ppsspp/GPU/Vulkan/DrawEngineVulkan.cpp

711 lines
26 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <cassert>
#include "base/logging.h"
#include "base/timeutil.h"
#include "Common/MemoryUtil.h"
#include "Core/MemMap.h"
#include "Core/Host.h"
#include "Core/System.h"
#include "Core/Reporting.h"
#include "Core/Config.h"
#include "Core/CoreTiming.h"
#include "GPU/Math3D.h"
#include "GPU/GPUState.h"
#include "GPU/ge_constants.h"
#include "GPU/Common/TextureDecoder.h"
#include "GPU/Common/SplineCommon.h"
#include "GPU/Common/TransformCommon.h"
#include "GPU/Common/VertexDecoderCommon.h"
#include "GPU/Common/SoftwareTransformCommon.h"
#include "GPU/Common/DrawEngineCommon.h"
#include "GPU/Vulkan/DrawEngineVulkan.h"
#include "GPU/Vulkan/TextureCacheVulkan.h"
#include "GPU/Vulkan/ShaderManagerVulkan.h"
#include "GPU/Vulkan/PipelineManagerVulkan.h"
#include "GPU/Vulkan/GPU_Vulkan.h"
enum {
DRAW_BINDING_TEXTURE = 0,
DRAW_BINDING_2ND_TEXTURE = 1,
DRAW_BINDING_DYNUBO_BASE = 2,
DRAW_BINDING_DYNUBO_LIGHT = 3,
DRAW_BINDING_DYNUBO_BONE = 4,
};
const VkPrimitiveTopology prim[8] = {
VK_PRIMITIVE_TOPOLOGY_POINT_LIST,
VK_PRIMITIVE_TOPOLOGY_LINE_LIST,
VK_PRIMITIVE_TOPOLOGY_LINE_STRIP,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, // Vulkan doesn't do quads. We could do strips with restart-index though. We could also do RECT primitives in the geometry shader.
};
enum {
TRANSFORMED_VERTEX_BUFFER_SIZE = VERTEX_BUFFER_MAX * sizeof(TransformedVertex)
};
DrawEngineVulkan::DrawEngineVulkan(VulkanContext *vulkan)
:
vulkan_(vulkan),
decodedVerts_(0),
prevPrim_(GE_PRIM_INVALID),
lastVType_(-1),
pipelineManager_(nullptr),
textureCache_(nullptr),
framebufferManager_(nullptr),
numDrawCalls(0),
vertexCountInDrawCalls(0),
decodeCounter_(0),
fboTexNeedBind_(false),
fboTexBound_(false),
curFrame_(0) {
memset(&decOptions_, 0, sizeof(decOptions_));
decOptions_.expandAllUVtoFloat = true;
decOptions_.expandAllWeightsToFloat = true;
decOptions_.expand8BitNormalsToFloat = true;
// Allocate nicely aligned memory. Maybe graphics drivers will
// appreciate it.
// All this is a LOT of memory, need to see if we can cut down somehow.
decoded = (u8 *)AllocateMemoryPages(DECODED_VERTEX_BUFFER_SIZE);
decIndex = (u16 *)AllocateMemoryPages(DECODED_INDEX_BUFFER_SIZE);
splineBuffer = (u8 *)AllocateMemoryPages(SPLINE_BUFFER_SIZE);
transformed = (TransformedVertex *)AllocateMemoryPages(TRANSFORMED_VERTEX_BUFFER_SIZE);
transformedExpanded = (TransformedVertex *)AllocateMemoryPages(3 * TRANSFORMED_VERTEX_BUFFER_SIZE);
indexGen.Setup(decIndex);
// All resources we need for PSP drawing. Usually only bindings 0 and 2-4 are populated.
