ppsspp/GPU/Common/TextureCacheCommon.cpp
2021-02-15 11:59:45 -08:00

1860 lines
64 KiB
C++

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <algorithm>
#include "ppsspp_config.h"
#include "Common/Profiler/Profiler.h"
#include "Common/ColorConv.h"
#include "Common/MemoryUtil.h"
#include "Core/Config.h"
#include "Core/Reporting.h"
#include "Core/System.h"
#include "GPU/Common/FramebufferManagerCommon.h"
#include "GPU/Common/TextureCacheCommon.h"
#include "GPU/Common/TextureDecoder.h"
#include "GPU/Common/ShaderId.h"
#include "GPU/Common/GPUStateUtils.h"
#include "GPU/Debugger/Debugger.h"
#include "GPU/GPUCommon.h"
#include "GPU/GPUInterface.h"
#include "GPU/GPUState.h"
#if defined(_M_SSE)
#include <emmintrin.h>
#endif
#if PPSSPP_ARCH(ARM_NEON)
#if defined(_MSC_VER) && PPSSPP_ARCH(ARM64)
#include <arm64_neon.h>
#else
#include <arm_neon.h>
#endif
#endif
// Videos should be updated every few frames, so we forget quickly.
#define VIDEO_DECIMATE_AGE 4
// If a texture hasn't been seen for this many frames, get rid of it.
#define TEXTURE_KILL_AGE 200
#define TEXTURE_KILL_AGE_LOWMEM 60
// Not used in lowmem mode.
#define TEXTURE_SECOND_KILL_AGE 100
// Used when there are multiple CLUT variants of a texture.
#define TEXTURE_KILL_AGE_CLUT 6
#define TEXTURE_CLUT_VARIANTS_MIN 6
// Try to be prime to other decimation intervals.
#define TEXCACHE_DECIMATION_INTERVAL 13
#define TEXCACHE_MIN_PRESSURE 16 * 1024 * 1024 // Total in VRAM
#define TEXCACHE_SECOND_MIN_PRESSURE 4 * 1024 * 1024
// Just for reference
// PSP Color formats:
// 565: BBBBBGGGGGGRRRRR
// 5551: ABBBBBGGGGGRRRRR
// 4444: AAAABBBBGGGGRRRR
// 8888: AAAAAAAABBBBBBBBGGGGGGGGRRRRRRRR (Bytes in memory: RGBA)
// D3D11/9 Color formats:
// DXGI_FORMAT_B4G4R4A4/D3DFMT_A4R4G4B4: AAAARRRRGGGGBBBB
// DXGI_FORMAT_B5G5R5A1/D3DFMT_A1R5G6B5: ARRRRRGGGGGBBBBB
// DXGI_FORMAT_B5G6R6/D3DFMT_R5G6B5: RRRRRGGGGGGBBBBB
// DXGI_FORMAT_B8G8R8A8: AAAAAAAARRRRRRRRGGGGGGGGBBBBBBBB (Bytes in memory: BGRA)
// These are Data::Format:: A4R4G4B4_PACK16, A1R5G6B5_PACK16, R5G6B5_PACK16, B8G8R8A8.
// So these are good matches, just with R/B swapped.
// OpenGL ES color formats:
// GL_UNSIGNED_SHORT_4444: BBBBGGGGRRRRAAAA (4-bit rotation)
// GL_UNSIGNED_SHORT_565: BBBBBGGGGGGRRRRR (match)
// GL_UNSIGNED_SHORT_1555: BBBBBGGGGGRRRRRA (1-bit rotation)
// GL_UNSIGNED_BYTE/RGBA: AAAAAAAABBBBBBBBGGGGGGGGRRRRRRRR (match)
// These are Data::Format:: B4G4R4A4_PACK16, B5G6R6_PACK16, B5G5R5A1_PACK16, R8G8B8A8
// Allow the extra bits from the remasters for the purposes of this.
inline int dimWidth(u16 dim) {
return 1 << (dim & 0xFF);
}
inline int dimHeight(u16 dim) {
return 1 << ((dim >> 8) & 0xFF);
}
// Vulkan color formats:
// TODO
TextureCacheCommon::TextureCacheCommon(Draw::DrawContext *draw)
: draw_(draw),
texelsScaledThisFrame_(0),
cacheSizeEstimate_(0),
secondCacheSizeEstimate_(0),
clutLastFormat_(0xFFFFFFFF),
clutTotalBytes_(0),
clutMaxBytes_(0),
clutRenderAddress_(0xFFFFFFFF),
clutAlphaLinear_(false),
isBgraBackend_(false) {
decimationCounter_ = TEXCACHE_DECIMATION_INTERVAL;
// TODO: Clamp down to 256/1KB? Need to check mipmapShareClut and clamp loadclut.
clutBufRaw_ = (u32 *)AllocateAlignedMemory(1024 * sizeof(u32), 16); // 4KB
clutBufConverted_ = (u32 *)AllocateAlignedMemory(1024 * sizeof(u32), 16); // 4KB
// Zap so we get consistent behavior if the game fails to load some of the CLUT.
memset(clutBufRaw_, 0, 1024 * sizeof(u32));
memset(clutBufConverted_, 0, 1024 * sizeof(u32));
clutBuf_ = clutBufConverted_;
// These buffers will grow if necessary, but most won't need more than this.
tmpTexBuf32_.resize(512 * 512); // 1MB
tmpTexBufRearrange_.resize(512 * 512); // 1MB
replacer_.Init();
}
TextureCacheCommon::~TextureCacheCommon() {
FreeAlignedMemory(clutBufConverted_);
FreeAlignedMemory(clutBufRaw_);
}
// Produces a signed 1.23.8 value.
static int TexLog2(float delta) {
union FloatBits {
float f;
u32 u;
};
FloatBits f;
f.f = delta;
// Use the exponent as the tex level, and the top mantissa bits for a frac.
// We can't support more than 8 bits of frac, so truncate.
int useful = (f.u >> 15) & 0xFFFF;
// Now offset so the exponent aligns with log2f (exp=127 is 0.)
return useful - 127 * 256;
}
SamplerCacheKey TextureCacheCommon::GetSamplingParams(int maxLevel, u32 texAddr) {
SamplerCacheKey key;
int minFilt = gstate.texfilter & 0x7;
key.minFilt = minFilt & 1;
key.mipEnable = (minFilt >> 2) & 1;
key.mipFilt = (minFilt >> 1) & 1;
key.magFilt = gstate.isMagnifyFilteringEnabled();
key.sClamp = gstate.isTexCoordClampedS();
key.tClamp = gstate.isTexCoordClampedT();
key.aniso = false;
GETexLevelMode mipMode = gstate.getTexLevelMode();
bool autoMip = mipMode == GE_TEXLEVEL_MODE_AUTO;
// TODO: Slope mipmap bias is still not well understood.
float lodBias = (float)gstate.getTexLevelOffset16() * (1.0f / 16.0f);
if (mipMode == GE_TEXLEVEL_MODE_SLOPE) {
lodBias += 1.0f + TexLog2(gstate.getTextureLodSlope()) * (1.0f / 256.0f);
}
// If mip level is forced to zero, disable mipmapping.
bool noMip = maxLevel == 0 || (!autoMip && lodBias <= 0.0f);
if (IsFakeMipmapChange()) {
noMip = noMip || !autoMip;
}
if (noMip) {
// Enforce no mip filtering, for safety.
key.mipEnable = false;
key.mipFilt = 0;
lodBias = 0.0f;
}
if (!key.mipEnable) {
key.maxLevel = 0;
key.minLevel = 0;
key.lodBias = 0;
key.mipFilt = 0;
} else {
switch (mipMode) {
case GE_TEXLEVEL_MODE_AUTO:
key.maxLevel = maxLevel * 256;
key.minLevel = 0;
key.lodBias = (int)(lodBias * 256.0f);
if (gstate_c.Supports(GPU_SUPPORTS_ANISOTROPY) && g_Config.iAnisotropyLevel > 0) {
key.aniso = true;
}
break;
case GE_TEXLEVEL_MODE_CONST:
case GE_TEXLEVEL_MODE_UNKNOWN:
key.maxLevel = (int)(lodBias * 256.0f);
key.minLevel = (int)(lodBias * 256.0f);
key.lodBias = 0;
break;
case GE_TEXLEVEL_MODE_SLOPE:
// It's incorrect to use the slope as a bias. Instead it should be passed
// into the shader directly as an explicit lod level, with the bias on top. For now, we just kill the
// lodBias in this mode, working around #9772.
key.maxLevel = maxLevel * 256;
key.minLevel = 0;
key.lodBias = 0;
break;
}
}
// Video bilinear override
if (!key.magFilt && texAddr != 0) {
if (videos_.find(texAddr & 0x3FFFFFFF) != videos_.end()) {
// Enforce bilinear filtering on magnification.
key.magFilt = 1;
}
}
// Filtering overrides
switch (g_Config.iTexFiltering) {
case TEX_FILTER_AUTO:
// Follow what the game wants. We just do a single heuristic change to avoid bleeding of wacky color test colors
// in higher resolution (used by some games for sprites, and they accidentally have linear filter on).
if (gstate.isModeThrough() && g_Config.iInternalResolution != 1) {
bool uglyColorTest = gstate.isColorTestEnabled() && !IsColorTestTriviallyTrue() && gstate.getColorTestRef() != 0;
if (uglyColorTest) {
// Force to nearest.
key.magFilt = 0;
key.minFilt = 0;
}
}
break;
case TEX_FILTER_FORCE_LINEAR:
// Override to linear filtering if there's no alpha or color testing going on.
