ppsspp/Core/MIPS/IR/IRPassSimplify.cpp
Unknown W. Brackets cd46f0b4cb irjit: Cache IR metadata lookups.
This improves compilation performance, because all those lookups were
adding up.
2023-09-30 15:56:53 -07:00

2144 lines
62 KiB
C++

#include <algorithm>
#include <cstring>
#include <utility>
#include "Common/BitSet.h"
#include "Common/Data/Convert/SmallDataConvert.h"
#include "Common/Log.h"
#include "Core/Config.h"
#include "Core/MIPS/MIPSVFPUUtils.h"
#include "Core/MIPS/IR/IRAnalysis.h"
#include "Core/MIPS/IR/IRInterpreter.h"
#include "Core/MIPS/IR/IRPassSimplify.h"
#include "Core/MIPS/IR/IRRegCache.h"
// #define CONDITIONAL_DISABLE { for (IRInst inst : in.GetInstructions()) { out.Write(inst); } return false; }
#define CONDITIONAL_DISABLE
#define DISABLE { for (IRInst inst : in.GetInstructions()) { out.Write(inst); } return false; }
u32 Evaluate(u32 a, u32 b, IROp op) {
switch (op) {
case IROp::Add: case IROp::AddConst: return a + b;
case IROp::Sub: case IROp::SubConst: return a - b;
case IROp::And: case IROp::AndConst: return a & b;
case IROp::Or: case IROp::OrConst: return a | b;
case IROp::Xor: case IROp::XorConst: return a ^ b;
case IROp::Shr: case IROp::ShrImm: return a >> b;
case IROp::Sar: case IROp::SarImm: return (s32)a >> b;
case IROp::Ror: case IROp::RorImm: return (a >> b) | (a << (32 - b));
case IROp::Shl: case IROp::ShlImm: return a << b;
case IROp::Slt: case IROp::SltConst: return ((s32)a < (s32)b);
case IROp::SltU: case IROp::SltUConst: return (a < b);
default:
_assert_msg_(false, "Unable to evaluate two op %d", (int)op);
return -1;
}
}
u32 Evaluate(u32 a, IROp op) {
switch (op) {
case IROp::Not: return ~a;
case IROp::Neg: return -(s32)a;
case IROp::BSwap16: return ((a & 0xFF00FF00) >> 8) | ((a & 0x00FF00FF) << 8);
case IROp::BSwap32: return swap32(a);
case IROp::Ext8to32: return SignExtend8ToU32(a);
case IROp::Ext16to32: return SignExtend16ToU32(a);
case IROp::ReverseBits: return ReverseBits32(a);
case IROp::Clz: {
int x = 31;
int count = 0;
while (x >= 0 && !(a & (1 << x))) {
count++;
x--;
}
return count;
}
default:
_assert_msg_(false, "Unable to evaluate one op %d", (int)op);
return -1;
}
}
IROp ArithToArithConst(IROp op) {
switch (op) {
case IROp::Add: return IROp::AddConst;
case IROp::Sub: return IROp::SubConst;
case IROp::And: return IROp::AndConst;
case IROp::Or: return IROp::OrConst;
case IROp::Xor: return IROp::XorConst;
case IROp::Slt: return IROp::SltConst;
case IROp::SltU: return IROp::SltUConst;
default:
_assert_msg_(false, "Invalid ArithToArithConst for op %d", (int)op);
return (IROp)-1;
}
}
IROp ShiftToShiftImm(IROp op) {
switch (op) {
case IROp::Shl: return IROp::ShlImm;
case IROp::Shr: return IROp::ShrImm;
case IROp::Ror: return IROp::RorImm;
case IROp::Sar: return IROp::SarImm;
default:
_assert_msg_(false, "Invalid ShiftToShiftImm for op %d", (int)op);
return (IROp)-1;
}
}
bool IRApplyPasses(const IRPassFunc *passes, size_t c, const IRWriter &in, IRWriter &out, const IROptions &opts) {
out.Reserve(in.GetInstructions().size());
if (c == 1) {
return passes[0](in, out, opts);
}
bool logBlocks = false;
IRWriter temp[2];
const IRWriter *nextIn = &in;
IRWriter *nextOut = &temp[1];
temp[1].Reserve(nextIn->GetInstructions().size());
for (size_t i = 0; i < c - 1; ++i) {
if (passes[i](*nextIn, *nextOut, opts)) {
logBlocks = true;
}
temp[0] = std::move(temp[1]);
nextIn = &temp[0];
temp[1].Clear();
temp[1].Reserve(nextIn->GetInstructions().size());
}
out.Reserve(nextIn->GetInstructions().size());
if (passes[c - 1](*nextIn, out, opts)) {
logBlocks = true;
}
return logBlocks;
}
bool OptimizeFPMoves(const IRWriter &in, IRWriter &out, const IROptions &opts) {
CONDITIONAL_DISABLE;
bool logBlocks = false;
IRInst prev{ IROp::Nop };
for (int i = 0; i < (int)in.GetInstructions().size(); i++) {
IRInst inst = in.GetInstructions()[i];
switch (inst.op) {
case IROp::FMovFromGPR:
//FMovToGPR a0, f12
//FMovFromGPR f14, a0
// to
//FMovToGPR a0, f12
//FMov f14, f12
if (prev.op == IROp::FMovToGPR && prev.dest == inst.src1) {
inst.op = IROp::FMov;
inst.src1 = prev.src1;
// Skip it entirely if it's just a copy to and back.
if (inst.dest != inst.src1)
out.Write(inst);
} else {
out.Write(inst);
}
break;
// This will need to scan forward or keep track of more information to be useful.