VkDescriptorSetLayoutBinding bindings[5];
bindings[0].descriptorCount = 1;
bindings[0].pImmutableSamplers = nullptr;
bindings[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
bindings[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
bindings[0].binding = DRAW_BINDING_TEXTURE;
bindings[1].descriptorCount = 1;
bindings[1].pImmutableSamplers = nullptr;
bindings[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
bindings[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
bindings[1].binding = DRAW_BINDING_2ND_TEXTURE;
bindings[2].descriptorCount = 1;
bindings[2].pImmutableSamplers = nullptr;
bindings[2].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
bindings[2].stageFlags = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT;
bindings[2].binding = DRAW_BINDING_DYNUBO_BASE;
bindings[3].descriptorCount = 1;
bindings[3].pImmutableSamplers = nullptr;
bindings[3].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
bindings[3].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
bindings[3].binding = DRAW_BINDING_DYNUBO_LIGHT;
bindings[4].descriptorCount = 1;
bindings[4].pImmutableSamplers = nullptr;
bindings[4].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
bindings[4].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
bindings[4].binding = DRAW_BINDING_DYNUBO_BONE;
VkDevice device = vulkan_->GetDevice();
VkDescriptorSetLayoutCreateInfo dsl;
dsl.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
dsl.pNext = nullptr;
dsl.bindingCount = 5;
dsl.pBindings = bindings;
VkResult res = vkCreateDescriptorSetLayout(device, &dsl, nullptr, &descriptorSetLayout_);
VkDescriptorPoolSize dpTypes[2];
dpTypes[0].descriptorCount = 800;
dpTypes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
dpTypes[1].descriptorCount = 200;
dpTypes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
VkDescriptorPoolCreateInfo dp;
dp.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
dp.pNext = nullptr;
dp.flags = 0; // Don't want to mess around with individually freeing these, let's go fixed each frame and zap the whole array. Might try the dynamic approach later.
dp.maxSets = 1000;
dp.pPoolSizes = dpTypes;
dp.poolSizeCount = ARRAY_SIZE(dpTypes);
res = vkCreateDescriptorPool(device, &dp, nullptr, &frame_[0].descPool);
assert(VK_SUCCESS == res);
res = vkCreateDescriptorPool(device, &dp, nullptr, &frame_[1].descPool);
assert(VK_SUCCESS == res);
// We are going to use one-shot descriptors in the initial implementation. Might look into caching them
// if creating and updating them turns out to be expensive.
for (int i = 0; i < 2; i++) {
VkResult res = vkCreateDescriptorPool(vulkan_->GetDevice(), &dp, nullptr, &frame_[i].descPool);
assert(VK_SUCCESS == res);
frame_[i].pushData = new VulkanPushBuffer(vulkan_, 4 * 1024 * 1024); // TODO: Do something more dynamic
}
VkPipelineLayoutCreateInfo pl;
pl.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pl.pNext = nullptr;
pl.pPushConstantRanges = nullptr;
pl.pushConstantRangeCount = 0;
pl.setLayoutCount = 1;
pl.pSetLayouts = &descriptorSetLayout_;
res = vkCreatePipelineLayout(device, &pl, nullptr, &pipelineLayout_);
assert(VK_SUCCESS == res);
VkSamplerCreateInfo samp = {};
samp.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samp.pNext = nullptr;
samp.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samp.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samp.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samp.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
samp.flags = 0;
samp.magFilter = VK_FILTER_LINEAR;
samp.minFilter = VK_FILTER_LINEAR;
res = vkCreateSampler(device, &samp, nullptr, &depalSampler_);
assert(VK_SUCCESS == res);
}
void DrawEngineVulkan::BeginFrame() {
FrameData *frame = &frame_[curFrame_ & 1];
vkResetDescriptorPool(vulkan_->GetDevice(), frame->descPool, 0);
frame->pushData->Begin(vulkan_->GetDevice());
frame->pushData->Reset();
}
void DrawEngineVulkan::EndFrame() {
FrameData *frame = &frame_[curFrame_ & 1];
frame->pushData->End(vulkan_->GetDevice());
curFrame_++;
}
DrawEngineVulkan::~DrawEngineVulkan() {
FreeMemoryPages(decoded, DECODED_VERTEX_BUFFER_SIZE);
FreeMemoryPages(decIndex, DECODED_INDEX_BUFFER_SIZE);
FreeMemoryPages(splineBuffer, SPLINE_BUFFER_SIZE);
FreeMemoryPages(transformed, TRANSFORMED_VERTEX_BUFFER_SIZE);
FreeMemoryPages(transformedExpanded, 3 * TRANSFORMED_VERTEX_BUFFER_SIZE);
for (int i = 0; i < 2; i++) {
vulkan_->QueueDelete(frame_[i].descPool);
delete frame_[i].pushData;
}
vulkan_->QueueDelete(depalSampler_);
}
VertexDecoder *DrawEngineVulkan::GetVertexDecoder(u32 vtype) {
auto iter = decoderMap_.find(vtype);
if (iter != decoderMap_.end())
return iter->second;
VertexDecoder *dec = new VertexDecoder();
dec->SetVertexType(vtype, decOptions_, decJitCache_);
decoderMap_[vtype] = dec;
return dec;
}
void DrawEngineVulkan::SetupVertexDecoder(u32 vertType) {
SetupVertexDecoderInternal(vertType);
}
inline void DrawEngineVulkan::SetupVertexDecoderInternal(u32 vertType) {
// As the decoder depends on the UVGenMode when we use UV prescale, we simply mash it
// into the top of the verttype where there are unused bits.