if ((!gstate.isColorTestEnabled() || IsColorTestTriviallyTrue()) &&
(!gstate.isAlphaTestEnabled() || IsAlphaTestTriviallyTrue())) {
key.magFilt = 1;
key.minFilt = 1;
key.mipFilt = 1;
}
break;
case TEX_FILTER_FORCE_NEAREST:
default:
// Just force to nearest without checks. Safe (but ugly).
key.magFilt = 0;
key.minFilt = 0;
break;
}
return key;
}
SamplerCacheKey TextureCacheCommon::GetFramebufferSamplingParams(u16 bufferWidth, u16 bufferHeight) {
SamplerCacheKey key = GetSamplingParams(0, 0);
// Kill any mipmapping settings.
key.mipEnable = false;
key.mipFilt = false;
key.aniso = 0.0;
key.maxLevel = 0.0f;
// Often the framebuffer will not match the texture size. We'll wrap/clamp in the shader in that case.
int w = gstate.getTextureWidth(0);
int h = gstate.getTextureHeight(0);
if (w != bufferWidth || h != bufferHeight) {
key.sClamp = true;
key.tClamp = true;
}
return key;
}
void TextureCacheCommon::UpdateMaxSeenV(TexCacheEntry *entry, bool throughMode) {
// If the texture is >= 512 pixels tall...
if (entry->dim >= 0x900) {
if (entry->cluthash != 0 && entry->maxSeenV == 0) {
const u64 cachekeyMin = (u64)(entry->addr & 0x3FFFFFFF) << 32;
const u64 cachekeyMax = cachekeyMin + (1ULL << 32);
for (auto it = cache_.lower_bound(cachekeyMin), end = cache_.upper_bound(cachekeyMax); it != end; ++it) {
// They should all be the same, just make sure we take any that has already increased.
// This is for a new texture.
if (it->second->maxSeenV != 0) {
entry->maxSeenV = it->second->maxSeenV;
break;
}
}
}
// Texture scale/offset and gen modes don't apply in through.
// So we can optimize how much of the texture we look at.
if (throughMode) {
if (entry->maxSeenV == 0 && gstate_c.vertBounds.maxV > 0) {
// Let's not hash less than 272, we might use more later and have to rehash. 272 is very common.
entry->maxSeenV = std::max((u16)272, gstate_c.vertBounds.maxV);
} else if (gstate_c.vertBounds.maxV > entry->maxSeenV) {
// The max height changed, so we're better off hashing the entire thing.
entry->maxSeenV = 512;
entry->status |= TexCacheEntry::STATUS_FREE_CHANGE;
}
} else {
// Otherwise, we need to reset to ensure we use the whole thing.
// Can't tell how much is used.
// TODO: We could tell for texcoord UV gen, and apply scale to max?
entry->maxSeenV = 512;
}
// We need to keep all CLUT variants in sync so we detect changes properly.
// See HandleTextureChange / STATUS_CLUT_RECHECK.
if (entry->cluthash != 0) {
const u64 cachekeyMin = (u64)(entry->addr & 0x3FFFFFFF) << 32;
const u64 cachekeyMax = cachekeyMin + (1ULL << 32);
for (auto it = cache_.lower_bound(cachekeyMin), end = cache_.upper_bound(cachekeyMax); it != end; ++it) {
it->second->maxSeenV = entry->maxSeenV;
}
}
}
}
TexCacheEntry *TextureCacheCommon::SetTexture() {
u8 level = 0;
if (IsFakeMipmapChange())
level = std::max(0, gstate.getTexLevelOffset16() / 16);
u32 texaddr = gstate.getTextureAddress(level);
if (!Memory::IsValidAddress(texaddr)) {
// Bind a null texture and return.
Unbind();
return nullptr;
}
const u16 dim = gstate.getTextureDimension(level);
int w = gstate.getTextureWidth(level);
int h = gstate.getTextureHeight(level);
GETextureFormat format = gstate.getTextureFormat();
if (format >= 11) {
// TODO: Better assumption? Doesn't really matter, these are invalid.
format = GE_TFMT_5650;
}
bool hasClut = gstate.isTextureFormatIndexed();
u32 cluthash;
if (hasClut) {
if (clutLastFormat_ != gstate.clutformat) {
// We update here because the clut format can be specified after the load.
UpdateCurrentClut(gstate.getClutPaletteFormat(), gstate.getClutIndexStartPos(), gstate.isClutIndexSimple());
}
cluthash = clutHash_ ^ gstate.clutformat;
} else {
cluthash = 0;
}
u64 cachekey = TexCacheEntry::CacheKey(texaddr, format, dim, cluthash);
int bufw = GetTextureBufw(0, texaddr, format);
u8 maxLevel = gstate.getTextureMaxLevel();
u32 texhash = MiniHash((const u32 *)Memory::GetPointerUnchecked(texaddr));
TexCache::iterator entryIter = cache_.find(cachekey);
TexCacheEntry *entry = nullptr;
// Note: It's necessary to reset needshadertexclamp, for otherwise DIRTY_TEXCLAMP won't get set later.
// Should probably revisit how this works..
gstate_c.SetNeedShaderTexclamp(false);
gstate_c.skipDrawReason &= ~SKIPDRAW_BAD_FB_TEXTURE;
if (gstate_c.bgraTexture != isBgraBackend_) {
gstate_c.Dirty(DIRTY_FRAGMENTSHADER_STATE);
}
gstate_c.bgraTexture = isBgraBackend_;
if (entryIter != cache_.end()) {
entry = entryIter->second.get();
// Validate the texture still matches the cache entry.
bool match = entry->Matches(dim, format, maxLevel);
const char *reason = "different params";
// Check for FBO changes.
if (entry->status & TexCacheEntry::STATUS_FRAMEBUFFER_OVERLAP) {
// Fall through to the end where we'll delete the entry if there's a framebuffer.
entry->status &= ~TexCacheEntry::STATUS_FRAMEBUFFER_OVERLAP;
match = false;
}
bool rehash = entry->GetHashStatus() == TexCacheEntry::STATUS_UNRELIABLE;
// First let's see if another texture with the same address had a hashfail.
if (entry->status & TexCacheEntry::STATUS_CLUT_RECHECK) {
// Always rehash in this case, if one changed the rest all probably did.
rehash = true;
entry->status &= ~TexCacheEntry::STATUS_CLUT_RECHECK;
} else if (!gstate_c.IsDirty(DIRTY_TEXTURE_IMAGE)) {
// Okay, just some parameter change - the data didn't change, no need to rehash.
rehash = false;
}
// Do we need to recreate?
if (entry->status & TexCacheEntry::STATUS_FORCE_REBUILD) {
match = false;
entry->status &= ~TexCacheEntry::STATUS_FORCE_REBUILD;
}
if (match) {
if (entry->lastFrame != gpuStats.numFlips) {
u32 diff = gpuStats.numFlips - entry->lastFrame;
entry->numFrames++;
if (entry->framesUntilNextFullHash < diff) {
// Exponential backoff up to 512 frames. Textures are often reused.
if (entry->numFrames > 32) {
// Also, try to add some "randomness" to avoid rehashing several textures the same frame.
entry->framesUntilNextFullHash = std::min(512, entry->numFrames) + (((intptr_t)(entry->textureName) >> 12) & 15);
} else {
entry->framesUntilNextFullHash = entry->numFrames;
}
rehash = true;
} else {
entry->framesUntilNextFullHash -= diff;
}
}
// If it's not huge or has been invalidated many times, recheck the whole texture.
if (entry->invalidHint > 180 || (entry->invalidHint > 15 && (dim >> 8) < 9 && (dim & 0xF) < 9)) {
entry->invalidHint = 0;
rehash = true;
}
if (texhash != entry->hash) {
match = false;
} else if (entry->GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) {
rehash = false;
}
}
if (match && (entry->status & TexCacheEntry::STATUS_TO_SCALE) && standardScaleFactor_ != 1 && texelsScaledThisFrame_ < TEXCACHE_MAX_TEXELS_SCALED) {
if ((entry->status & TexCacheEntry::STATUS_CHANGE_FREQUENT) == 0) {
// INFO_LOG(G3D, "Reloading texture to do the scaling we skipped..");
match = false;
reason = "scaling";
}
}
if (match) {
// got one!
gstate_c.curTextureWidth = w;
gstate_c.curTextureHeight = h;
if (rehash) {
// Update in case any of these changed.
entry->sizeInRAM = (textureBitsPerPixel[format] * bufw * h / 2) / 8;
entry->bufw = bufw;
entry->cluthash = cluthash;
}
nextTexture_ = entry;
nextNeedsRehash_ = rehash;
nextNeedsChange_ = false;
// Might need a rebuild if the hash fails, but that will be set later.
nextNeedsRebuild_ = false;
VERBOSE_LOG(G3D, "Texture at %08x found in cache, applying", texaddr);
return entry; //Done!
} else {
// Wasn't a match, we will rebuild.
nextChangeReason_ = reason;
nextNeedsChange_ = true;
// Fall through to the rebuild case.
}
}
// No texture found, or changed (depending on entry).
// Check for framebuffers.
