/*************************************************************************** debugger/memory.c - handle debugger memory access in Mupen64Plus ------------------- begin : Wed 7 May 2008 copyright : (C) 2008 by DarkJezter ***************************************************************************/ /*************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * ***************************************************************************/ #include "memory.h" #include "../r4300/r4300.h" #include "../r4300/ops.h" #if !defined(NO_ASM) && (defined(__i386__) || defined(__x86_64__)) #include #include int lines_recompiled; uint32 addr_recompiled; int num_decoded; char opcode_recompiled[564][MAX_DISASSEMBLY]; char args_recompiled[564][MAX_DISASSEMBLY*4]; int opaddr_recompiled[564]; disassemble_info dis_info; #define CHECK_MEM(address) \ if (!invalid_code[(address) >> 12] && blocks[(address) >> 12]->block[((address) & 0xFFF) / 4].ops != NOTCOMPILED) \ invalid_code[(address) >> 12] = 1; void process_opcode_out(void *strm, const char *fmt, ...){ va_list ap = {0}; va_start(ap, fmt); char *arg; char buff[256]; if(num_decoded==0) { if(strcmp(fmt,"%s")==0) { arg = va_arg(ap, char*); strcpy(opcode_recompiled[lines_recompiled],arg); } else strcpy(opcode_recompiled[lines_recompiled],"OPCODE-X"); num_decoded++; *(args_recompiled[lines_recompiled])=0; } else { vsprintf(buff, fmt, ap); sprintf(args_recompiled[lines_recompiled],"%s%s", args_recompiled[lines_recompiled],buff); } va_end(ap); } // Callback function that will be called by libopcodes to read the // bytes to disassemble ('read_memory_func' member of 'disassemble_info'). int read_memory_func(bfd_vma memaddr, bfd_byte *myaddr, unsigned int length, disassemble_info *info) { char* from = (char*)(memaddr); char* to = (char*)myaddr; while (length-- != 0) { *to++ = *from++; } return (0); } void init_host_disassembler(void){ INIT_DISASSEMBLE_INFO(dis_info, stderr, process_opcode_out); dis_info.fprintf_func = process_opcode_out; dis_info.stream = stderr; dis_info.bytes_per_line=1; dis_info.endian = 1; dis_info.mach = bfd_mach_i386_i8086; dis_info.disassembler_options = (char*) "i386,suffix"; dis_info.read_memory_func = read_memory_func; } void decode_recompiled(uint32 addr) { unsigned char *assemb, *end_addr; unsigned char *as_inc; lines_recompiled=0; if(blocks[addr>>12] == NULL) return; if(blocks[addr>>12]->block[(addr&0xFFF)/4].ops == NOTCOMPILED) // recompile_block((int *) SP_DMEM, blocks[addr>>12], addr); { strcpy(opcode_recompiled[0],"NOTCOMPILED"); strcpy(args_recompiled[0],"NOTCOMPILED"); opaddr_recompiled[0]=0; addr_recompiled=0; lines_recompiled++; return; } assemb = (blocks[addr>>12]->code) + (blocks[addr>>12]->block[(addr&0xFFF)/4].local_addr); end_addr = blocks[addr>>12]->code; if( (addr & 0xFFF) >= 0xFFC) end_addr += blocks[addr>>12]->code_length; else end_addr += blocks[addr>>12]->block[(addr&0xFFF)/4+1].local_addr; //for(as_inc=assemb; as_inc>12] == NULL) return FALSE; assemb = (blocks[addr>>12]->code) + (blocks[addr>>12]->block[(addr&0xFFF)/4].local_addr); end_addr = blocks[addr>>12]->code; if( (addr & 0xFFF) >= 0xFFC) end_addr += blocks[addr>>12]->code_length; else end_addr += blocks[addr>>12]->block[(addr&0xFFF)/4+1].local_addr; if(assemb==end_addr) return FALSE; return TRUE; } #else char* get_recompiled(uint32 addr, int index) { return NULL; } int get_num_recompiled(uint32 addr) { return 0; } void init_host_disassembler(void) { } #endif void update_memory(void){ int i; for(i=0; i<0x10000; i++) get_memory_flags(i*0x10000); } uint64 read_memory_64(uint32 addr) { return ((uint64)read_memory_32(addr) << 32) | (uint64)read_memory_32(addr + 4); } uint64 read_memory_64_unaligned(uint32 addr) { uint64 w[2]; w[0] = read_memory_32_unaligned(addr); w[1] = read_memory_32_unaligned(addr + 4); return (w[0] << 32) | w[1]; } void