// Just doing one isn't.
/*
case IROp::LoadVec4:
// AddConst a0, sp, 0x30
// LoadVec4 v16, a0, 0x0
// to
// AddConst a0, sp, 0x30
// LoadVec4 v16, sp, 0x30
if (prev.op == IROp::AddConst && prev.dest == inst.src1 && prev.dest != prev.src1 && prev.src1 == MIPS_REG_SP) {
inst.constant += prev.constant;
inst.src1 = prev.src1;
logBlocks = 1;
} else {
goto doDefault;
}
out.Write(inst);
break;
*/
default:
out.Write(inst);
break;
}
prev = inst;
}
return logBlocks;
}
// Might be useful later on x86.
bool ThreeOpToTwoOp(const IRWriter &in, IRWriter &out, const IROptions &opts) {
CONDITIONAL_DISABLE;
bool logBlocks = false;
for (int i = 0; i < (int)in.GetInstructions().size(); i++) {
IRInst inst = in.GetInstructions()[i];
switch (inst.op) {
case IROp::Sub:
case IROp::Slt:
case IROp::SltU:
case IROp::Add:
case IROp::And:
case IROp::Or:
case IROp::Xor:
if (inst.src1 != inst.dest && inst.src2 != inst.dest) {
out.Write(IROp::Mov, inst.dest, inst.src1);
out.Write(inst.op, inst.dest, inst.dest, inst.src2);
} else {
out.Write(inst);
}
break;
case IROp::FMul:
case IROp::FAdd:
if (inst.src1 != inst.dest && inst.src2 != inst.dest) {
out.Write(IROp::FMov, inst.dest, inst.src1);
out.Write(inst.op, inst.dest, inst.dest, inst.src2);
} else {
out.Write(inst);
}
break;
case IROp::Vec4Add:
case IROp::Vec4Sub:
case IROp::Vec4Mul:
case IROp::Vec4Div:
if (inst.src1 != inst.dest && inst.src2 != inst.dest) {
out.Write(IROp::Vec4Mov, inst.dest, inst.src1);
out.Write(inst.op, inst.dest, inst.dest, inst.src2);
} else {
out.Write(inst);
}
break;
default:
out.Write(inst);
break;
}
}
return logBlocks;
}
bool RemoveLoadStoreLeftRight(const IRWriter &in, IRWriter &out, const IROptions &opts) {
CONDITIONAL_DISABLE;
bool logBlocks = false;
for (int i = 0, n = (int)in.GetInstructions().size(); i < n; ++i) {
const IRInst &inst = in.GetInstructions()[i];
// TODO: Reorder or look ahead to combine?
auto nextOp = [&]() -> const IRInst &{
return in.GetInstructions()[i + 1];
};
auto combineOpposite = [&](IROp matchOp, int matchOff, IROp replaceOp, int replaceOff) {
if (i + 1 >= n)
return false;
const IRInst &next = nextOp();
if (next.op != matchOp || next.dest != inst.dest || next.src1 != inst.src1)
return false;
if (inst.constant + matchOff != next.constant)
return false;
if (opts.unalignedLoadStore) {
// Write out one unaligned op.
out.Write(replaceOp, inst.dest, inst.src1, out.AddConstant(inst.constant + replaceOff));
} else if (replaceOp == IROp::Load32) {
// We can still combine to a simpler set of two loads.
// We start by isolating the address and shift amount.
// IRTEMP_LR_ADDR = rs + imm
out.Write(IROp::AddConst, IRTEMP_LR_ADDR, inst.src1, out.AddConstant(inst.constant + replaceOff));
// IRTEMP_LR_SHIFT = (addr & 3) * 8
out.Write(IROp::AndConst, IRTEMP_LR_SHIFT, IRTEMP_LR_ADDR, out.AddConstant(3));
out.Write(IROp::ShlImm, IRTEMP_LR_SHIFT, IRTEMP_LR_SHIFT, 3);
// IRTEMP_LR_ADDR = addr & 0xfffffffc
out.Write(IROp::AndConst, IRTEMP_LR_ADDR, IRTEMP_LR_ADDR, out.AddConstant(0xFFFFFFFC));
// IRTEMP_LR_VALUE = low_word, dest = high_word
out.Write(IROp::Load32, inst.dest, IRTEMP_LR_ADDR, out.AddConstant(0));
out.Write(IROp::Load32, IRTEMP_LR_VALUE, IRTEMP_LR_ADDR, out.AddConstant(4));
// Now we just need to adjust and combine dest and IRTEMP_LR_VALUE.