TextureDefinition def{};
def.addr = texaddr;
def.dim = dim;
def.format = format;
def.bufw = bufw;
std::vector<AttachCandidate> candidates = GetFramebufferCandidates(def, 0);
if (candidates.size() > 0) {
int index = GetBestCandidateIndex(candidates);
if (index != -1) {
// If we had a texture entry here, let's get rid of it.
if (entryIter != cache_.end()) {
DeleteTexture(entryIter);
}
const AttachCandidate &candidate = candidates[index];
nextTexture_ = nullptr;
nextNeedsRebuild_ = false;
SetTextureFramebuffer(candidate);
return nullptr;
}
}
// Didn't match a framebuffer, keep going.
if (!entry) {
VERBOSE_LOG(G3D, "No texture in cache for %08x, decoding...", texaddr);
entry = new TexCacheEntry{};
cache_[cachekey].reset(entry);
if (hasClut && clutRenderAddress_ != 0xFFFFFFFF) {
WARN_LOG_REPORT_ONCE(clutUseRender, G3D, "Using texture with rendered CLUT: texfmt=%d, clutfmt=%d", gstate.getTextureFormat(), gstate.getClutPaletteFormat());
}
if (Memory::IsKernelAndNotVolatileAddress(texaddr)) {
// It's the builtin font texture.
entry->status = TexCacheEntry::STATUS_RELIABLE;
} else if (g_Config.bTextureBackoffCache) {
entry->status = TexCacheEntry::STATUS_HASHING;
} else {
entry->status = TexCacheEntry::STATUS_UNRELIABLE;
}
if (hasClut && clutRenderAddress_ == 0xFFFFFFFF) {
const u64 cachekeyMin = (u64)(texaddr & 0x3FFFFFFF) << 32;
const u64 cachekeyMax = cachekeyMin + (1ULL << 32);
int found = 0;
for (auto it = cache_.lower_bound(cachekeyMin), end = cache_.upper_bound(cachekeyMax); it != end; ++it) {
found++;
}
if (found >= TEXTURE_CLUT_VARIANTS_MIN) {
for (auto it = cache_.lower_bound(cachekeyMin), end = cache_.upper_bound(cachekeyMax); it != end; ++it) {
it->second->status |= TexCacheEntry::STATUS_CLUT_VARIANTS;
}
entry->status |= TexCacheEntry::STATUS_CLUT_VARIANTS;
}
}
nextNeedsChange_ = false;
}
// We have to decode it, let's setup the cache entry first.
entry->addr = texaddr;
entry->hash = texhash;
entry->dim = dim;
entry->format = format;
entry->maxLevel = maxLevel;
// This would overestimate the size in many case so we underestimate instead
// to avoid excessive clearing caused by cache invalidations.
entry->sizeInRAM = (textureBitsPerPixel[format] * bufw * h / 2) / 8;
entry->bufw = bufw;
entry->cluthash = cluthash;
gstate_c.curTextureWidth = w;
gstate_c.curTextureHeight = h;
nextTexture_ = entry;
if (nextFramebufferTexture_) {
nextFramebufferTexture_ = nullptr; // in case it was accidentally set somehow?
}
nextNeedsRehash_ = true;
// We still need to rebuild, to allocate a texture. But we'll bail early.
nextNeedsRebuild_ = true;
return entry;
}
std::vector<AttachCandidate> TextureCacheCommon::GetFramebufferCandidates(const TextureDefinition &entry, u32 texAddrOffset) {
gpuStats.numFramebufferEvaluations++;
std::vector<AttachCandidate> candidates;
FramebufferNotificationChannel channel = Memory::IsDepthTexVRAMAddress(entry.addr) ? FramebufferNotificationChannel::NOTIFY_FB_DEPTH : FramebufferNotificationChannel::NOTIFY_FB_COLOR;
if (channel == FramebufferNotificationChannel::NOTIFY_FB_DEPTH && !gstate_c.Supports(GPU_SUPPORTS_DEPTH_TEXTURE)) {
// Depth texture not supported. Don't try to match it, fall back to the memory behind..
return std::vector<AttachCandidate>();
}
const std::vector<VirtualFramebuffer *> &framebuffers = framebufferManager_->Framebuffers();
for (VirtualFramebuffer *framebuffer : framebuffers) {
FramebufferMatchInfo match = MatchFramebuffer(entry, framebuffer, texAddrOffset, channel);
switch (match.match) {
case FramebufferMatch::VALID:
candidates.push_back(AttachCandidate{ match, entry, framebuffer, channel });
break;
default:
break;
}
}
if (candidates.size() > 1) {
bool depth = channel == FramebufferNotificationChannel::NOTIFY_FB_DEPTH;
WARN_LOG_REPORT_ONCE(multifbcandidate, G3D, "GetFramebufferCandidates(%s): Multiple (%d) candidate framebuffers. texaddr: %08x offset: %d (%dx%d stride %d, %s)",
depth ? "DEPTH" : "COLOR", (int)candidates.size(), entry.addr, texAddrOffset, dimWidth(entry.dim), dimHeight(entry.dim), entry.bufw, GeTextureFormatToString(entry.format));
}
return candidates;
}
int TextureCacheCommon::GetBestCandidateIndex(const std::vector<AttachCandidate> &candidates) {
_dbg_assert_(!candidates.empty());
if (candidates.size() == 1) {
return 0;
}
// OK, multiple possible candidates. Will need to figure out which one is the most relevant.
int bestRelevancy = -1;
int bestIndex = -1;
// TODO: Instead of scores, we probably want to use std::min_element to pick the top element, using
// a comparison function.
for (int i = 0; i < (int)candidates.size(); i++) {
const AttachCandidate &candidate = candidates[i];
int relevancy = 0;
switch (candidate.match.match) {
case FramebufferMatch::VALID:
relevancy += 1000;
break;
default:
break;
}
// Bonus point for matching stride.
if (candidate.channel == NOTIFY_FB_COLOR && candidate.fb->fb_stride == candidate.entry.bufw) {
relevancy += 100;
}
// Bonus points for no offset.
if (candidate.match.xOffset == 0 && candidate.match.yOffset == 0) {
relevancy += 10;
}
if (candidate.channel == NOTIFY_FB_COLOR && candidate.fb->last_frame_render == gpuStats.numFlips) {
relevancy += 5;
} else if (candidate.channel == NOTIFY_FB_DEPTH && candidate.fb->last_frame_depth_render == gpuStats.numFlips) {
relevancy += 5;
}
if (relevancy > bestRelevancy) {
bestRelevancy = relevancy;
bestIndex = i;
}
}
return bestIndex;
}
// Removes old textures.
void TextureCacheCommon::Decimate(bool forcePressure) {
if (--decimationCounter_ <= 0) {
decimationCounter_ = TEXCACHE_DECIMATION_INTERVAL;
} else {
return;
}
if (forcePressure || cacheSizeEstimate_ >= TEXCACHE_MIN_PRESSURE) {
const u32 had = cacheSizeEstimate_;
ForgetLastTexture();
int killAgeBase = lowMemoryMode_ ? TEXTURE_KILL_AGE_LOWMEM : TEXTURE_KILL_AGE;
for (TexCache::iterator iter = cache_.begin(); iter != cache_.end(); ) {
bool hasClut = (iter->second->status & TexCacheEntry::STATUS_CLUT_VARIANTS) != 0;
int killAge = hasClut ? TEXTURE_KILL_AGE_CLUT : killAgeBase;
if (iter->second->lastFrame + killAge < gpuStats.numFlips) {
DeleteTexture(iter++);
} else {
++iter;
}
}
VERBOSE_LOG(G3D, "Decimated texture cache, saved %d estimated bytes - now %d bytes", had - cacheSizeEstimate_, cacheSizeEstimate_);
}
// If enabled, we also need to clear the secondary cache.
if (g_Config.bTextureSecondaryCache && (forcePressure || secondCacheSizeEstimate_ >= TEXCACHE_SECOND_MIN_PRESSURE)) {
const u32 had = secondCacheSizeEstimate_;
for (TexCache::iterator iter = secondCache_.begin(); iter != secondCache_.end(); ) {
// In low memory mode, we kill them all since secondary cache is disabled.
if (lowMemoryMode_ || iter->second->lastFrame + TEXTURE_SECOND_KILL_AGE < gpuStats.numFlips) {
ReleaseTexture(iter->second.get(), true);
secondCacheSizeEstimate_ -= EstimateTexMemoryUsage(iter->second.get());
secondCache_.erase(iter++);
} else {
++iter;
}
}
VERBOSE_LOG(G3D, "Decimated second texture cache, saved %d estimated bytes - now %d bytes", had - secondCacheSizeEstimate_, secondCacheSizeEstimate_);
}
DecimateVideos();
}
void TextureCacheCommon::DecimateVideos() {
if (!videos_.empty()) {
for (auto iter = videos_.begin(); iter != videos_.end(); ) {
if (iter->second + VIDEO_DECIMATE_AGE < gpuStats.numFlips) {
videos_.erase(iter++);
} else {
++iter;
}
}
}
}
void TextureCacheCommon::HandleTextureChange(TexCacheEntry *const entry, const char *reason, bool initialMatch, bool doDelete) {
cacheSizeEstimate_ -= EstimateTexMemoryUsage(entry);
entry->numInvalidated++;
gpuStats.numTextureInvalidations++;
DEBUG_LOG(G3D, "Texture different or overwritten, reloading at %08x: %s", entry->addr, reason);
if (doDelete) {
InvalidateLastTexture();
ReleaseTexture(entry, true);
entry->status &= ~TexCacheEntry::STATUS_IS_SCALED;
}
// Mark as hashing, if marked as reliable.
if (entry->GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) {
entry->SetHashStatus(TexCacheEntry::STATUS_HASHING);
}
// Also, mark any textures with the same address but different clut. They need rechecking.