write_memory_64(uint32 addr, uint64 value) { write_memory_32(addr, value >> 32); write_memory_32(addr + 4, value & 0xFFFFFFFF); } void write_memory_64_unaligned(uint32 addr, uint64 value) { write_memory_32_unaligned(addr, value >> 32); write_memory_32_unaligned(addr + 4, value & 0xFFFFFFFF); } uint32 read_memory_32(uint32 addr){ switch(get_memory_type(addr)) { case MEM_NOMEM: if(tlb_LUT_r[addr>>12]) return read_memory_32((tlb_LUT_r[addr>>12]&0xFFFFF000)|(addr&0xFFF)); return MEM_INVALID; case MEM_RDRAM: return *((uint32 *)(rdramb + (addr & 0xFFFFFF))); case MEM_RSPMEM: if ((addr & 0xFFFF) < 0x1000) return *((uint32 *)(SP_DMEMb + (addr&0xFFF))); else if ((addr&0xFFFF) < 0x2000) return *((uint32 *)(SP_IMEMb + (addr&0xFFF))); else return MEM_INVALID; case MEM_ROM: return *((uint32 *)(rom + (addr & 0x03FFFFFF))); default: return MEM_INVALID; } } uint32 read_memory_32_unaligned(uint32 addr) { uint8 i, b[4]; for(i=0; i<4; i++) b[i] = read_memory_32(addr + i); return (b[3] << 24) | (b[2] << 16) | (b[1] << 8) | b[0]; } void write_memory_32(uint32 addr, uint32 value){ switch(get_memory_type(addr)) { case MEM_RDRAM: *((uint32 *)(rdramb + (addr & 0xFFFFFF))) = value; CHECK_MEM(addr) break; } } void write_memory_32_unaligned(uint32 addr, uint32 value) { write_memory_8(addr + 3, value >> 24); write_memory_8(addr + 2, (value >> 16) & 0xFF); write_memory_8(addr + 1, (value >> 8) & 0xFF); write_memory_8(addr + 0, value & 0xFF); } //read_memory_16_unaligned and write_memory_16_unaligned don't exist because //read_memory_16 and write_memory_16 work unaligned already. uint16 read_memory_16(uint32 addr) { return ((uint16)read_memory_8(addr) << 8) | (uint16)read_memory_8(addr+1); //cough cough hack hack } void write_memory_16(uint32 addr, uint16 value) { write_memory_8(addr, value >> 8); //this isn't much better write_memory_8(addr + 1, value & 0xFF); //then again, it works unaligned } uint8 read_memory_8(uint32 addr) { uint32 word; word = read_memory_32(addr & ~3); return (word >> ((3 - (addr & 3)) * 8)) & 0xFF; } void write_memory_8(uint32 addr, uint8 value) { uint32 word, mask; word = read_memory_32(addr & ~3); mask = 0xFF << ((3 - (addr & 3)) * 8); word = (word & ~mask) | (value << ((3 - (addr & 3)) * 8)); write_memory_32(addr & ~3, word); } uint32 get_memory_flags(uint32 addr){ int type=get_memory_type(addr); uint32 flags = 0; switch(type) { case MEM_NOMEM: if(tlb_LUT_r[addr>>12]) flags|=MEM_FLAG_READABLE; break; case MEM_RSPMEM: if((addr & 0xFFFF) < 0x2000) flags|=MEM_FLAG_READABLE; break; case MEM_RDRAM: case MEM_ROM: flags|=MEM_FLAG_READABLE; } switch(type) { case MEM_RDRAM: flags|=MEM_FLAG_WRITABLE; } return flags; } int get_memory_type(uint32 addr){ if(readmem[addr >> 16] == read_nomem) return MEM_NOMEM; else if(readmem[addr >> 16] == read_nothing) return MEM_NOTHING; else if(readmem[addr >> 16] == read_rdram) return MEM_RDRAM; else if(readmem[addr >> 16] == read_rdramreg) return MEM_RDRAMREG; else if(readmem[addr >> 16] == read_rsp_mem) return MEM_RSPMEM; else if(readmem[addr >> 16] == read_rsp_reg) return MEM_RSPREG; else if(readmem[addr >> 16] == read_rsp) return MEM_RSP; else if(readmem[addr >> 16] == read_dp) return MEM_DP; else if(readmem[addr >> 16] == read_dps) return MEM_DPS; else if(readmem[addr >> 16] == read_vi) return MEM_VI; else if(readmem[addr >> 16] == read_ai) return MEM_AI; else if(readmem[addr >> 16] == read_pi) return MEM_PI; else if(readmem[addr >> 16] == read_ri) return MEM_RI; else if(readmem[addr >> 16] == read_si) return MEM_SI; else if(readmem[addr >> 16] == read_flashram_status) return MEM_FLASHRAMSTAT; else if(readmem[addr >> 16] == read_rom) return MEM_ROM; else if(readmem[addr >> 16] == read_pif) return MEM_PIF; else if(readmem[addr >> 16] == read_mi) return MEM_MI; else printf("Unknown memory type in get_memory_type: %x\n", readmem[addr>>16]); }