Mesen2/Core/GBA/APU/GbaWaveChannel.cpp
Sour 929d4dcc20 GB: Fixed APU emulation issues
-Super Mario Land 2 - Pops in menu are fixed by immediately updating APU output after a write
-Perfect Dark - Low voice volume is fixed by having the correct output when the channels are disabled (but DAC is still enabled)
-Daiku no Gen - Low voice volume is fixed by keeping square channel output to digital 0 (= analog 1) until its first tick after being enabled (the game does not let the channel tick at all while the voice sample is playing)
2025-03-21 23:03:01 +09:00

226 lines
5.3 KiB
C++

#include "pch.h"
#include "GBA/APU/GbaWaveChannel.h"
#include "GBA/APU/GbaApu.h"
#include "GBA/GbaConsole.h"
#include "Shared/Emulator.h"
#include "Shared/EmuSettings.h"
GbaWaveChannel::GbaWaveChannel(GbaApu* apu, GbaConsole* console)
{
_console = console;
_apu = apu;
_console->InitializeRam(_state.Ram, 0x20);
}
GbaWaveState& GbaWaveChannel::GetState()
{
return _state;
}
bool GbaWaveChannel::Enabled()
{
return _state.Enabled;
}
void GbaWaveChannel::Disable()
{
uint16_t len = _state.Length;
uint8_t ram[0x10];
memcpy(ram, _state.Ram, sizeof(ram));
_state = {};
_state.Length = len;
memcpy(_state.Ram, ram, sizeof(ram));
_state.Timer = 2048 * 2;
}
void GbaWaveChannel::ResetLengthCounter()
{
_state.Length = 0;
}
void GbaWaveChannel::ClockLengthCounter()
{
if(_state.LengthEnabled && _state.Length > 0) {
_state.Length--;
if(_state.Length == 0) {
//"Length becoming 0 should clear status"
_state.Enabled = false;
_apu->UpdateEnabledChannels();
_state.Output = 0;
}
}
}
uint8_t GbaWaveChannel::GetRawOutput()
{
//"Stopping channel 3 manually using the NR30 register affects PCM34 instantly" (SameSuite's channel_3_stop_delay test)
return _state.Enabled ? _state.Output : 0;
}
double GbaWaveChannel::GetOutput()
{
return _state.Output;
}
void GbaWaveChannel::UpdateOutput()
{
if(!_state.Enabled) {
return;
}
if(_state.OverrideVolume) {
_state.Output = _state.SampleBuffer * 3 / 4;
} else if(_state.Volume) {
_state.Output = _state.SampleBuffer >> (_state.Volume - 1);
} else {
_state.Output = 0;
}
}
void GbaWaveChannel::Exec(uint32_t clocksToRun)
{
if(!_state.Enabled) {
return;
}
bool needUpdate = false;
do {
uint32_t minTimer = std::min<uint32_t>(clocksToRun, _state.Timer);
_state.Timer -= minTimer;
if(_state.Timer == 0) {
//The wave channel's frequency timer period is set to (2048-frequency)*2.
_state.Timer = (2048 - _state.Frequency) * 2;
//When the timer generates a clock, the position counter is advanced one sample in the wave table,
//looping back to the beginning when it goes past the end,
_state.Position = (_state.Position + 1) & (_state.DoubleLength ? 0x3F : 0x1F);
uint8_t bank = _state.DoubleLength ? 0 : (_state.SelectedBank << 4);
//then a sample is read into the sample buffer from this NEW position.
if(_state.Position & 0x01) {
_state.SampleBuffer = _state.Ram[bank | (_state.Position >> 1)] & 0x0F;
} else {
_state.SampleBuffer = _state.Ram[bank | (_state.Position >> 1)] >> 4;
}
//The DAC receives the current value from the upper/lower nibble of the sample buffer, shifted right by the volume control.
needUpdate = true;
}
clocksToRun -= minTimer;
} while(clocksToRun);
if(needUpdate) {
UpdateOutput();
}
}
uint8_t GbaWaveChannel::Read(uint16_t addr)
{
switch(addr) {
case 0: return (
(_state.DacEnabled ? 0x80 : 0) |
(_state.SelectedBank ? 0x40 : 0) |
(_state.DoubleLength ? 0x20 : 0)
);
case 2: return (
(_state.OverrideVolume ? 0x80 : 0) |
(_state.Volume << 5)
);
case 4: return _state.LengthEnabled ? 0x40 : 0;
}
return 0;
}
void GbaWaveChannel::Write(uint16_t addr, uint8_t value)
{
switch(addr) {
case 0:
_state.DacEnabled = value & 0x80;
_state.SelectedBank = (value & 0x40) >> 6;
_state.DoubleLength = value & 0x20;
_state.Enabled &= _state.DacEnabled;
_apu->UpdateEnabledChannels();
break;
case 1:
_state.Length = 256 - value;
break;
case 2:
_state.Volume = (value & 0x60) >> 5;
_state.OverrideVolume = value & 0x80;
//"Modifying the channel 3 shift while the channel is playing affects PCM34 instantly" (SameSuite's channel_3_shift_delay test)
UpdateOutput();
break;
case 3:
_state.Frequency = (_state.Frequency & 0x700) | value;
break;
case 4: {
bool prevEnabled = _state.Enabled;
_state.Frequency = (_state.Frequency & 0xFF) | ((value & 0x07) << 8);
if(value & 0x80) {
//Start playback
//Channel is enabled, if DAC is enabled
_state.Enabled = _state.DacEnabled;
_apu->UpdateEnabledChannels();
if(_state.Enabled) {
UpdateOutput();
}
//Frequency timer is reloaded with period.
_state.Timer = (2048 - _state.Frequency) * 2 + 6;
//If length counter is zero, it is set to 64 (256 for wave channel).
if(_state.Length == 0) {
_state.Length = 256;
_state.LengthEnabled = false;
}
//Wave channel's position is set to 0 but sample buffer is NOT refilled.
_state.Position = 0;
}
_state.LengthEnabled = (value & 0x40);
if(!_state.Enabled && prevEnabled) {
_state.Output = 0;
UpdateOutput();
}
break;
}
}
}
void GbaWaveChannel::WriteRam(uint16_t addr, uint8_t value)
{
//TODOGBA wave data is stored in a shift register on GBA
uint8_t bank = (_state.SelectedBank ^ 1) << 4;
_state.Ram[bank | (addr & 0x0F)] = value;
}
uint8_t GbaWaveChannel::ReadRam(uint16_t addr)
{
//TODOGBA wave data is stored in a shift register on GBA
uint8_t bank = (_state.SelectedBank ^ 1) << 4;
return _state.Ram[bank | (addr & 0x0F)];
}
void GbaWaveChannel::Serialize(Serializer& s)
{
SV(_state.DacEnabled); SV(_state.SampleBuffer); SV(_state.Position); SV(_state.Volume); SV(_state.Frequency);
SV(_state.Length); SV(_state.LengthEnabled); SV(_state.Enabled); SV(_state.Timer); SV(_state.Output);
SVArray(_state.Ram, 0x20);
SV(_state.DoubleLength);
SV(_state.SelectedBank);
SV(_state.OverrideVolume);
}