// inst.dest >>= shift (putting its bits in the right spot.)
out.Write(IROp::Shr, inst.dest, inst.dest, IRTEMP_LR_SHIFT);
// We can't shift by 32, so we compromise by shifting twice.
out.Write(IROp::ShlImm, IRTEMP_LR_VALUE, IRTEMP_LR_VALUE, 8);
// IRTEMP_LR_SHIFT = 24 - shift
out.Write(IROp::Neg, IRTEMP_LR_SHIFT, IRTEMP_LR_SHIFT);
out.Write(IROp::AddConst, IRTEMP_LR_SHIFT, IRTEMP_LR_SHIFT, out.AddConstant(24));
// IRTEMP_LR_VALUE <<= (24 - shift)
out.Write(IROp::Shl, IRTEMP_LR_VALUE, IRTEMP_LR_VALUE, IRTEMP_LR_SHIFT);
// At this point the values are aligned, and we just merge.
out.Write(IROp::Or, inst.dest, inst.dest, IRTEMP_LR_VALUE);
} else {
return false;
}
// Skip the next one, replaced.
i++;
return true;
};
auto addCommonProlog = [&]() {
// IRTEMP_LR_ADDR = rs + imm
out.Write(IROp::AddConst, IRTEMP_LR_ADDR, inst.src1, out.AddConstant(inst.constant));
// IRTEMP_LR_SHIFT = (addr & 3) * 8
out.Write(IROp::AndConst, IRTEMP_LR_SHIFT, IRTEMP_LR_ADDR, out.AddConstant(3));
out.Write(IROp::ShlImm, IRTEMP_LR_SHIFT, IRTEMP_LR_SHIFT, 3);
// IRTEMP_LR_ADDR = addr & 0xfffffffc (for stores, later)
out.Write(IROp::AndConst, IRTEMP_LR_ADDR, IRTEMP_LR_ADDR, out.AddConstant(0xFFFFFFFC));
// IRTEMP_LR_VALUE = RAM(IRTEMP_LR_ADDR)
out.Write(IROp::Load32, IRTEMP_LR_VALUE, IRTEMP_LR_ADDR, out.AddConstant(0));
};
auto addCommonStore = [&](int off = 0) {
// RAM(IRTEMP_LR_ADDR) = IRTEMP_LR_VALUE
out.Write(IROp::Store32, IRTEMP_LR_VALUE, IRTEMP_LR_ADDR, out.AddConstant(off));
};
switch (inst.op) {
case IROp::Load32Left:
if (!combineOpposite(IROp::Load32Right, -3, IROp::Load32, -3)) {
addCommonProlog();
// dest &= (0x00ffffff >> shift)
// Alternatively, could shift to a wall and back (but would require two shifts each way.)
out.WriteSetConstant(IRTEMP_LR_MASK, 0x00ffffff);
out.Write(IROp::Shr, IRTEMP_LR_MASK, IRTEMP_LR_MASK, IRTEMP_LR_SHIFT);
out.Write(IROp::And, inst.dest, inst.dest, IRTEMP_LR_MASK);
// IRTEMP_LR_SHIFT = 24 - shift
out.Write(IROp::Neg, IRTEMP_LR_SHIFT, IRTEMP_LR_SHIFT);
out.Write(IROp::AddConst, IRTEMP_LR_SHIFT, IRTEMP_LR_SHIFT, out.AddConstant(24));
// IRTEMP_LR_VALUE <<= (24 - shift)
out.Write(IROp::Shl, IRTEMP_LR_VALUE, IRTEMP_LR_VALUE, IRTEMP_LR_SHIFT);
// dest |= IRTEMP_LR_VALUE
out.Write(IROp::Or, inst.dest, inst.dest, IRTEMP_LR_VALUE);
bool src1Dirty = inst.dest == inst.src1;
while (i + 1 < n && !src1Dirty && nextOp().op == inst.op && nextOp().src1 == inst.src1 && (nextOp().constant & 3) == (inst.constant & 3)) {
// IRTEMP_LR_VALUE = RAM(IRTEMP_LR_ADDR + offsetDelta)
out.Write(IROp::Load32, IRTEMP_LR_VALUE, IRTEMP_LR_ADDR, out.AddConstant(nextOp().constant - inst.constant));
// dest &= IRTEMP_LR_MASK
out.Write(IROp::And, nextOp().dest, nextOp().dest, IRTEMP_LR_MASK);
// IRTEMP_LR_VALUE <<= (24 - shift)
out.Write(IROp::Shl, IRTEMP_LR_VALUE, IRTEMP_LR_VALUE, IRTEMP_LR_SHIFT);
// dest |= IRTEMP_LR_VALUE
out.Write(IROp::Or, nextOp().dest, nextOp().dest, IRTEMP_LR_VALUE);
src1Dirty = nextOp().dest == inst.src1;
++i;
}
}
break;
case IROp::Load32Right:
if (!combineOpposite(IROp::Load32Left, 3, IROp::Load32, 0)) {
addCommonProlog();
// IRTEMP_LR_VALUE >>= shift
out.Write(IROp::Shr, IRTEMP_LR_VALUE, IRTEMP_LR_VALUE, IRTEMP_LR_SHIFT);
// IRTEMP_LR_SHIFT = 24 - shift
out.Write(IROp::Neg, IRTEMP_LR_SHIFT, IRTEMP_LR_SHIFT);
out.Write(IROp::AddConst, IRTEMP_LR_SHIFT, IRTEMP_LR_SHIFT, out.AddConstant(24));
// dest &= (0xffffff00 << (24 - shift))
// Alternatively, could shift to a wall and back (but would require two shifts each way.)
out.WriteSetConstant(IRTEMP_LR_MASK, 0xffffff00);
out.Write(IROp::Shl, IRTEMP_LR_MASK, IRTEMP_LR_MASK, IRTEMP_LR_SHIFT);
out.Write(IROp::And, inst.dest, inst.dest, IRTEMP_LR_MASK);
// dest |= IRTEMP_LR_VALUE
out.Write(IROp::Or, inst.dest, inst.dest, IRTEMP_LR_VALUE);
// Building display lists sometimes involves a bunch of lwr in a row.
