NOTCOMPILED)
// recompile_block((int *) SP_DMEM, blocks[addr>>12], addr);
{
strcpy(opcode_recompiled[0],"NOTCOMPILED");
strcpy(args_recompiled[0],"NOTCOMPILED");
opaddr_recompiled[0]=0;
addr_recompiled=0;
lines_recompiled++;
return;
}
assemb = (blocks[addr>>12]->code) +
(blocks[addr>>12]->block[(addr&0xFFF)/4].local_addr);
end_addr = blocks[addr>>12]->code;
if( (addr & 0xFFF) >= 0xFFC)
end_addr += blocks[addr>>12]->code_length;
else
end_addr += blocks[addr>>12]->block[(addr&0xFFF)/4+1].local_addr;
//for(as_inc=assemb; as_inc<end_addr; as_inc++)
// printf("%02x", *as_inc);
while(assemb < end_addr)
{
opaddr_recompiled[lines_recompiled] = (uint32)assemb;
num_decoded=0;
assemb += print_insn_i386(assemb, &dis_info);
lines_recompiled++;
}
addr_recompiled=addr;
//printf("\n");
}
char* get_recompiled_opcode(uint32 addr, int index)
{
if(addr != addr_recompiled)
decode_recompiled(addr);
if(index < lines_recompiled)
return opcode_recompiled[index];
else
return NULL;
}
char* get_recompiled_args(uint32 addr, int index)
{
if(addr != addr_recompiled)
decode_recompiled(addr);
if(index < lines_recompiled)
return args_recompiled[index];
else
return NULL;
}
int get_recompiled_addr(uint32 addr, int index)
{
if(addr != addr_recompiled)
decode_recompiled(addr);
if(index < lines_recompiled)
return opaddr_recompiled[index];
else
return 0;
}
int get_num_recompiled(uint32 addr)
{
if(addr != addr_recompiled)
decode_recompiled(addr);
return lines_recompiled;
}
int get_has_recompiled(uint32 addr)
{
unsigned char *assemb, *end_addr;
if(!dynacore || blocks[addr>>12] == NULL)
return FALSE;
assemb = (blocks[addr>>12]->code) +
(blocks[addr>>12]->block[(addr&0xFFF)/4].local_addr);
end_addr = blocks[addr>>12]->code;
if( (addr & 0xFFF) >= 0xFFC)
end_addr += blocks[addr>>12]->code_length;
else
end_addr += blocks[addr>>12]->block[(addr&0xFFF)/4+1].local_addr;
if(assemb==end_addr)
return FALSE;
return TRUE;
}
#else
char* get_recompiled(uint32 addr, int index)
{
return NULL;
}
int get_num_recompiled(uint32 addr)
{
return 0;
}
void init_host_disassembler(void)
{
}
#endif
void update_memory(void){
int i;
for(i=0; i<0x10000; i++)
get_memory_flags(i*0x10000);
}
uint64 read_memory_64(uint32 addr)
{
return ((uint64)read_memory_32(addr) << 32) | (uint64)read_memory_32(addr + 4);
}
uint64 read_memory_64_unaligned(uint32 addr)
{
uint64 w[2];
w[0] = read_memory_32_unaligned(addr);
w[1] = read_memory_32_unaligned(addr + 4);
return (w[0] << 32) | w[1];
}
void write_memory_64(uint32 addr, uint64 value)
{
write_memory_32(addr, value >> 32);
write_memory_32(addr + 4, value & 0xFFFFFFFF);
}
void write_memory_64_unaligned(uint32 addr, uint64 value)
{
write_memory_32_unaligned(addr, value >> 32);
write_memory_32_unaligned(addr + 4, value & 0xFFFFFFFF);
}
uint32 read_memory_32(uint32 addr){
switch(get_memory_type(addr))
{
case MEM_NOMEM:
if(tlb_LUT_r[addr>>12])
return read_memory_32((tlb_LUT_r[addr>>12]&0xFFFFF000)|(addr&0xFFF));
return MEM_INVALID;
case MEM_RDRAM:
return *((uint32 *)(rdramb + (addr & 0xFFFFFF)));
case MEM_RSPMEM:
if ((addr & 0xFFFF) < 0x1000)
return *((uint32 *)(SP_DMEMb + (addr&0xFFF)));
else if ((addr&0xFFFF) < 0x2000)
return *((uint32 *)(SP_IMEMb + (addr&0xFFF)));
else
return MEM_INVALID;
case MEM_ROM:
return *((uint32 *)(rom + (addr & 0x03FFFFFF)));
default:
return MEM_INVALID;
}
}
uint32 read_memory_32_unaligned(uint32 addr)
{
uint8 i, b[4];
for(i=0; i<4; i++) b[i] = read_memory_32(addr + i);
return (b[3] << 24) | (b[2] << 16) | (b[1] << 8) | b[0];
}
void write_memory_32(uint32 addr, uint32 value){
switch(get_memory_type(addr))
{
case MEM_RDRAM:
*((uint32 *)(rdramb + (addr & 0xFFFFFF))) = value;
CHECK_MEM(addr)
break;
}
}
void write_memory_32_unaligned(uint32 addr, uint32 value)
{
write_memory_8(addr + 3, value >> 24);
write_memory_8(addr + 2, (value >> 16) & 0xFF);
write_memory_8(addr + 1, (value >> 8) & 0xFF);
write_memory_8(addr + 0, value & 0xFF);
}
//read_memory_16_unaligned and write_memory_16_unaligned don't exist because
//read_memory_16 and write_memory_16 work unaligned already.