const u32 vertTypeID = (vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24);
// If vtype has changed, setup the vertex decoder.
if (vertTypeID != lastVType_) {
dec_ = GetVertexDecoder(vertTypeID);
lastVType_ = vertTypeID;
}
}
void DrawEngineVulkan::SubmitPrim(void *verts, void *inds, GEPrimitiveType prim, int vertexCount, u32 vertType, int *bytesRead) {
if (!indexGen.PrimCompatible(prevPrim_, prim) || numDrawCalls >= MAX_DEFERRED_DRAW_CALLS || vertexCountInDrawCalls + vertexCount > VERTEX_BUFFER_MAX)
Flush(cmd_);
// TODO: Is this the right thing to do?
if (prim == GE_PRIM_KEEP_PREVIOUS) {
prim = prevPrim_ != GE_PRIM_INVALID ? prevPrim_ : GE_PRIM_POINTS;
} else {
prevPrim_ = prim;
}
SetupVertexDecoderInternal(vertType);
*bytesRead = vertexCount * dec_->VertexSize();
if ((vertexCount < 2 && prim > 0) || (vertexCount < 3 && prim > 2 && prim != GE_PRIM_RECTANGLES))
return;
DeferredDrawCall &dc = drawCalls[numDrawCalls];
dc.verts = verts;
dc.inds = inds;
dc.vertType = vertType;
dc.indexType = (vertType & GE_VTYPE_IDX_MASK) >> GE_VTYPE_IDX_SHIFT;
dc.prim = prim;
dc.vertexCount = vertexCount;
if (inds) {
GetIndexBounds(inds, vertexCount, vertType, &dc.indexLowerBound, &dc.indexUpperBound);
} else {
dc.indexLowerBound = 0;
dc.indexUpperBound = vertexCount - 1;
}
numDrawCalls++;
vertexCountInDrawCalls += vertexCount;
if (g_Config.bSoftwareSkinning && (vertType & GE_VTYPE_WEIGHT_MASK)) {
DecodeVertsStep();
decodeCounter_++;
}
if (prim == GE_PRIM_RECTANGLES && (gstate.getTextureAddress(0) & 0x3FFFFFFF) == (gstate.getFrameBufAddress() & 0x3FFFFFFF)) {
// Rendertarget == texture?
if (!g_Config.bDisableSlowFramebufEffects) {
gstate_c.textureChanged |= TEXCHANGE_PARAMSONLY;
Flush(cmd_);
}
}
}
void DrawEngineVulkan::DecodeVerts() {
for (; decodeCounter_ < numDrawCalls; decodeCounter_++) {
DecodeVertsStep();
}
// Sanity check
if (indexGen.Prim() < 0) {
ERROR_LOG_REPORT(G3D, "DecodeVerts: Failed to deduce prim: %i", indexGen.Prim());
// Force to points (0)
indexGen.AddPrim(GE_PRIM_POINTS, 0);
}
}
void DrawEngineVulkan::DecodeVertsStep() {
const int i = decodeCounter_;
const DeferredDrawCall &dc = drawCalls[i];
indexGen.SetIndex(decodedVerts_);
int indexLowerBound = dc.indexLowerBound, indexUpperBound = dc.indexUpperBound;
u32 indexType = dc.indexType;
void *inds = dc.inds;
if (indexType == GE_VTYPE_IDX_NONE >> GE_VTYPE_IDX_SHIFT) {
// Decode the verts and apply morphing. Simple.
dec_->DecodeVerts(decoded + decodedVerts_ * (int)dec_->GetDecVtxFmt().stride,
dc.verts, indexLowerBound, indexUpperBound);
decodedVerts_ += indexUpperBound - indexLowerBound + 1;
indexGen.AddPrim(dc.prim, dc.vertexCount);
} else {
// It's fairly common that games issue long sequences of PRIM calls, with differing
// inds pointer but the same base vertex pointer. We'd like to reuse vertices between
// these as much as possible, so we make sure here to combine as many as possible
// into one nice big drawcall, sharing data.