if (entry->cluthash != 0) {
const u64 cachekeyMin = (u64)(entry->addr & 0x3FFFFFFF) << 32;
const u64 cachekeyMax = cachekeyMin + (1ULL << 32);
for (auto it = cache_.lower_bound(cachekeyMin), end = cache_.upper_bound(cachekeyMax); it != end; ++it) {
if (it->second->cluthash != entry->cluthash) {
it->second->status |= TexCacheEntry::STATUS_CLUT_RECHECK;
}
}
}
if (entry->numFrames < TEXCACHE_FRAME_CHANGE_FREQUENT) {
if (entry->status & TexCacheEntry::STATUS_FREE_CHANGE) {
entry->status &= ~TexCacheEntry::STATUS_FREE_CHANGE;
} else {
entry->status |= TexCacheEntry::STATUS_CHANGE_FREQUENT;
}
}
entry->numFrames = 0;
}
void TextureCacheCommon::NotifyFramebuffer(VirtualFramebuffer *framebuffer, FramebufferNotification msg) {
const u32 mirrorMask = 0x00600000;
const u32 fb_addr = framebuffer->fb_address;
const u32 z_addr = framebuffer->z_address & ~mirrorMask; // Probably unnecessary.
const u32 fb_bpp = framebuffer->format == GE_FORMAT_8888 ? 4 : 2;
const u32 z_bpp = 2; // No other format exists.
const u32 fb_stride = framebuffer->fb_stride;
const u32 z_stride = framebuffer->z_stride;
// NOTE: Some games like Burnout massively misdetects the height of some framebuffers, leading to a lot of unnecessary invalidations.
// Let's only actually get rid of textures that cover the very start of the framebuffer.
const u32 fb_endAddr = fb_addr + fb_stride * std::min((int)framebuffer->height, 16) * fb_bpp;
const u32 z_endAddr = z_addr + z_stride * std::min((int)framebuffer->height, 16) * z_bpp;
switch (msg) {
case NOTIFY_FB_CREATED:
case NOTIFY_FB_UPDATED:
{
// Try to match the new framebuffer to existing textures.
// Backwards from the "usual" texturing case so can't share a utility function.
std::vector<AttachCandidate> candidates;
u64 cacheKey = (u64)fb_addr << 32;
// If it has a clut, those are the low 32 bits, so it'll be inside this range.
// Also, if it's a subsample of the buffer, it'll also be within the FBO.
u64 cacheKeyEnd = (u64)fb_endAddr << 32;
// Color - no need to look in the mirrors.
for (auto it = cache_.lower_bound(cacheKey), end = cache_.upper_bound(cacheKeyEnd); it != end; ++it) {
it->second->status |= TexCacheEntry::STATUS_FRAMEBUFFER_OVERLAP;
gpuStats.numTextureInvalidationsByFramebuffer++;
}
if (z_stride != 0) {
// Depth. Just look at the range, but in each mirror (0x04200000 and 0x04600000).
// Games don't use 0x04400000 as far as I know - it has no swizzle effect so kinda useless.
cacheKey = (u64)z_addr << 32;
cacheKeyEnd = (u64)z_endAddr << 32;
for (auto it = cache_.lower_bound(cacheKey | 0x200000), end = cache_.upper_bound(cacheKeyEnd | 0x200000); it != end; ++it) {
it->second->status |= TexCacheEntry::STATUS_FRAMEBUFFER_OVERLAP;
gpuStats.numTextureInvalidationsByFramebuffer++;
}
for (auto it = cache_.lower_bound(cacheKey | 0x600000), end = cache_.upper_bound(cacheKeyEnd | 0x600000); it != end; ++it) {
it->second->status |= TexCacheEntry::STATUS_FRAMEBUFFER_OVERLAP;
gpuStats.numTextureInvalidationsByFramebuffer++;
}
}
break;
}
default:
break;
}
}
FramebufferMatchInfo TextureCacheCommon::MatchFramebuffer(
const TextureDefinition &entry,
VirtualFramebuffer *framebuffer, u32 texaddrOffset, FramebufferNotificationChannel channel) const {
static const u32 MAX_SUBAREA_Y_OFFSET_SAFE = 32;
uint32_t fb_address = channel == NOTIFY_FB_DEPTH ? framebuffer->z_address : framebuffer->fb_address;
u32 addr = fb_address & 0x3FFFFFFF;
u32 texaddr = entry.addr + texaddrOffset;
bool texInVRAM = Memory::IsVRAMAddress(texaddr);
bool fbInVRAM = Memory::IsVRAMAddress(fb_address);
if (texInVRAM != fbInVRAM) {
// Shortcut. Cannot possibly be a match.
return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH };
}
if (texInVRAM) {
const u32 mirrorMask = 0x00600000;
// This bit controls swizzle. The swizzles at 0x00200000 and 0x00600000 are designed
// to perfectly match reading depth as color (which one to use I think might be related
// to the bpp of the color format used when rendering to it).
// It's fairly unlikely that games would screw this up since the result will be garbage so
// we use it to filter out unlikely matches.
switch (entry.addr & mirrorMask) {
case 0x00000000:
case 0x00400000:
// Don't match the depth channel with these addresses when texturing.
if (channel == FramebufferNotificationChannel::NOTIFY_FB_DEPTH) {
return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH };
}
break;
case 0x00200000:
case 0x00600000:
// Don't match the color channel with these addresses when texturing.
if (channel == FramebufferNotificationChannel::NOTIFY_FB_COLOR) {
return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH };
}
break;
}
addr &= ~mirrorMask;
texaddr &= ~mirrorMask;
}
const bool noOffset = texaddr == addr;
const bool exactMatch = noOffset && entry.format < 4 && channel == NOTIFY_FB_COLOR;
const u32 w = 1 << ((entry.dim >> 0) & 0xf);
const u32 h = 1 << ((entry.dim >> 8) & 0xf);
// 512 on a 272 framebuffer is sane, so let's be lenient.
const u32 minSubareaHeight = h / 4;
// If they match "exactly", it's non-CLUT and from the top left.
if (exactMatch) {
if (framebuffer->fb_stride != entry.bufw) {
WARN_LOG_ONCE(diffStrides1, G3D, "Texturing from framebuffer with different strides %d != %d", entry.bufw, framebuffer->fb_stride);
}
// NOTE: This check is okay because the first texture formats are the same as the buffer formats.
if (IsTextureFormatBufferCompatible(entry.format)) {
if (TextureFormatMatchesBufferFormat(entry.format, framebuffer->format)) {
return FramebufferMatchInfo{ FramebufferMatch::VALID };
} else if (IsTextureFormat16Bit(entry.format) && IsBufferFormat16Bit(framebuffer->format)) {
WARN_LOG_ONCE(diffFormat1, G3D, "Texturing from framebuffer with reinterpretable format: %s != %s", GeTextureFormatToString(entry.format), GeBufferFormatToString(framebuffer->format));
return FramebufferMatchInfo{ FramebufferMatch::VALID, 0, 0, true, TextureFormatToBufferFormat(entry.format) };
} else {
WARN_LOG_ONCE(diffFormat2, G3D, "Texturing from framebuffer with incompatible formats %s != %s", GeTextureFormatToString(entry.format), GeBufferFormatToString(framebuffer->format));
return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH };
}
} else {
// Format incompatible, ignoring without comment. (maybe some really gnarly hacks will end up here...)
return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH };
}
} else {
// Apply to buffered mode only.
if (!framebufferManager_->UseBufferedRendering()) {
return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH };
}
// Check works for D16 too (???)
const bool matchingClutFormat =
(channel != NOTIFY_FB_COLOR && entry.format == GE_TFMT_CLUT16) ||
(channel == NOTIFY_FB_COLOR && framebuffer->format == GE_FORMAT_8888 && entry.format == GE_TFMT_CLUT32) ||
(channel == NOTIFY_FB_COLOR && framebuffer->format != GE_FORMAT_8888 && entry.format == GE_TFMT_CLUT16);
// To avoid ruining git blame, kept the same name as the old struct.
FramebufferMatchInfo fbInfo{ FramebufferMatch::VALID };
const u32 bitOffset = (texaddr - addr) * 8;
if (bitOffset != 0) {
const u32 pixelOffset = bitOffset / std::max(1U, (u32)textureBitsPerPixel[entry.format]);
fbInfo.yOffset = entry.bufw == 0 ? 0 : pixelOffset / entry.bufw;
fbInfo.xOffset = entry.bufw == 0 ? 0 : pixelOffset % entry.bufw;
}
if (fbInfo.yOffset + minSubareaHeight >= framebuffer->height) {
// Can't be inside the framebuffer.
return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH };
}
if (framebuffer->fb_stride != entry.bufw) {
if (noOffset) {
WARN_LOG_ONCE(diffStrides2, G3D, "Texturing from framebuffer (matching_clut=%s) different strides %d != %d", matchingClutFormat ? "yes" : "no", entry.bufw, framebuffer->fb_stride);
// Continue on with other checks.
// Not actually sure why we even try here. There's no way it'll go well if the strides are different.
} else {
// Assume any render-to-tex with different bufw + offset is a render from ram.
return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH };
}
}
// Check if it's in bufferWidth (which might be higher than width and may indicate the framebuffer includes the data.)
if (fbInfo.xOffset >= framebuffer->bufferWidth && fbInfo.xOffset + w <= (u32)framebuffer->fb_stride) {
// This happens in Brave Story, see #10045 - the texture is in the space between strides, with matching stride.
return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH };
}
// Trying to play it safe. Below 0x04110000 is almost always framebuffers.