// We can generate more optimal code by combining.
bool shiftNeedsReverse = true;
bool src1Dirty = inst.dest == inst.src1;
while (i + 1 < n && !src1Dirty && nextOp().op == inst.op && nextOp().src1 == inst.src1 && (nextOp().constant & 3) == (inst.constant & 3)) {
// IRTEMP_LR_VALUE = RAM(IRTEMP_LR_ADDR + offsetDelta)
out.Write(IROp::Load32, IRTEMP_LR_VALUE, IRTEMP_LR_ADDR, out.AddConstant(nextOp().constant - inst.constant));
if (shiftNeedsReverse) {
// IRTEMP_LR_SHIFT = shift again
out.Write(IROp::Neg, IRTEMP_LR_SHIFT, IRTEMP_LR_SHIFT);
out.Write(IROp::AddConst, IRTEMP_LR_SHIFT, IRTEMP_LR_SHIFT, out.AddConstant(24));
shiftNeedsReverse = false;
}
// IRTEMP_LR_VALUE >>= IRTEMP_LR_SHIFT
out.Write(IROp::Shr, IRTEMP_LR_VALUE, IRTEMP_LR_VALUE, IRTEMP_LR_SHIFT);
// dest &= IRTEMP_LR_MASK
out.Write(IROp::And, nextOp().dest, nextOp().dest, IRTEMP_LR_MASK);
// dest |= IRTEMP_LR_VALUE
out.Write(IROp::Or, nextOp().dest, nextOp().dest, IRTEMP_LR_VALUE);
src1Dirty = nextOp().dest == inst.src1;
++i;
}
}
break;
case IROp::Store32Left:
if (!combineOpposite(IROp::Store32Right, -3, IROp::Store32, -3)) {
addCommonProlog();
// IRTEMP_LR_VALUE &= 0xffffff00 << shift
out.WriteSetConstant(IRTEMP_LR_MASK, 0xffffff00);
out.Write(IROp::Shl, IRTEMP_LR_MASK, IRTEMP_LR_MASK, IRTEMP_LR_SHIFT);
out.Write(IROp::And, IRTEMP_LR_VALUE, IRTEMP_LR_VALUE, IRTEMP_LR_MASK);
// IRTEMP_LR_SHIFT = 24 - shift
out.Write(IROp::Neg, IRTEMP_LR_SHIFT, IRTEMP_LR_SHIFT);
out.Write(IROp::AddConst, IRTEMP_LR_SHIFT, IRTEMP_LR_SHIFT, out.AddConstant(24));
// IRTEMP_LR_VALUE |= src3 >> (24 - shift)
out.Write(IROp::Shr, IRTEMP_LR_MASK, inst.src3, IRTEMP_LR_SHIFT);
out.Write(IROp::Or, IRTEMP_LR_VALUE, IRTEMP_LR_VALUE, IRTEMP_LR_MASK);
addCommonStore(0);
}
break;
case IROp::Store32Right:
if (!combineOpposite(IROp::Store32Left, 3, IROp::Store32, 0)) {
addCommonProlog();
// IRTEMP_LR_VALUE &= 0x00ffffff << (24 - shift)
out.WriteSetConstant(IRTEMP_LR_MASK, 0x00ffffff);
out.Write(IROp::Neg, IRTEMP_LR_SHIFT, IRTEMP_LR_SHIFT);
out.Write(IROp::AddConst, IRTEMP_LR_SHIFT, IRTEMP_LR_SHIFT, out.AddConstant(24));
out.Write(IROp::Shr, IRTEMP_LR_MASK, IRTEMP_LR_MASK, IRTEMP_LR_SHIFT);
out.Write(IROp::And, IRTEMP_LR_VALUE, IRTEMP_LR_VALUE, IRTEMP_LR_MASK);
out.Write(IROp::Neg, IRTEMP_LR_SHIFT, IRTEMP_LR_SHIFT);
out.Write(IROp::AddConst, IRTEMP_LR_SHIFT, IRTEMP_LR_SHIFT, out.AddConstant(24));
// IRTEMP_LR_VALUE |= src3 << shift
out.Write(IROp::Shl, IRTEMP_LR_MASK, inst.src3, IRTEMP_LR_SHIFT);
out.Write(IROp::Or, IRTEMP_LR_VALUE, IRTEMP_LR_VALUE, IRTEMP_LR_MASK);
addCommonStore(0);
}
break;
default:
out.Write(inst);
break;
}
}
return logBlocks;
}
bool PropagateConstants(const IRWriter &in, IRWriter &out, const IROptions &opts) {
CONDITIONAL_DISABLE;
IRImmRegCache gpr(&out);
bool logBlocks = false;
bool skipNextExitToConst = false;
for (int i = 0; i < (int)in.GetInstructions().size(); i++) {
IRInst inst = in.GetInstructions()[i];
bool symmetric = true;
switch (inst.op) {
case IROp::SetConst:
gpr.SetImm(inst.dest, inst.constant);
break;
case IROp::SetConstF:
goto doDefault;
case IROp::Sub:
if (gpr.IsImm(inst.src1) && gpr.GetImm(inst.src1) == 0 && !gpr.IsImm(inst.src2)) {
// Morph into a Neg.