// 1. Look ahead to find the max index, only looking as "matching" drawcalls.
// Expand the lower and upper bounds as we go.
int lastMatch = i;
const int total = numDrawCalls;
for (int j = i + 1; j < total; ++j) {
if (drawCalls[j].verts != dc.verts)
break;
indexLowerBound = std::min(indexLowerBound, (int)drawCalls[j].indexLowerBound);
indexUpperBound = std::max(indexUpperBound, (int)drawCalls[j].indexUpperBound);
lastMatch = j;
}
// 2. Loop through the drawcalls, translating indices as we go.
switch (indexType) {
case GE_VTYPE_IDX_8BIT >> GE_VTYPE_IDX_SHIFT:
for (int j = i; j <= lastMatch; j++) {
indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u8 *)drawCalls[j].inds, indexLowerBound);
}
break;
case GE_VTYPE_IDX_16BIT >> GE_VTYPE_IDX_SHIFT:
for (int j = i; j <= lastMatch; j++) {
indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u16 *)drawCalls[j].inds, indexLowerBound);
}
break;
}
const int vertexCount = indexUpperBound - indexLowerBound + 1;
// This check is a workaround for Pangya Fantasy Golf, which sends bogus index data when switching items in "My Room" sometimes.
if (decodedVerts_ + vertexCount > VERTEX_BUFFER_MAX) {
return;
}
// 3. Decode that range of vertex data.
dec_->DecodeVerts(decoded + decodedVerts_ * (int)dec_->GetDecVtxFmt().stride,
dc.verts, indexLowerBound, indexUpperBound);
decodedVerts_ += vertexCount;
// 4. Advance indexgen vertex counter.
indexGen.Advance(vertexCount);
decodeCounter_ = lastMatch;
}
}
inline u32 ComputeMiniHashRange(const void *ptr, size_t sz) {
// Switch to u32 units.
const u32 *p = (const u32 *)ptr;
sz >>= 2;
if (sz > 100) {
size_t step = sz / 4;
u32 hash = 0;
for (size_t i = 0; i < sz; i += step) {
hash += DoReliableHash32(p + i, 100, 0x3A44B9C4);
}
return hash;
} else {
return p[0] + p[sz - 1];
}
}
VkDescriptorSet DrawEngineVulkan::GetDescriptorSet(CachedTextureVulkan *texture, VkSampler sampler, VkBuffer dynamicUbo) {
DescriptorSetKey key;
key.texture_ = texture;
key.sampler_ = sampler;
key.secondaryTexture_ = nullptr;
key.buffer_ = dynamicUbo;
FrameData *frame = &frame_[curFrame_ & 1];
auto iter = frame->descSets.find(key);
if (iter != frame->descSets.end()) {
return iter->second;
}
// Didn't find one in the frame cache, let's make a new one.
VkDescriptorSet desc;
VkDescriptorSetAllocateInfo descAlloc;
descAlloc.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
descAlloc.pNext = nullptr;
descAlloc.pSetLayouts = &descriptorSetLayout_;
descAlloc.descriptorPool = frame->descPool;
descAlloc.descriptorSetCount = 1;
vkAllocateDescriptorSets(vulkan_->GetDevice(), &descAlloc, &desc);
// We just don't write to the slots we don't care about.
VkWriteDescriptorSet writes[4];
memset(writes, 0, sizeof(writes));
// Main texture
int n = 0;
if (texture) {
VkDescriptorImageInfo tex;
tex.imageLayout = texture->imageLayout;
tex.imageView = texture->imageView;
tex.sampler = sampler;
writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[n].pNext = nullptr;
writes[n].dstBinding = DRAW_BINDING_TEXTURE;
writes[n].pImageInfo = &tex;
writes[n].descriptorCount = 1;
writes[n].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writes[n].dstSet = desc;
n++;
}
// Skipping 2nd texture for now.