// TODO: Maybe we can reduce this check and find a better way above 0x04110000?
if (fbInfo.yOffset > MAX_SUBAREA_Y_OFFSET_SAFE && addr > 0x04110000) {
WARN_LOG_REPORT_ONCE(subareaIgnored, G3D, "Ignoring possible texturing from framebuffer at %08x +%dx%d / %dx%d", fb_address, fbInfo.xOffset, fbInfo.yOffset, framebuffer->width, framebuffer->height);
return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH };
}
// Check for CLUT. The framebuffer is always RGB, but it can be interpreted as a CLUT texture.
// 3rd Birthday (and a bunch of other games) render to a 16 bit clut texture.
if (matchingClutFormat) {
if (!noOffset) {
WARN_LOG_ONCE(subareaClut, G3D, "Texturing from framebuffer using CLUT with offset at %08x +%dx%d", fb_address, fbInfo.xOffset, fbInfo.yOffset);
}
fbInfo.match = FramebufferMatch::VALID; // We check the format again later, no need to return a special value here.
return fbInfo;
} else if (IsClutFormat((GETextureFormat)(entry.format)) || IsDXTFormat((GETextureFormat)(entry.format))) {
WARN_LOG_ONCE(fourEightBit, G3D, "%s format not supported when texturing from framebuffer of format %s", GeTextureFormatToString(entry.format), GeBufferFormatToString(framebuffer->format));
return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH };
}
// This is either normal or we failed to generate a shader to depalettize
if ((int)framebuffer->format == (int)entry.format || matchingClutFormat) {
if ((int)framebuffer->format != (int)entry.format) {
WARN_LOG_ONCE(diffFormat2, G3D, "Texturing from framebuffer with different formats %s != %s at %08x",
GeTextureFormatToString(entry.format), GeBufferFormatToString(framebuffer->format), fb_address);
return fbInfo;
} else {
WARN_LOG_ONCE(subarea, G3D, "Texturing from framebuffer at %08x +%dx%d", fb_address, fbInfo.xOffset, fbInfo.yOffset);
return fbInfo;
}
} else {
WARN_LOG_ONCE(diffFormat2, G3D, "Texturing from framebuffer with incompatible format %s != %s at %08x",
GeTextureFormatToString(entry.format), GeBufferFormatToString(framebuffer->format), fb_address);
return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH };
}
}
}
void TextureCacheCommon::SetTextureFramebuffer(const AttachCandidate &candidate) {
VirtualFramebuffer *framebuffer = candidate.fb;
FramebufferMatchInfo fbInfo = candidate.match;
if (candidate.match.reinterpret) {
GEBufferFormat oldFormat = candidate.fb->format;
candidate.fb->format = candidate.match.reinterpretTo;
framebufferManager_->ReinterpretFramebuffer(candidate.fb, oldFormat, candidate.match.reinterpretTo);
}
_dbg_assert_msg_(framebuffer != nullptr, "Framebuffer must not be null.");
framebuffer->usageFlags |= FB_USAGE_TEXTURE;
if (framebufferManager_->UseBufferedRendering()) {
// Keep the framebuffer alive.
framebuffer->last_frame_used = gpuStats.numFlips;
// We need to force it, since we may have set it on a texture before attaching.
gstate_c.curTextureWidth = framebuffer->bufferWidth;
gstate_c.curTextureHeight = framebuffer->bufferHeight;
if (gstate_c.bgraTexture) {
gstate_c.Dirty(DIRTY_FRAGMENTSHADER_STATE);
} else if ((gstate_c.curTextureXOffset == 0) != (fbInfo.xOffset == 0) || (gstate_c.curTextureYOffset == 0) != (fbInfo.yOffset == 0)) {
gstate_c.Dirty(DIRTY_FRAGMENTSHADER_STATE);
}
gstate_c.bgraTexture = false;
gstate_c.curTextureXOffset = fbInfo.xOffset;
gstate_c.curTextureYOffset = fbInfo.yOffset;
u32 texW = (u32)gstate.getTextureWidth(0);
u32 texH = (u32)gstate.getTextureHeight(0);
gstate_c.SetNeedShaderTexclamp(gstate_c.curTextureWidth != texW || gstate_c.curTextureHeight != texH);
if (gstate_c.curTextureXOffset != 0 || gstate_c.curTextureYOffset != 0) {
gstate_c.SetNeedShaderTexclamp(true);
}
nextFramebufferTexture_ = framebuffer;
nextTexture_ = nullptr;
} else {
if (framebuffer->fbo) {
framebuffer->fbo->Release();
framebuffer->fbo = nullptr;
}
Unbind();
gstate_c.SetNeedShaderTexclamp(false);
nextFramebufferTexture_ = nullptr;
nextTexture_ = nullptr;
}
nextNeedsRehash_ = false;
nextNeedsChange_ = false;
nextNeedsRebuild_ = false;
}
// Only looks for framebuffers.
bool TextureCacheCommon::SetOffsetTexture(u32 yOffset) {
if (!framebufferManager_->UseBufferedRendering()) {
return false;
}
u32 texaddr = gstate.getTextureAddress(0);
GETextureFormat fmt = gstate.getTextureFormat();
const u32 bpp = fmt == GE_TFMT_8888 ? 4 : 2;
const u32 texaddrOffset = yOffset * gstate.getTextureWidth(0) * bpp;
if (!Memory::IsValidAddress(texaddr) || !Memory::IsValidAddress(texaddr + texaddrOffset)) {
return false;
}
TextureDefinition def;
def.addr = texaddr;
def.format = fmt;
def.bufw = GetTextureBufw(0, texaddr, fmt);
def.dim = gstate.getTextureDimension(0);
std::vector<AttachCandidate> candidates = GetFramebufferCandidates(def, texaddrOffset);
if (candidates.size() > 0) {
int index = GetBestCandidateIndex(candidates);
if (index != -1) {
SetTextureFramebuffer(candidates[index]);
return true;
}
}
return false;
}
void TextureCacheCommon::NotifyConfigChanged() {
int scaleFactor;
// 0 means automatic texture scaling, up to 5x, based on resolution.
if (g_Config.iTexScalingLevel == 0) {
scaleFactor = g_Config.iInternalResolution;
// Automatic resolution too? Okay.
if (scaleFactor == 0) {
if (!g_Config.IsPortrait()) {
scaleFactor = (PSP_CoreParameter().pixelWidth + 479) / 480;
} else {
scaleFactor = (PSP_CoreParameter().pixelHeight + 479) / 480;
}
}
scaleFactor = std::min(5, scaleFactor);
} else {
scaleFactor = g_Config.iTexScalingLevel;
}
if (!gstate_c.Supports(GPU_SUPPORTS_TEXTURE_NPOT)) {
// Reduce the scale factor to a power of two (e.g. 2 or 4) if textures must be a power of two.
while ((scaleFactor & (scaleFactor - 1)) != 0) {
--scaleFactor;
}
}
// Just in case, small display with auto resolution or something.
if (scaleFactor <= 0) {
scaleFactor = 1;
}
standardScaleFactor_ = scaleFactor;
replacer_.NotifyConfigChanged();
}
void TextureCacheCommon::NotifyVideoUpload(u32 addr, int size, int width, GEBufferFormat fmt) {
addr &= 0x3FFFFFFF;
videos_[addr] = gpuStats.numFlips;
}
void TextureCacheCommon::LoadClut(u32 clutAddr, u32 loadBytes) {
clutTotalBytes_ = loadBytes;
clutRenderAddress_ = 0xFFFFFFFF;
if (Memory::IsValidAddress(clutAddr)) {
if (Memory::IsVRAMAddress(clutAddr)) {
// Clear the uncached bit, etc. to match framebuffers.
const u32 clutFramebufAddr = clutAddr & 0x3FFFFFFF;
const u32 clutFramebufEnd = clutFramebufAddr + loadBytes;
static const u32 MAX_CLUT_OFFSET = 4096;
clutRenderOffset_ = MAX_CLUT_OFFSET;
const std::vector<VirtualFramebuffer *> &framebuffers = framebufferManager_->Framebuffers();
for (VirtualFramebuffer *framebuffer : framebuffers) {
const u32 fb_address = framebuffer->fb_address & 0x3FFFFFFF;
const u32 bpp = framebuffer->drawnFormat == GE_FORMAT_8888 ? 4 : 2;
u32 offset = clutFramebufAddr - fb_address;
// Is this inside the framebuffer at all?
bool matchRange = fb_address + framebuffer->fb_stride * bpp > clutFramebufAddr && fb_address < clutFramebufEnd;
// And is it inside the rendered area? Sometimes games pack data outside.
bool matchRegion = ((offset / bpp) % framebuffer->fb_stride) < framebuffer->width;
if (matchRange && matchRegion && offset < clutRenderOffset_) {
framebuffer->last_frame_clut = gpuStats.numFlips;
framebuffer->usageFlags |= FB_USAGE_CLUT;
clutRenderAddress_ = framebuffer->fb_address;
clutRenderOffset_ = offset;
if (offset == 0) {
break;
}
}
}
}
// It's possible for a game to (successfully) access outside valid memory.