gpr.MapDirtyIn(inst.dest, inst.src2);
out.Write(IROp::Neg, inst.dest, inst.src2);
break;
} else if (inst.src1 == inst.src2) {
// Seen sometimes, yet another way of producing zero.
gpr.SetImm(inst.dest, 0);
break;
}
#if __cplusplus >= 201703 || _MSC_VER > 1910
[[fallthrough]];
#endif
case IROp::Slt:
case IROp::SltU:
symmetric = false;
#if __cplusplus >= 201703 || _MSC_VER > 1910
[[fallthrough]];
#endif
case IROp::Add:
case IROp::And:
case IROp::Or:
case IROp::Xor:
// Regularize, for the add/or check below.
if (symmetric && inst.src2 == inst.dest && inst.src1 != inst.src2) {
std::swap(inst.src1, inst.src2);
}
if (gpr.IsImm(inst.src1) && gpr.IsImm(inst.src2)) {
gpr.SetImm(inst.dest, Evaluate(gpr.GetImm(inst.src1), gpr.GetImm(inst.src2), inst.op));
} else if (inst.op == IROp::And && gpr.IsImm(inst.src1) && gpr.GetImm(inst.src1) == 0) {
gpr.SetImm(inst.dest, 0);
} else if (inst.op == IROp::And && gpr.IsImm(inst.src2) && gpr.GetImm(inst.src2) == 0) {
gpr.SetImm(inst.dest, 0);
} else if (gpr.IsImm(inst.src2)) {
const u32 imm2 = gpr.GetImm(inst.src2);
gpr.MapDirtyIn(inst.dest, inst.src1);
if (imm2 == 0 && (inst.op == IROp::Add || inst.op == IROp::Sub || inst.op == IROp::Or || inst.op == IROp::Xor)) {
// Add / Sub / Or / Xor with zero is just a Mov. Add / Or are most common.
if (inst.dest != inst.src1)
out.Write(IROp::Mov, inst.dest, inst.src1);
} else {
out.Write(ArithToArithConst(inst.op), inst.dest, inst.src1, out.AddConstant(imm2));
}
} else if (symmetric && gpr.IsImm(inst.src1)) {
const u32 imm1 = gpr.GetImm(inst.src1);
gpr.MapDirtyIn(inst.dest, inst.src2);
if (imm1 == 0 && (inst.op == IROp::Add || inst.op == IROp::Or || inst.op == IROp::Xor)) {
// Add / Or / Xor with zero is just a Mov.
if (inst.dest != inst.src2)
out.Write(IROp::Mov, inst.dest, inst.src2);
} else {
out.Write(ArithToArithConst(inst.op), inst.dest, inst.src2, out.AddConstant(imm1));
}
} else {
gpr.MapDirtyInIn(inst.dest, inst.src1, inst.src2);
goto doDefault;
}
break;
case IROp::Neg:
case IROp::Not:
case IROp::BSwap16:
case IROp::BSwap32:
case IROp::Ext8to32:
case IROp::Ext16to32:
case IROp::ReverseBits:
case IROp::Clz:
if (gpr.IsImm(inst.src1)) {
gpr.SetImm(inst.dest, Evaluate(gpr.GetImm(inst.src1), inst.op));
} else {
gpr.MapDirtyIn(inst.dest, inst.src1);
goto doDefault;
}
break;
case IROp::AddConst:
case IROp::SubConst:
case IROp::AndConst:
case IROp::OrConst:
case IROp::XorConst:
case IROp::SltConst:
case IROp::SltUConst:
// And 0 is otherwise set to 0. Happens when optimizing lwl.
if (inst.op == IROp::AndConst && inst.constant == 0) {
gpr.SetImm(inst.dest, 0);
} else if (gpr.IsImm(inst.src1)) {
gpr.SetImm(inst.dest, Evaluate(gpr.GetImm(inst.src1), inst.constant, inst.op));
} else if (inst.constant == 0 && (inst.op == IROp::AddConst || inst.op == IROp::SubConst || inst.op == IROp::OrConst || inst.op == IROp::XorConst)) {
// Convert an Add/Sub/Or/Xor with a constant zero to a Mov (just like with reg zero.)