// Uniform buffer objects
VkDescriptorBufferInfo buf[3];
buf[0].buffer = dynamicUbo;
buf[0].offset = 0;
buf[0].range = sizeof(UB_VS_FS_Base);
buf[1].buffer = dynamicUbo;
buf[1].offset = 0;
buf[1].range = sizeof(UB_VS_Lights);
buf[2].buffer = dynamicUbo;
buf[2].offset = 0;
buf[2].range = sizeof(UB_VS_Bones);
writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[n].pNext = nullptr;
writes[n].dstBinding = DRAW_BINDING_DYNUBO_BASE;
writes[n].pBufferInfo = &buf[0];
writes[n].dstSet = desc;
writes[n].descriptorCount = 3;
writes[n].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
n++;
vkUpdateDescriptorSets(vulkan_->GetDevice(), n, writes, 0, nullptr);
frame->descSets[key] = desc;
return desc;
}
// The inline wrapper in the header checks for numDrawCalls == 0d
void DrawEngineVulkan::DoFlush(VkCommandBuffer cmd) {
gpuStats.numFlushes++;
FrameData *frame = &frame_[curFrame_ & 1];
// Note than when we implement overflow in pushbuffer, we need to make sure to overflow here, not between
// the three ubo pushes. The reason is that the three UBOs must be in the same buffer as that's how we
// designed the descriptor set.
// CachedTextureVulkan *tex = textureCache_->ApplyTexture();
VkDescriptorSet ds = GetDescriptorSet(nullptr, nullptr, frame->pushData->GetVkBuffer());
GEPrimitiveType prim = prevPrim_;
bool useHWTransform = CanUseHardwareTransform(prim);
VulkanVertexShader *vshader;
VulkanFragmentShader *fshader;
uint32_t baseUBOOffset = 0;
uint32_t lightUBOOffset = 0;
uint32_t boneUBOOffset = 0;
uint32_t ibOffset = 0;
uint32_t vbOffset = 0;
if (useHWTransform) {
int vertexCount = 0;
int maxIndex = 0;
bool useElements = true;
DecodeVerts();
gpuStats.numUncachedVertsDrawn += indexGen.VertexCount();
useElements = !indexGen.SeenOnlyPurePrims();
vertexCount = indexGen.VertexCount();
maxIndex = indexGen.MaxIndex();
if (!useElements && indexGen.PureCount()) {
vertexCount = indexGen.PureCount();
}
prim = indexGen.Prim();
bool hasColor = (lastVType_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE;
if (gstate.isModeThrough()) {
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255);
} else {
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255);
}
VulkanPipelineRasterStateKey pipelineKey;
VulkanDynamicState dynState;
ConvertStateToVulkanKey(*framebufferManager_, prim, pipelineKey, dynState);
// TODO: Dirty-flag these.
vkCmdSetScissor(cmd_, 0, 1, &dynState.scissor);
vkCmdSetViewport(cmd_, 0, 1, &dynState.viewport);
vkCmdSetStencilReference(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState.stencilRef);
vkCmdSetStencilWriteMask(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState.stencilWriteMask);
vkCmdSetStencilCompareMask(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState.stencilCompareMask);
// vkCmdSetBlendConstants(cmd_, dynState.blendColor);
shaderManager_->UpdateUniforms();
shaderManager_->GetShaders(prim, lastVType_, &vshader, &fshader, useHWTransform);
VulkanPipeline *pipeline = pipelineManager_->GetOrCreatePipeline(pipelineLayout_, pipelineKey, dec_, vshader->GetModule(), fshader->GetModule(), true);
vkCmdBindPipeline(cmd_, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline->pipeline); // TODO: Avoid if same as last draw.