u32 bytes = Memory::ValidSize(clutAddr, loadBytes);
if (clutRenderAddress_ != 0xFFFFFFFF && !g_Config.bDisableSlowFramebufEffects) {
framebufferManager_->DownloadFramebufferForClut(clutRenderAddress_, clutRenderOffset_ + bytes);
Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, bytes);
if (bytes < loadBytes) {
memset((u8 *)clutBufRaw_ + bytes, 0x00, loadBytes - bytes);
}
} else {
#ifdef _M_SSE
if (bytes == loadBytes) {
const __m128i *source = (const __m128i *)Memory::GetPointerUnchecked(clutAddr);
__m128i *dest = (__m128i *)clutBufRaw_;
int numBlocks = bytes / 32;
for (int i = 0; i < numBlocks; i++, source += 2, dest += 2) {
__m128i data1 = _mm_loadu_si128(source);
__m128i data2 = _mm_loadu_si128(source + 1);
_mm_store_si128(dest, data1);
_mm_store_si128(dest + 1, data2);
}
} else {
Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, bytes);
if (bytes < loadBytes) {
memset((u8 *)clutBufRaw_ + bytes, 0x00, loadBytes - bytes);
}
}
#elif PPSSPP_ARCH(ARM_NEON)
if (bytes == loadBytes) {
const uint32_t *source = (const uint32_t *)Memory::GetPointerUnchecked(clutAddr);
uint32_t *dest = (uint32_t *)clutBufRaw_;
int numBlocks = bytes / 32;
for (int i = 0; i < numBlocks; i++, source += 8, dest += 8) {
uint32x4_t data1 = vld1q_u32(source);
uint32x4_t data2 = vld1q_u32(source + 4);
vst1q_u32(dest, data1);
vst1q_u32(dest + 4, data2);
}
} else {
Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, bytes);
if (bytes < loadBytes) {
memset((u8 *)clutBufRaw_ + bytes, 0x00, loadBytes - bytes);
}
}
#else
Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, bytes);
if (bytes < loadBytes) {
memset((u8 *)clutBufRaw_ + bytes, 0x00, loadBytes - bytes);
}
#endif
}
} else {
memset(clutBufRaw_, 0x00, loadBytes);
}
// Reload the clut next time.
clutLastFormat_ = 0xFFFFFFFF;
clutMaxBytes_ = std::max(clutMaxBytes_, loadBytes);
}
void TextureCacheCommon::UnswizzleFromMem(u32 *dest, u32 destPitch, const u8 *texptr, u32 bufw, u32 height, u32 bytesPerPixel) {
// Note: bufw is always aligned to 16 bytes, so rowWidth is always >= 16.
const u32 rowWidth = (bytesPerPixel > 0) ? (bufw * bytesPerPixel) : (bufw / 2);
// A visual mapping of unswizzling, where each letter is 16-byte and 8 letters is a block:
//
// ABCDEFGH IJKLMNOP
// ->
// AI
// BJ
// CK
// ...
//
// bxc is the number of blocks in the x direction, and byc the number in the y direction.
const int bxc = rowWidth / 16;
// The height is not always aligned to 8, but rounds up.
int byc = (height + 7) / 8;
DoUnswizzleTex16(texptr, dest, bxc, byc, destPitch);
}
bool TextureCacheCommon::GetCurrentClutBuffer(GPUDebugBuffer &buffer) {
const u32 bpp = gstate.getClutPaletteFormat() == GE_CMODE_32BIT_ABGR8888 ? 4 : 2;
const u32 pixels = 1024 / bpp;
buffer.Allocate(pixels, 1, (GEBufferFormat)gstate.getClutPaletteFormat());
memcpy(buffer.GetData(), clutBufRaw_, 1024);
return true;
}
// Host memory usage, not PSP memory usage.
u32 TextureCacheCommon::EstimateTexMemoryUsage(const TexCacheEntry *entry) {
const u16 dim = entry->dim;
// TODO: This does not take into account the HD remaster's larger textures.
const u8 dimW = ((dim >> 0) & 0xf);
const u8 dimH = ((dim >> 8) & 0xf);
u32 pixelSize = 2;
switch (entry->format) {
case GE_TFMT_CLUT4:
case GE_TFMT_CLUT8:
case GE_TFMT_CLUT16:
case GE_TFMT_CLUT32:
// We assume cluts always point to 8888 for simplicity.
pixelSize = 4;
break;
case GE_TFMT_4444:
case GE_TFMT_5551:
case GE_TFMT_5650:
break;
case GE_TFMT_8888:
case GE_TFMT_DXT1:
case GE_TFMT_DXT3:
case GE_TFMT_DXT5:
default:
pixelSize = 4;
break;
}
// This in other words multiplies by w and h.
return pixelSize << (dimW + dimH);
}
static void ReverseColors(void *dstBuf, const void *srcBuf, GETextureFormat fmt, int numPixels, bool useBGRA) {
switch (fmt) {
case GE_TFMT_4444:
ConvertRGBA4444ToABGR4444((u16 *)dstBuf, (const u16 *)srcBuf, numPixels);
break;
// Final Fantasy 2 uses this heavily in animated textures.
case GE_TFMT_5551:
ConvertRGBA5551ToABGR1555((u16 *)dstBuf, (const u16 *)srcBuf, numPixels);
break;
case GE_TFMT_5650:
ConvertRGB565ToBGR565((u16 *)dstBuf, (const u16 *)srcBuf, numPixels);
break;
default:
if (useBGRA) {
ConvertRGBA8888ToBGRA8888((u32 *)dstBuf, (const u32 *)srcBuf, numPixels);
} else {
// No need to convert RGBA8888, right order already
if (dstBuf != srcBuf)
memcpy(dstBuf, srcBuf, numPixels * sizeof(u32));
}
break;
}
}
static inline void ConvertFormatToRGBA8888(GETextureFormat format, u32 *dst, const u16 *src, u32 numPixels) {
switch (format) {
case GE_TFMT_4444:
ConvertRGBA4444ToRGBA8888(dst, src, numPixels);
break;
case GE_TFMT_5551:
ConvertRGBA5551ToRGBA8888(dst, src, numPixels);
break;
case GE_TFMT_5650:
ConvertRGB565ToRGBA8888(dst, src, numPixels);
break;
default:
_dbg_assert_msg_(false, "Incorrect texture format.");
break;
}
}
static inline void ConvertFormatToRGBA8888(GEPaletteFormat format, u32 *dst, const u16 *src, u32 numPixels) {
// The supported values are 1:1 identical.
ConvertFormatToRGBA8888(GETextureFormat(format), dst, src, numPixels);
}
void TextureCacheCommon::DecodeTextureLevel(u8 *out, int outPitch, GETextureFormat format, GEPaletteFormat clutformat, uint32_t texaddr, int level, int bufw, bool reverseColors, bool useBGRA, bool expandTo32bit) {
bool swizzled = gstate.isTextureSwizzled();
if ((texaddr & 0x00600000) != 0 && Memory::IsVRAMAddress(texaddr)) {
// This means it's in a mirror, possibly a swizzled mirror. Let's report.
WARN_LOG_REPORT_ONCE(texmirror, G3D, "Decoding texture from VRAM mirror at %08x swizzle=%d", texaddr, swizzled ? 1 : 0);
if ((texaddr & 0x00200000) == 0x00200000) {
// Technically 2 and 6 are slightly different, but this is better than nothing probably.
swizzled = !swizzled;
}
// Note that (texaddr & 0x00600000) == 0x00600000 is very likely to be depth texturing.
}
int w = gstate.getTextureWidth(level);
int h = gstate.getTextureHeight(level);
const u8 *texptr = Memory::GetPointer(texaddr);
switch (format) {
case GE_TFMT_CLUT4:
{
const bool mipmapShareClut = gstate.isClutSharedForMipmaps();
const int clutSharingOffset = mipmapShareClut ? 0 : level * 16;
if (swizzled) {
tmpTexBuf32_.resize(bufw * ((h + 7) & ~7));
UnswizzleFromMem(tmpTexBuf32_.data(), bufw / 2, texptr, bufw, h, 0);
texptr = (u8 *)tmpTexBuf32_.data();
}
switch (clutformat) {
case GE_CMODE_16BIT_BGR5650:
case GE_CMODE_16BIT_ABGR5551:
case GE_CMODE_16BIT_ABGR4444:
{
if (clutAlphaLinear_ && mipmapShareClut && !expandTo32bit) {
// Here, reverseColors means the CLUT is already reversed.
if (reverseColors) {
for (int y = 0; y < h; ++y) {
DeIndexTexture4Optimal((u16 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, clutAlphaLinearColor_);
}
} else {
for (int y = 0; y < h; ++y) {
DeIndexTexture4OptimalRev((u16 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, clutAlphaLinearColor_);
}
}
} else {
const u16 *clut = GetCurrentClut<u16>() + clutSharingOffset;
if (expandTo32bit && !reverseColors) {
// We simply expand the CLUT to 32-bit, then we deindex as usual. Probably the fastest way.
ConvertFormatToRGBA8888(clutformat, expandClut_, clut, 16);
for (int y = 0; y < h; ++y) {
DeIndexTexture4((u32 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, expandClut_);
}
} else {
for (int y = 0; y < h; ++y) {
DeIndexTexture4((u16 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, clut);
}
}
}
}
break;
case GE_CMODE_32BIT_ABGR8888:
{
const u32 *clut = GetCurrentClut<u32>() + clutSharingOffset;
for (int y = 0; y < h; ++y) {
DeIndexTexture4((u32 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, clut);
}
}
break;
default:
ERROR_LOG_REPORT(G3D, "Unknown CLUT4 texture mode %d", gstate.getClutPaletteFormat());
return;
}
}
break;
case GE_TFMT_CLUT8:
ReadIndexedTex(out, outPitch, level, texptr, 1, bufw, expandTo32bit);
break;
case GE_TFMT_CLUT16:
ReadIndexedTex(out, outPitch, level, texptr, 2, bufw, expandTo32bit);
break;
case GE_TFMT_CLUT32:
ReadIndexedTex(out, outPitch, level, texptr, 4, bufw, expandTo32bit);
break;
case GE_TFMT_4444:
case GE_TFMT_5551:
case GE_TFMT_5650:
if (!swizzled) {
// Just a simple copy, we swizzle the color format.
if (reverseColors) {
for (int y = 0; y < h; ++y) {
ReverseColors(out + outPitch * y, texptr + bufw * sizeof(u16) * y, format, w, useBGRA);
}
} else if (expandTo32bit) {
for (int y = 0; y < h; ++y) {
ConvertFormatToRGBA8888(format, (u32 *)(out + outPitch * y), (const u16 *)texptr + bufw * y, w);
}
} else {
for (int y = 0; y < h; ++y) {
memcpy(out + outPitch * y, texptr + bufw * sizeof(u16) * y, w * sizeof(u16));
}
}
} else if (h >= 8 && bufw <= w && !expandTo32bit) {
// Note: this is always safe since h must be a power of 2, so a multiple of 8.