gpr.MapDirtyIn(inst.dest, inst.src1);
if (inst.dest != inst.src1)
out.Write(IROp::Mov, inst.dest, inst.src1);
} else {
gpr.MapDirtyIn(inst.dest, inst.src1);
goto doDefault;
}
break;
case IROp::Shl:
case IROp::Shr:
case IROp::Ror:
case IROp::Sar:
if (gpr.IsImm(inst.src1) && gpr.IsImm(inst.src2)) {
gpr.SetImm(inst.dest, Evaluate(gpr.GetImm(inst.src1), gpr.GetImm(inst.src2), inst.op));
} else if (gpr.IsImm(inst.src2)) {
const u8 sa = gpr.GetImm(inst.src2) & 31;
gpr.MapDirtyIn(inst.dest, inst.src1);
if (sa == 0) {
if (inst.dest != inst.src1)
out.Write(IROp::Mov, inst.dest, inst.src1);
} else {
out.Write(ShiftToShiftImm(inst.op), inst.dest, inst.src1, sa);
}
} else {
gpr.MapDirtyInIn(inst.dest, inst.src1, inst.src2);
goto doDefault;
}
break;
case IROp::ShlImm:
case IROp::ShrImm:
case IROp::RorImm:
case IROp::SarImm:
if (gpr.IsImm(inst.src1)) {
gpr.SetImm(inst.dest, Evaluate(gpr.GetImm(inst.src1), inst.src2, inst.op));
} else {
gpr.MapDirtyIn(inst.dest, inst.src1);
goto doDefault;
}
break;
case IROp::Mov:
if (inst.dest == inst.src1) {
// Nop
} else if (gpr.IsImm(inst.src1)) {
gpr.SetImm(inst.dest, gpr.GetImm(inst.src1));
} else {
gpr.MapDirtyIn(inst.dest, inst.src1);
goto doDefault;
}
break;
case IROp::Mult:
case IROp::MultU:
case IROp::Madd:
case IROp::MaddU:
case IROp::Msub:
case IROp::MsubU:
case IROp::Div:
case IROp::DivU:
gpr.MapInIn(inst.src1, inst.src2);
goto doDefault;
case IROp::MovZ:
case IROp::MovNZ:
gpr.MapInInIn(inst.dest, inst.src1, inst.src2);
goto doDefault;
case IROp::Min:
case IROp::Max:
gpr.MapDirtyInIn(inst.dest, inst.src1, inst.src2);
goto doDefault;
case IROp::FMovFromGPR:
if (gpr.IsImm(inst.src1)) {
out.Write(IROp::SetConstF, inst.dest, out.AddConstant(gpr.GetImm(inst.src1)));
} else {
gpr.MapIn(inst.src1);
goto doDefault;
}
break;
case IROp::FMovToGPR:
gpr.MapDirty(inst.dest);
goto doDefault;
case IROp::MfHi:
case IROp::MfLo:
gpr.MapDirty(inst.dest);
goto doDefault;
case IROp::MtHi:
case IROp::MtLo:
gpr.MapIn(inst.src1);
goto doDefault;
case IROp::Store8:
case IROp::Store16:
case IROp::Store32:
case IROp::Store32Left:
case IROp::Store32Right:
case IROp::Store32Conditional:
if (gpr.IsImm(inst.src1) && inst.src1 != inst.dest) {
gpr.MapIn(inst.dest);
out.Write(inst.op, inst.dest, 0, out.AddConstant(gpr.GetImm(inst.src1) + inst.constant));
} else {
gpr.MapInIn(inst.dest, inst.src1);
goto doDefault;
}
break;
case IROp::StoreFloat:
case IROp::StoreVec4:
if (gpr.IsImm(inst.src1)) {
out.Write(inst.op, inst.dest, 0, out.AddConstant(gpr.GetImm(inst.src1) + inst.constant));
} else {
gpr.MapIn(inst.src1);
goto doDefault;
}
break;
case IROp::Load8:
case IROp::Load8Ext:
case IROp::Load16:
case IROp::Load16Ext:
case IROp::Load32:
case IROp::Load32Linked:
if (gpr.IsImm(inst.src1) && inst.src1 != inst.dest) {
gpr.MapDirty(inst.dest);
out.Write(inst.op, inst.dest, 0, out.AddConstant(gpr.GetImm(inst.src1) + inst.constant));
} else {
gpr.MapDirtyIn(inst.dest, inst.src1);
goto doDefault;
}
break;
case IROp::LoadFloat:
case IROp::LoadVec4:
if (gpr.IsImm(inst.src1)) {
out.Write(inst.op, inst.dest, 0, out.AddConstant(gpr.GetImm(inst.src1) + inst.constant));
} else {
gpr.MapIn(inst.src1);
goto doDefault;
}
break;
case IROp::Load32Left:
case IROp::Load32Right:
if (gpr.IsImm(inst.src1)) {
gpr.MapIn(inst.dest);
out.Write(inst.op, inst.dest, 0, out.AddConstant(gpr.GetImm(inst.src1) + inst.constant));
} else {
gpr.MapInIn(inst.dest, inst.src1);
goto doDefault;
}
break;
case IROp::ValidateAddress8:
case IROp::ValidateAddress16:
case IROp::ValidateAddress32:
case IROp::ValidateAddress128:
if (gpr.IsImm(inst.src1)) {
out.Write(inst.op, inst.dest, 0, out.AddConstant(gpr.GetImm(inst.src1) + inst.constant));
} else {
gpr.MapIn(inst.src1);
goto doDefault;
}
break;
case IROp::Downcount:
case IROp::SetPCConst:
goto doDefault;
case IROp::SetPC:
if (gpr.IsImm(inst.src1)) {
out.Write(IROp::SetPCConst, out.AddConstant(gpr.GetImm(inst.src1)));
} else {
gpr.MapIn(inst.src1);
goto doDefault;
}
break;
// FP-only instructions don't need to flush immediates.