if (pipeline->uniformBlocks & UB_VS_FS_BASE) {
baseUBOOffset = shaderManager_->PushBaseBuffer(frame->pushData);
}
if (pipeline->uniformBlocks & UB_VS_LIGHTS) {
lightUBOOffset = shaderManager_->PushLightBuffer(frame->pushData);
}
if (pipeline->uniformBlocks & UB_VS_BONES) {
boneUBOOffset = shaderManager_->PushBoneBuffer(frame->pushData);
}
VkBuffer buf[1] = {frame->pushData->GetVkBuffer()};
const uint32_t dynamicUBOOffsets[3] = {
baseUBOOffset, lightUBOOffset, boneUBOOffset,
};
vkCmdBindDescriptorSets(cmd_, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout_, 0, 1, &ds, 3, dynamicUBOOffsets);
vbOffset = (uint32_t)frame->pushData->Push(decoded, vertexCount * dec_->GetDecVtxFmt().stride);
VkDeviceSize offsets[1] = { vbOffset };
if (useElements) {
ibOffset = (uint32_t)frame->pushData->Push(decIndex, 2 * indexGen.VertexCount());
// TODO: Avoid rebinding vertex/index buffers if the vertex size stays the same by using the offset arguments
// Might want to separate vertices out into a different push buffer in that case.
vkCmdBindVertexBuffers(cmd_, 0, 1, buf, offsets);
vkCmdBindIndexBuffer(cmd_, buf[0], ibOffset, VK_INDEX_TYPE_UINT16);
vkCmdDrawIndexed(cmd_, indexGen.VertexCount(), 1, 0, 0, 0);
} else {
vkCmdBindVertexBuffers(cmd_, 0, 1, buf, offsets);
vkCmdDraw(cmd_, vertexCount, 1, 0, 0);
}
} else {
DecodeVerts();
bool hasColor = (lastVType_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE;
if (gstate.isModeThrough()) {
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255);
} else {
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255);
}
gpuStats.numUncachedVertsDrawn += indexGen.VertexCount();
prim = indexGen.Prim();
// Undo the strip optimization, not supported by the SW code yet.
if (prim == GE_PRIM_TRIANGLE_STRIP)
prim = GE_PRIM_TRIANGLES;
VERBOSE_LOG(G3D, "Flush prim %i SW! %i verts in one go", prim, indexGen.VertexCount());
int numTrans = 0;
bool drawIndexed = false;
u16 *inds = decIndex;
TransformedVertex *drawBuffer = NULL;
SoftwareTransformResult result;
memset(&result, 0, sizeof(result));
int maxIndex = indexGen.MaxIndex();
SoftwareTransform(
prim, decoded, indexGen.VertexCount(),
dec_->VertexType(), inds, GE_VTYPE_IDX_16BIT, dec_->GetDecVtxFmt(),
maxIndex, framebufferManager_, textureCache_, transformed, transformedExpanded, drawBuffer, numTrans, drawIndexed, &result, 1.0f);
if (result.action == SW_DRAW_PRIMITIVES) {
VulkanPipelineRasterStateKey pipelineKey;
VulkanDynamicState dynState;
ConvertStateToVulkanKey(*framebufferManager_, prim, pipelineKey, dynState);
// TODO: Dirty-flag these.
vkCmdSetScissor(cmd_, 0, 1, &dynState.scissor);
vkCmdSetViewport(cmd_, 0, 1, &dynState.viewport);
if (dynState.useStencil) {
vkCmdSetStencilWriteMask(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState.stencilWriteMask);
vkCmdSetStencilCompareMask(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState.stencilCompareMask);
}
if (result.setStencil) {
// hey, dynamic state!
vkCmdSetStencilReference(cmd_, VK_STENCIL_FRONT_AND_BACK, result.stencilValue);
} else if (dynState.useStencil) {
vkCmdSetStencilReference(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState.stencilRef);
}
// vkCmdSetBlendConstants(cmd_, dynState.blendColor);
shaderManager_->UpdateUniforms();
shaderManager_->GetShaders(prim, lastVType_, &vshader, &fshader, useHWTransform);
VulkanPipeline *pipeline = pipelineManager_->GetOrCreatePipeline(pipelineLayout_, pipelineKey, dec_, vshader->GetModule(), fshader->GetModule(), false);
vkCmdBindPipeline(cmd_, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline->pipeline); // TODO: Avoid if same as last draw.
