xemu/hw/openrisc/cputimer.c
Joel Holdsworth 3eb43aeb16 hw/openrisc: Fixed undercounting of TTCR in continuous mode
In the existing design, TTCR is prone to undercounting when running in
continuous mode. This manifests as a timer interrupt appearing to
trigger a few cycles prior to the deadline set in SPR_TTMR_TP.

When the timer triggers, the virtual time delta in nanoseconds between
the time when the timer was set, and when it triggers is calculated.
This nanoseconds value is then divided by TIMER_PERIOD (50) to compute
an increment of cycles to apply to TTCR.

However, this calculation rounds down the number of cycles causing the
undercounting.

A simplistic solution would be to instead round up the number of cycles,
however this will result in the accumulation of timing error over time.

This patch corrects the issue by calculating the time delta in
nanoseconds between when the timer was last reset and the timer event.
This approach allows the TTCR value to be rounded up, but without
accumulating error over time.

Signed-off-by: Joel Holdsworth <jholdsworth@nvidia.com>
[stafford: Incremented version in vmstate_or1k_timer, checkpatch fixes]
Signed-off-by: Stafford Horne <shorne@gmail.com>
2024-12-03 10:59:25 +00:00

169 lines
4.5 KiB
C

/*
* QEMU OpenRISC timer support
*
* Copyright (c) 2011-2012 Jia Liu <proljc@gmail.com>
* Zhizhou Zhang <etouzh@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "migration/vmstate.h"
#include "qemu/timer.h"
#include "sysemu/reset.h"
#define TIMER_PERIOD 50 /* 50 ns period for 20 MHz timer */
/* Tick Timer global state to allow all cores to be in sync */
typedef struct OR1KTimerState {
uint32_t ttcr;
uint32_t ttcr_offset;
uint64_t clk_offset;
} OR1KTimerState;
static OR1KTimerState *or1k_timer;
void cpu_openrisc_count_set(OpenRISCCPU *cpu, uint32_t val)
{
or1k_timer->ttcr = val;
or1k_timer->ttcr_offset = val;
or1k_timer->clk_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
}
uint32_t cpu_openrisc_count_get(OpenRISCCPU *cpu)
{
return or1k_timer->ttcr;
}
/* Add elapsed ticks to ttcr */
void cpu_openrisc_count_update(OpenRISCCPU *cpu)
{
uint64_t now;
if (!cpu->env.is_counting) {
return;
}
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
or1k_timer->ttcr = or1k_timer->ttcr_offset +
DIV_ROUND_UP(now - or1k_timer->clk_offset, TIMER_PERIOD);
}
/* Update the next timeout time as difference between ttmr and ttcr */
void cpu_openrisc_timer_update(OpenRISCCPU *cpu)
{
uint32_t wait;
uint64_t now, next;
if (!cpu->env.is_counting) {
return;
}
cpu_openrisc_count_update(cpu);
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
if ((cpu->env.ttmr & TTMR_TP) <= (or1k_timer->ttcr & TTMR_TP)) {
wait = TTMR_TP - (or1k_timer->ttcr & TTMR_TP) + 1;
wait += cpu->env.ttmr & TTMR_TP;
} else {
wait = (cpu->env.ttmr & TTMR_TP) - (or1k_timer->ttcr & TTMR_TP);
}
next = now + (uint64_t)wait * TIMER_PERIOD;
timer_mod(cpu->env.timer, next);
}
void cpu_openrisc_count_start(OpenRISCCPU *cpu)
{
cpu->env.is_counting = 1;
cpu_openrisc_count_update(cpu);
}
void cpu_openrisc_count_stop(OpenRISCCPU *cpu)
{
timer_del(cpu->env.timer);
cpu_openrisc_count_update(cpu);
cpu->env.is_counting = 0;
}
static void openrisc_timer_cb(void *opaque)
{
OpenRISCCPU *cpu = opaque;
if ((cpu->env.ttmr & TTMR_IE) &&
timer_expired(cpu->env.timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL))) {
CPUState *cs = CPU(cpu);
cpu->env.ttmr |= TTMR_IP;
cs->interrupt_request |= CPU_INTERRUPT_TIMER;
}
switch (cpu->env.ttmr & TTMR_M) {
case TIMER_NONE:
break;
case TIMER_INTR:
/* Zero the count by applying a negative offset to the counter */
or1k_timer->ttcr_offset -= (cpu->env.ttmr & TTMR_TP);
break;
case TIMER_SHOT:
cpu_openrisc_count_stop(cpu);
break;
case TIMER_CONT:
break;
}
cpu_openrisc_timer_update(cpu);
qemu_cpu_kick(CPU(cpu));
}
/* Reset the per CPU counter state. */
static void openrisc_count_reset(void *opaque)
{
OpenRISCCPU *cpu = opaque;
if (cpu->env.is_counting) {
cpu_openrisc_count_stop(cpu);
}
cpu->env.ttmr = 0x00000000;
}
/* Reset the global timer state. */
static void openrisc_timer_reset(void *opaque)
{
OpenRISCCPU *cpu = opaque;
cpu_openrisc_count_set(cpu, 0);
}
static const VMStateDescription vmstate_or1k_timer = {
.name = "or1k_timer",
.version_id = 2,
.minimum_version_id = 2,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(ttcr, OR1KTimerState),
VMSTATE_UINT32(ttcr_offset, OR1KTimerState),
VMSTATE_UINT64(clk_offset, OR1KTimerState),
VMSTATE_END_OF_LIST()
}
};
void cpu_openrisc_clock_init(OpenRISCCPU *cpu)
{
cpu->env.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &openrisc_timer_cb, cpu);
qemu_register_reset(openrisc_count_reset, cpu);
if (or1k_timer == NULL) {
or1k_timer = g_new0(OR1KTimerState, 1);
qemu_register_reset(openrisc_timer_reset, cpu);
vmstate_register(NULL, 0, &vmstate_or1k_timer, or1k_timer);
}
}