case IROp::FAdd:
case IROp::FMul:
// Regularize, to help x86 backends (add.s r0, r1, r0 -> add.s r0, r0, r1)
if (inst.src2 == inst.dest && inst.src1 != inst.src2)
std::swap(inst.src1, inst.src2);
out.Write(inst);
break;
case IROp::FSub:
case IROp::FDiv:
case IROp::FNeg:
case IROp::FAbs:
case IROp::FMov:
case IROp::FRound:
case IROp::FTrunc:
case IROp::FCeil:
case IROp::FFloor:
case IROp::FCvtSW:
case IROp::FCvtScaledWS:
case IROp::FCvtScaledSW:
case IROp::FSin:
case IROp::FCos:
case IROp::FSqrt:
case IROp::FRSqrt:
case IROp::FRecip:
case IROp::FAsin:
out.Write(inst);
break;
case IROp::SetCtrlVFPU:
gpr.MapDirty(IRREG_VFPU_CTRL_BASE + inst.dest);
goto doDefault;
case IROp::SetCtrlVFPUReg:
if (gpr.IsImm(inst.src1)) {
out.Write(IROp::SetCtrlVFPU, inst.dest, out.AddConstant(gpr.GetImm(inst.src1)));
} else {
gpr.MapDirtyIn(IRREG_VFPU_CTRL_BASE + inst.dest, inst.src1);
out.Write(inst);
}
break;
case IROp::SetCtrlVFPUFReg:
gpr.MapDirty(IRREG_VFPU_CTRL_BASE + inst.dest);
goto doDefault;
case IROp::FCvtWS:
// TODO: Actually, this should just use the currently set rounding mode.
// Move up with FCvtSW when that's implemented.
gpr.MapIn(IRREG_FCR31);
out.Write(inst);
break;
case IROp::FpCondFromReg:
gpr.MapDirtyIn(IRREG_FPCOND, inst.src1);
out.Write(inst);
break;
case IROp::FpCondToReg:
if (gpr.IsImm(IRREG_FPCOND)) {
gpr.SetImm(inst.dest, gpr.GetImm(IRREG_FPCOND));
} else {
gpr.MapDirtyIn(inst.dest, IRREG_FPCOND);
out.Write(inst);
}
break;
case IROp::FpCtrlFromReg:
gpr.MapDirtyIn(IRREG_FCR31, inst.src1);
gpr.MapDirty(IRREG_FPCOND);
goto doDefault;
case IROp::FpCtrlToReg:
gpr.MapDirtyInIn(inst.dest, IRREG_FPCOND, IRREG_FCR31);
goto doDefault;
case IROp::Vec4Init:
case IROp::Vec4Mov:
case IROp::Vec4Add:
case IROp::Vec4Sub:
case IROp::Vec4Mul:
case IROp::Vec4Div:
case IROp::Vec4Dot:
case IROp::Vec4Scale:
case IROp::Vec4Shuffle:
case IROp::Vec4Blend:
case IROp::Vec4Neg:
case IROp::Vec4Abs:
case IROp::Vec4Pack31To8:
case IROp::Vec4Pack32To8:
case IROp::Vec2Pack32To16:
case IROp::Vec4Unpack8To32:
case IROp::Vec2Unpack16To32:
case IROp::Vec4DuplicateUpperBitsAndShift1:
case IROp::Vec2ClampToZero:
case IROp::Vec4ClampToZero:
out.Write(inst);
break;
case IROp::FCmp:
gpr.MapDirty(IRREG_FPCOND);
goto doDefault;
case IROp::RestoreRoundingMode:
case IROp::ApplyRoundingMode:
case IROp::UpdateRoundingMode:
goto doDefault;
case IROp::VfpuCtrlToReg:
gpr.MapDirtyIn(inst.dest, IRREG_VFPU_CTRL_BASE + inst.src1);
goto doDefault;
case IROp::FCmpVfpuBit:
gpr.MapDirty(IRREG_VFPU_CC);
goto doDefault;
case IROp::FCmovVfpuCC:
gpr.MapIn(IRREG_VFPU_CC);
goto doDefault;
case IROp::FCmpVfpuAggregate:
gpr.MapDirtyIn(IRREG_VFPU_CC, IRREG_VFPU_CC);
goto doDefault;
case IROp::ExitToConstIfEq:
case IROp::ExitToConstIfNeq:
if (gpr.IsImm(inst.src1) && gpr.IsImm(inst.src2)) {
bool passed = false;
switch (inst.op) {
case IROp::ExitToConstIfEq: passed = gpr.GetImm(inst.src1) == gpr.GetImm(inst.src2); break;
case IROp::ExitToConstIfNeq: passed = gpr.GetImm(inst.src1) != gpr.GetImm(inst.src2); break;
default: _assert_(false); break;
}
// This is a bit common for the first cycle of loops.