UnswizzleFromMem((u32 *)out, outPitch, texptr, bufw, h, 2);
if (reverseColors) {
ReverseColors(out, out, format, h * outPitch / 2, useBGRA);
}
} else {
// We don't have enough space for all rows in out, so use a temp buffer.
tmpTexBuf32_.resize(bufw * ((h + 7) & ~7));
UnswizzleFromMem(tmpTexBuf32_.data(), bufw * 2, texptr, bufw, h, 2);
const u8 *unswizzled = (u8 *)tmpTexBuf32_.data();
if (reverseColors) {
for (int y = 0; y < h; ++y) {
ReverseColors(out + outPitch * y, unswizzled + bufw * sizeof(u16) * y, format, w, useBGRA);
}
} else if (expandTo32bit) {
for (int y = 0; y < h; ++y) {
ConvertFormatToRGBA8888(format, (u32 *)(out + outPitch * y), (const u16 *)unswizzled + bufw * y, w);
}
} else {
for (int y = 0; y < h; ++y) {
memcpy(out + outPitch * y, unswizzled + bufw * sizeof(u16) * y, w * sizeof(u16));
}
}
}
break;
case GE_TFMT_8888:
if (!swizzled) {
if (reverseColors) {
for (int y = 0; y < h; ++y) {
ReverseColors(out + outPitch * y, texptr + bufw * sizeof(u32) * y, format, w, useBGRA);
}
} else {
for (int y = 0; y < h; ++y) {
memcpy(out + outPitch * y, texptr + bufw * sizeof(u32) * y, w * sizeof(u32));
}
}
} else if (h >= 8 && bufw <= w) {
UnswizzleFromMem((u32 *)out, outPitch, texptr, bufw, h, 4);
if (reverseColors) {
ReverseColors(out, out, format, h * outPitch / 4, useBGRA);
}
} else {
// We don't have enough space for all rows in out, so use a temp buffer.
tmpTexBuf32_.resize(bufw * ((h + 7) & ~7));
UnswizzleFromMem(tmpTexBuf32_.data(), bufw * 4, texptr, bufw, h, 4);
const u8 *unswizzled = (u8 *)tmpTexBuf32_.data();
if (reverseColors) {
for (int y = 0; y < h; ++y) {
ReverseColors(out + outPitch * y, unswizzled + bufw * sizeof(u32) * y, format, w, useBGRA);
}
} else {
for (int y = 0; y < h; ++y) {
memcpy(out + outPitch * y, unswizzled + bufw * sizeof(u32) * y, w * sizeof(u32));
}
}
}
break;
case GE_TFMT_DXT1:
{
int minw = std::min(bufw, w);
u32 *dst = (u32 *)out;
int outPitch32 = outPitch / sizeof(u32);
DXT1Block *src = (DXT1Block*)texptr;
for (int y = 0; y < h; y += 4) {
u32 blockIndex = (y / 4) * (bufw / 4);
int blockHeight = std::min(h - y, 4);
for (int x = 0; x < minw; x += 4) {
DecodeDXT1Block(dst + outPitch32 * y + x, src + blockIndex, outPitch32, blockHeight, false);
blockIndex++;
}
}
w = (w + 3) & ~3;
if (reverseColors) {
ReverseColors(out, out, GE_TFMT_8888, outPitch32 * h, useBGRA);
}
break;
}
case GE_TFMT_DXT3:
{
int minw = std::min(bufw, w);
u32 *dst = (u32 *)out;
int outPitch32 = outPitch / sizeof(u32);
DXT3Block *src = (DXT3Block*)texptr;
for (int y = 0; y < h; y += 4) {
u32 blockIndex = (y / 4) * (bufw / 4);
int blockHeight = std::min(h - y, 4);
for (int x = 0; x < minw; x += 4) {
DecodeDXT3Block(dst + outPitch32 * y + x, src + blockIndex, outPitch32, blockHeight);
blockIndex++;
}
}
w = (w + 3) & ~3;
if (reverseColors) {
ReverseColors(out, out, GE_TFMT_8888, outPitch32 * h, useBGRA);
}
break;
}
case GE_TFMT_DXT5:
{
int minw = std::min(bufw, w);
u32 *dst = (u32 *)out;
int outPitch32 = outPitch / sizeof(u32);
DXT5Block *src = (DXT5Block*)texptr;
for (int y = 0; y < h; y += 4) {
u32 blockIndex = (y / 4) * (bufw / 4);
int blockHeight = std::min(h - y, 4);
for (int x = 0; x < minw; x += 4) {
DecodeDXT5Block(dst + outPitch32 * y + x, src + blockIndex, outPitch32, blockHeight);
blockIndex++;
}
}
w = (w + 3) & ~3;
if (reverseColors) {
ReverseColors(out, out, GE_TFMT_8888, outPitch32 * h, useBGRA);
}
break;
}
default:
ERROR_LOG_REPORT(G3D, "Unknown Texture Format %d!!!", format);
break;
}
}
void TextureCacheCommon::ReadIndexedTex(u8 *out, int outPitch, int level, const u8 *texptr, int bytesPerIndex, int bufw, bool expandTo32Bit) {
int w = gstate.getTextureWidth(level);
int h = gstate.getTextureHeight(level);
if (gstate.isTextureSwizzled()) {
tmpTexBuf32_.resize(bufw * ((h + 7) & ~7));
UnswizzleFromMem(tmpTexBuf32_.data(), bufw * bytesPerIndex, texptr, bufw, h, bytesPerIndex);
texptr = (u8 *)tmpTexBuf32_.data();
}
int palFormat = gstate.getClutPaletteFormat();
const u16 *clut16 = (const u16 *)clutBuf_;
const u32 *clut32 = (const u32 *)clutBuf_;
if (expandTo32Bit && palFormat != GE_CMODE_32BIT_ABGR8888) {
ConvertFormatToRGBA8888(GEPaletteFormat(palFormat), expandClut_, clut16, 256);
clut32 = expandClut_;
palFormat = GE_CMODE_32BIT_ABGR8888;
}
switch (palFormat) {
case GE_CMODE_16BIT_BGR5650:
case GE_CMODE_16BIT_ABGR5551:
case GE_CMODE_16BIT_ABGR4444:
{
switch (bytesPerIndex) {
case 1:
for (int y = 0; y < h; ++y) {
DeIndexTexture((u16 *)(out + outPitch * y), (const u8 *)texptr + bufw * y, w, clut16);
}
break;
case 2:
for (int y = 0; y < h; ++y) {
DeIndexTexture((u16 *)(out + outPitch * y), (const u16_le *)texptr + bufw * y, w, clut16);
}
break;
case 4:
for (int y = 0; y < h; ++y) {
DeIndexTexture((u16 *)(out + outPitch * y), (const u32_le *)texptr + bufw * y, w, clut16);
}
break;
}
}
break;
case GE_CMODE_32BIT_ABGR8888:
{
switch (bytesPerIndex) {
case 1:
for (int y = 0; y < h; ++y) {
DeIndexTexture((u32 *)(out + outPitch * y), (const u8 *)texptr + bufw * y, w, clut32);
}
break;
case 2:
for (int y = 0; y < h; ++y) {
DeIndexTexture((u32 *)(out + outPitch * y), (const u16_le *)texptr + bufw * y, w, clut32);
}
break;
case 4:
for (int y = 0; y < h; ++y) {
DeIndexTexture((u32 *)(out + outPitch * y), (const u32_le *)texptr + bufw * y, w, clut32);
}
break;
}
}
break;
default:
ERROR_LOG_REPORT(G3D, "Unhandled clut texture mode %d!!!", gstate.getClutPaletteFormat());
break;
}
}
void TextureCacheCommon::ApplyTexture() {
TexCacheEntry *entry = nextTexture_;
if (!entry) {
// Maybe we bound a framebuffer?
InvalidateLastTexture();
if (nextFramebufferTexture_) {
bool depth = Memory::IsDepthTexVRAMAddress(gstate.getTextureAddress(0));
// ApplyTextureFrameBuffer is responsible for setting SetTextureFullAlpha.
ApplyTextureFramebuffer(nextFramebufferTexture_, gstate.getTextureFormat(), depth ? NOTIFY_FB_DEPTH : NOTIFY_FB_COLOR);
nextFramebufferTexture_ = nullptr;
}
return;
}
nextTexture_ = nullptr;
UpdateMaxSeenV(entry, gstate.isModeThrough());
if (nextNeedsRebuild_) {
// Regardless of hash fails or otherwise, if this is a video, mark it frequently changing.