uint16 read_memory_16(uint32 addr)
{
return ((uint16)read_memory_8(addr) << 8) | (uint16)read_memory_8(addr+1); //cough cough hack hack
}
void write_memory_16(uint32 addr, uint16 value)
{
write_memory_8(addr, value >> 8); //this isn't much better
write_memory_8(addr + 1, value & 0xFF); //then again, it works unaligned
}
uint8 read_memory_8(uint32 addr)
{
uint32 word;
word = read_memory_32(addr & ~3);
return (word >> ((3 - (addr & 3)) * 8)) & 0xFF;
}
void write_memory_8(uint32 addr, uint8 value)
{
uint32 word, mask;
word = read_memory_32(addr & ~3);
mask = 0xFF << ((3 - (addr & 3)) * 8);
word = (word & ~mask) | (value << ((3 - (addr & 3)) * 8));
write_memory_32(addr & ~3, word);
}
uint32 get_memory_flags(uint32 addr){
int type=get_memory_type(addr);
uint32 flags = 0;
switch(type)
{
case MEM_NOMEM:
if(tlb_LUT_r[addr>>12])
flags|=MEM_FLAG_READABLE;
break;
case MEM_RSPMEM:
if((addr & 0xFFFF) < 0x2000)
flags|=MEM_FLAG_READABLE;
break;
case MEM_RDRAM:
case MEM_ROM:
flags|=MEM_FLAG_READABLE;
}
switch(type)
{
case MEM_RDRAM:
flags|=MEM_FLAG_WRITABLE;
}
return flags;
}
int get_memory_type(uint32 addr){
if(readmem[addr >> 16] == read_nomem)
return MEM_NOMEM;
else if(readmem[addr >> 16] == read_nothing)
return MEM_NOTHING;
else if(readmem[addr >> 16] == read_rdram)
return MEM_RDRAM;
else if(readmem[addr >> 16] == read_rdramreg)
return MEM_RDRAMREG;
else if(readmem[addr >> 16] == read_rsp_mem)
return MEM_RSPMEM;
else if(readmem[addr >> 16] == read_rsp_reg)
return MEM_RSPREG;
else if(readmem[addr >> 16] == read_rsp)
return MEM_RSP;
else if(readmem[addr >> 16] == read_dp)
return MEM_DP;
else if(readmem[addr >> 16] == read_dps)
return MEM_DPS;
else if(readmem[addr >> 16] == read_vi)
return MEM_VI;
else if(readmem[addr >> 16] == read_ai)
return MEM_AI;
else if(readmem[addr >> 16] == read_pi)
return MEM_PI;
else if(readmem[addr >> 16] == read_ri)
return MEM_RI;
else if(readmem[addr >> 16] == read_si)
return MEM_SI;
else if(readmem[addr >> 16] == read_flashram_status)
return MEM_FLASHRAMSTAT;
else if(readmem[addr >> 16] == read_rom)
return MEM_ROM;
else if(readmem[addr >> 16] == read_pif)
return MEM_PIF;
else if(readmem[addr >> 16] == read_mi)
return MEM_MI;
else
printf("Unknown memory type in get_memory_type: %x\n", readmem[addr>>16]);
}