if (pipeline->uniformBlocks & UB_VS_FS_BASE) {
baseUBOOffset = shaderManager_->PushBaseBuffer(frame->pushData);
}
const uint32_t dynamicUBOOffsets[3] = {
baseUBOOffset, lightUBOOffset, boneUBOOffset,
};
vkCmdBindDescriptorSets(cmd_, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout_, 0, 1, &ds, 3, dynamicUBOOffsets);
vbOffset = (uint32_t)frame->pushData->Push(drawBuffer, numTrans * sizeof(TransformedVertex));
VkBuffer buf[1] = { frame->pushData->GetVkBuffer() };
VkDeviceSize offsets[1] = { vbOffset };
if (drawIndexed) {
ibOffset = (uint32_t)frame->pushData->Push(decIndex, 2 * indexGen.VertexCount());
// TODO: Have a buffer per frame, use a walking buffer pointer
// TODO: Avoid rebinding if the vertex size stays the same by using the offset arguments
vkCmdBindVertexBuffers(cmd_, 0, 1, buf, offsets);
vkCmdBindIndexBuffer(cmd_, buf[0], ibOffset, VK_INDEX_TYPE_UINT16);
vkCmdDrawIndexed(cmd_, numTrans, 1, 0, 0, 0);
} else {
// TODO: Avoid rebinding if the vertex size stays the same by using the offset arguments
vkCmdBindVertexBuffers(cmd_, 0, 1, buf, offsets);
vkCmdDraw(cmd_, numTrans, 1, 0, 0);
}
} else if (result.action == SW_CLEAR) {
// TODO: Support clearing only color and not alpha, or vice versa. This is not supported (probably for good reason) by vkCmdClearColorAttachment
// so we will have to simply draw a rectangle instead.
int mask = gstate.isClearModeColorMask() ? 1 : 0;
if (gstate.isClearModeAlphaMask()) mask |= 2;
if (gstate.isClearModeDepthMask()) mask |= 4;
VkClearValue colorValue, depthValue;
colorValue.color.float32[0] = (result.color & 0xFF) * (1.0f / 255.0f);
colorValue.color.float32[1] = ((result.color >> 8) & 0xFF) * (1.0f / 255.0f);
colorValue.color.float32[2] = ((result.color >> 16) & 0xFF) * (1.0f / 255.0f);
colorValue.color.float32[3] = ((result.color >> 24) & 0xFF) * (1.0f / 255.0f);
depthValue.depthStencil.depth = result.depth;
depthValue.depthStencil.stencil = (result.color >> 24) & 0xFF;
VkClearRect rect;
rect.baseArrayLayer = 0;
rect.layerCount = 1;
rect.rect.offset.x = 0;
rect.rect.offset.y = 0;
rect.rect.extent.width = gstate_c.curRTRenderWidth;
rect.rect.extent.height = gstate_c.curRTRenderHeight;
int count = 0;
VkClearAttachment attach[2];
if (mask & 3) {
attach[count].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
attach[count].clearValue = colorValue;
attach[count].colorAttachment = 0;
count++;
}
if (mask & 4) {
attach[count].aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
attach[count].clearValue = depthValue;
attach[count].colorAttachment = 0;
}
vkCmdClearAttachments(cmd_, count, attach, 1, &rect);
if (mask & 1) {
framebufferManager_->SetColorUpdated(gstate_c.skipDrawReason);
}
if (mask & 4) {
framebufferManager_->SetDepthUpdated();
}
}
}
gpuStats.numDrawCalls += numDrawCalls;
gpuStats.numVertsSubmitted += vertexCountInDrawCalls;
indexGen.Reset();
decodedVerts_ = 0;
numDrawCalls = 0;
vertexCountInDrawCalls = 0;
decodeCounter_ = 0;
prevPrim_ = GE_PRIM_INVALID;
gstate_c.vertexFullAlpha = true;
framebufferManager_->SetColorUpdated(gstate_c.skipDrawReason);
// Now seems as good a time as any to reset the min/max coords, which we may examine later.
gstate_c.vertBounds.minU = 512;
gstate_c.vertBounds.minV = 512;
gstate_c.vertBounds.maxU = 0;
gstate_c.vertBounds.maxV = 0;
host->GPUNotifyDraw();
}
void DrawEngineVulkan::Resized() {
decJitCache_->Clear();
lastVType_ = -1;
dec_ = NULL;
for (auto iter = decoderMap_.begin(); iter != decoderMap_.end(); iter++) {
delete iter->second;
}
decoderMap_.clear();
}
bool DrawEngineVulkan::IsCodePtrVertexDecoder(const u8 *ptr) const {
return decJitCache_->IsInSpace(ptr);
}