// This prevents temporary scaling perf hits on the first second of video.
bool isVideo = videos_.find(entry->addr & 0x3FFFFFFF) != videos_.end();
if (isVideo) {
entry->status |= TexCacheEntry::STATUS_CHANGE_FREQUENT;
}
if (nextNeedsRehash_) {
PROFILE_THIS_SCOPE("texhash");
// Update the hash on the texture.
int w = gstate.getTextureWidth(0);
int h = gstate.getTextureHeight(0);
entry->fullhash = QuickTexHash(replacer_, entry->addr, entry->bufw, w, h, GETextureFormat(entry->format), entry);
// TODO: Here we could check the secondary cache; maybe the texture is in there?
// We would need to abort the build if so.
}
if (nextNeedsChange_) {
// This texture existed previously, let's handle the change.
HandleTextureChange(entry, nextChangeReason_, false, true);
}
// We actually build afterward (shared with rehash rebuild.)
} else if (nextNeedsRehash_) {
// Okay, this matched and didn't change - but let's check the hash. Maybe it will change.
bool doDelete = true;
if (!CheckFullHash(entry, doDelete)) {
HandleTextureChange(entry, "hash fail", true, doDelete);
nextNeedsRebuild_ = true;
} else if (nextTexture_ != nullptr) {
// The secondary cache may choose an entry from its storage by setting nextTexture_.
// This means we should set that, instead of our previous entry.
entry = nextTexture_;
nextTexture_ = nullptr;
UpdateMaxSeenV(entry, gstate.isModeThrough());
}
}
// Okay, now actually rebuild the texture if needed.
if (nextNeedsRebuild_) {
_assert_(!entry->texturePtr);
BuildTexture(entry);
InvalidateLastTexture();
}
entry->lastFrame = gpuStats.numFlips;
BindTexture(entry);
gstate_c.SetTextureFullAlpha(entry->GetAlphaStatus() == TexCacheEntry::STATUS_ALPHA_FULL);
}
void TextureCacheCommon::Clear(bool delete_them) {
ForgetLastTexture();
for (TexCache::iterator iter = cache_.begin(); iter != cache_.end(); ++iter) {
ReleaseTexture(iter->second.get(), delete_them);
}
// In case the setting was changed, we ALWAYS clear the secondary cache (enabled or not.)
for (TexCache::iterator iter = secondCache_.begin(); iter != secondCache_.end(); ++iter) {
ReleaseTexture(iter->second.get(), delete_them);
}
if (cache_.size() + secondCache_.size()) {
INFO_LOG(G3D, "Texture cached cleared from %i textures", (int)(cache_.size() + secondCache_.size()));
cache_.clear();
secondCache_.clear();
cacheSizeEstimate_ = 0;
secondCacheSizeEstimate_ = 0;
}
videos_.clear();
}
void TextureCacheCommon::DeleteTexture(TexCache::iterator it) {
ReleaseTexture(it->second.get(), true);
cacheSizeEstimate_ -= EstimateTexMemoryUsage(it->second.get());
cache_.erase(it);
}
bool TextureCacheCommon::CheckFullHash(TexCacheEntry *entry, bool &doDelete) {
int w = gstate.getTextureWidth(0);
int h = gstate.getTextureHeight(0);
u32 fullhash;
{
PROFILE_THIS_SCOPE("texhash");
fullhash = QuickTexHash(replacer_, entry->addr, entry->bufw, w, h, GETextureFormat(entry->format), entry);
}
if (fullhash == entry->fullhash) {
if (g_Config.bTextureBackoffCache) {
if (entry->GetHashStatus() != TexCacheEntry::STATUS_HASHING && entry->numFrames > TexCacheEntry::FRAMES_REGAIN_TRUST) {
// Reset to STATUS_HASHING.
entry->SetHashStatus(TexCacheEntry::STATUS_HASHING);
entry->status &= ~TexCacheEntry::STATUS_CHANGE_FREQUENT;
}
} else if (entry->numFrames > TEXCACHE_FRAME_CHANGE_FREQUENT_REGAIN_TRUST) {
entry->status &= ~TexCacheEntry::STATUS_CHANGE_FREQUENT;
}
return true;
}
// Don't give up just yet. Let's try the secondary cache if it's been invalidated before.
if (g_Config.bTextureSecondaryCache) {
// Don't forget this one was unreliable (in case we match a secondary entry.)
entry->status |= TexCacheEntry::STATUS_UNRELIABLE;
// If it's failed a bunch of times, then the second cache is just wasting time and VRAM.
// In that case, skip.
if (entry->numInvalidated > 2 && entry->numInvalidated < 128 && !lowMemoryMode_) {
// We have a new hash: look for that hash in the secondary cache.
u64 secondKey = fullhash | (u64)entry->cluthash << 32;
TexCache::iterator secondIter = secondCache_.find(secondKey);
if (secondIter != secondCache_.end()) {
// Found it, but does it match our current params? If not, abort.
TexCacheEntry *secondEntry = secondIter->second.get();
if (secondEntry->Matches(entry->dim, entry->format, entry->maxLevel)) {
// Reset the numInvalidated value lower, we got a match.
if (entry->numInvalidated > 8) {
--entry->numInvalidated;
}
// Now just use our archived texture, instead of entry.
nextTexture_ = secondEntry;
return true;
}
} else {
// It wasn't found, so we're about to throw away the entry and rebuild a texture.
// Let's save this in the secondary cache in case it gets used again.
secondKey = entry->fullhash | ((u64)entry->cluthash << 32);
secondCacheSizeEstimate_ += EstimateTexMemoryUsage(entry);
// If the entry already exists in the secondary texture cache, drop it nicely.
auto oldIter = secondCache_.find(secondKey);
if (oldIter != secondCache_.end()) {
ReleaseTexture(oldIter->second.get(), true);
}
// Archive the entire texture entry as is, since we'll use its params if it is seen again.
// We keep parameters on the current entry, since we are STILL building a new texture here.
secondCache_[secondKey].reset(new TexCacheEntry(*entry));
// Make sure we don't delete the texture we just archived.
entry->texturePtr = nullptr;
doDelete = false;
}
}
}
// We know it failed, so update the full hash right away.
entry->fullhash = fullhash;
return false;
}
void TextureCacheCommon::Invalidate(u32 addr, int size, GPUInvalidationType type) {
// They could invalidate inside the texture, let's just give a bit of leeway.
// TODO: Keep track of the largest texture size in bytes, and use that instead of this
// humongous unrealistic value.
const int LARGEST_TEXTURE_SIZE = 512 * 512 * 4;
addr &= 0x3FFFFFFF;
const u32 addr_end = addr + size;
if (type == GPU_INVALIDATE_ALL) {
// This is an active signal from the game that something in the texture cache may have changed.
gstate_c.Dirty(DIRTY_TEXTURE_IMAGE);
} else {
// Do a quick check to see if the current texture could potentially be in range.
const u32 currentAddr = gstate.getTextureAddress(0);
// TODO: This can be made tighter.
if (addr_end >= currentAddr && addr < currentAddr + LARGEST_TEXTURE_SIZE) {
gstate_c.Dirty(DIRTY_TEXTURE_IMAGE);
}
}
// If we're hashing every use, without backoff, then this isn't needed.
if (!g_Config.bTextureBackoffCache && type != GPU_INVALIDATE_FORCE) {
return;
}
const u64 startKey = (u64)(addr - LARGEST_TEXTURE_SIZE) << 32;
u64 endKey = (u64)(addr + size + LARGEST_TEXTURE_SIZE) << 32;
if (endKey < startKey) {
endKey = (u64)-1;
}
for (TexCache::iterator iter = cache_.lower_bound(startKey), end = cache_.upper_bound(endKey); iter != end; ++iter) {
auto &entry = iter->second;
u32 texAddr = entry->addr;
u32 texEnd = entry->addr + entry->sizeInRAM;
// Quick check for overlap. Yes the check is right.
if (addr < texEnd && addr_end > texAddr) {
if (entry->GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) {
entry->SetHashStatus(TexCacheEntry::STATUS_HASHING);
}
if (type == GPU_INVALIDATE_FORCE) {
// Just random values to force the hash not to match.
entry->fullhash = (entry->fullhash ^ 0x12345678) + 13;
entry->hash = (entry->hash ^ 0x89ABCDEF) + 89;
}
if (type != GPU_INVALIDATE_ALL) {
gpuStats.numTextureInvalidations++;
// Start it over from 0 (unless it's safe.)
entry->numFrames = type == GPU_INVALIDATE_SAFE ? 256 : 0;
if (type == GPU_INVALIDATE_SAFE) {
u32 diff = gpuStats.numFlips - entry->lastFrame;
// We still need to mark if the texture is frequently changing, even if it's safely changing.
if (diff < TEXCACHE_FRAME_CHANGE_FREQUENT) {
entry->status |= TexCacheEntry::STATUS_CHANGE_FREQUENT;
}
}
entry->framesUntilNextFullHash = 0;
} else {
entry->invalidHint++;
}
}
}
}
void TextureCacheCommon::InvalidateAll(GPUInvalidationType /*unused*/) {
// If we're hashing every use, without backoff, then this isn't needed.
if (!g_Config.bTextureBackoffCache) {
return;
}
if (timesInvalidatedAllThisFrame_ > 5) {
return;
}
timesInvalidatedAllThisFrame_++;
for (TexCache::iterator iter = cache_.begin(), end = cache_.end(); iter != end; ++iter) {
if (iter->second->GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) {
iter->second->SetHashStatus(TexCacheEntry::STATUS_HASHING);
}
iter->second->invalidHint++;
}
}
void TextureCacheCommon::ClearNextFrame() {
clearCacheNextFrame_ = true;
}