// Reduce bloat by skipping on fail, and const exit on pass.
if (passed) {
gpr.FlushAll();
out.Write(IROp::ExitToConst, out.AddConstant(inst.constant));
skipNextExitToConst = true;
}
break;
}
gpr.FlushAll();
goto doDefault;
case IROp::ExitToConstIfGtZ:
case IROp::ExitToConstIfGeZ:
case IROp::ExitToConstIfLtZ:
case IROp::ExitToConstIfLeZ:
if (gpr.IsImm(inst.src1)) {
bool passed = false;
switch (inst.op) {
case IROp::ExitToConstIfGtZ: passed = (s32)gpr.GetImm(inst.src1) > 0; break;
case IROp::ExitToConstIfGeZ: passed = (s32)gpr.GetImm(inst.src1) >= 0; break;
case IROp::ExitToConstIfLtZ: passed = (s32)gpr.GetImm(inst.src1) < 0; break;
case IROp::ExitToConstIfLeZ: passed = (s32)gpr.GetImm(inst.src1) <= 0; break;
default: _assert_(false); break;
}
if (passed) {
gpr.FlushAll();
out.Write(IROp::ExitToConst, out.AddConstant(inst.constant));
skipNextExitToConst = true;
}
break;
}
gpr.FlushAll();
goto doDefault;
case IROp::ExitToConst:
if (skipNextExitToConst) {
skipNextExitToConst = false;
break;
}
gpr.FlushAll();
goto doDefault;
case IROp::ExitToReg:
if (gpr.IsImm(inst.src1)) {
// This happens sometimes near loops.
// Prefer ExitToConst to allow block linking.
u32 dest = gpr.GetImm(inst.src1);
gpr.FlushAll();
out.Write(IROp::ExitToConst, out.AddConstant(dest));
break;
}
gpr.FlushAll();
goto doDefault;
case IROp::CallReplacement:
case IROp::Break:
case IROp::Syscall:
case IROp::Interpret:
case IROp::ExitToConstIfFpFalse:
case IROp::ExitToConstIfFpTrue:
case IROp::Breakpoint:
case IROp::MemoryCheck:
default:
{
gpr.FlushAll();
doDefault:
out.Write(inst);
break;
}
}
}
gpr.FlushAll();
return logBlocks;
}
IRInstMeta IRReplaceSrcGPR(const IRInstMeta &inst, int fromReg, int toReg) {
IRInstMeta newInst = inst;
if (inst.m.types[1] == 'G' && inst.src1 == fromReg) {
newInst.src1 = toReg;
}
if (inst.m.types[2] == 'G' && inst.src2 == fromReg) {
newInst.src2 = toReg;
}
if ((inst.m.flags & (IRFLAG_SRC3 | IRFLAG_SRC3DST)) != 0 && inst.m.types[0] == 'G' && inst.src3 == fromReg) {
newInst.src3 = toReg;
}
return newInst;
}
IRInstMeta IRReplaceDestGPR(const IRInstMeta &inst, int fromReg, int toReg) {
IRInstMeta newInst = inst;
if ((inst.m.flags & IRFLAG_SRC3) == 0 && inst.m.types[0] == 'G' && inst.dest == fromReg) {
newInst.dest = toReg;
}
return newInst;
}
bool IRMutatesDestGPR(const IRInstMeta &inst, int reg) {
return (inst.m.flags & IRFLAG_SRC3DST) != 0 && inst.m.types[0] == 'G' && inst.src3 == reg;
}
bool PurgeTemps(const IRWriter &in, IRWriter &out, const IROptions &opts) {
CONDITIONAL_DISABLE;
std::vector<IRInstMeta> insts;
insts.reserve(in.GetInstructions().size());
// We track writes both to rename regs and to purge dead stores.
struct Check {
Check(int r, int i, bool rbx) : reg(r), index(i), readByExit(rbx) {
}
// Register this instruction wrote to.
int reg;
// Only other than -1 when it's a Mov, equivalent reg at this point.
int srcReg = -1;
// Index into insts for this op.
int index;
// Whether the dest reg is read by any Exit.
bool readByExit;
int8_t fplen = 0;
};
std::vector<Check> checks;
checks.reserve(insts.size() / 2);
// This tracks the last index at which each reg was modified.
int lastWrittenTo[256];
int lastReadFrom[256];
memset(lastWrittenTo, -1, sizeof(lastWrittenTo));
memset(lastReadFrom, -1, sizeof(lastReadFrom));
auto readsFromFPRCheck = [](IRInstMeta &inst, Check &check, bool *directly) {
if (check.reg < 32)
return false;
bool result = false;
*directly = true;
for (int i = 0; i < 4; ++i) {
bool laneDirectly;
if (check.fplen >= i + 1 && IRReadsFromFPR(inst, check.reg - 32 + i, &laneDirectly)) {
result = true;
if (!laneDirectly) {
*directly = false;
break;
}
}
}
return result;
};
bool logBlocks = false;
size_t firstCheck = 0;
for (int i = 0, n = (int)in.GetInstructions().size(); i < n; i++) {
IRInstMeta inst = GetIRMeta(in.GetInstructions()[i]);
// It helps to skip through rechecking ones we already discarded.
for (size_t ch = firstCheck; ch < checks.size(); ++ch) {
Check &check = checks[ch];
if (check.reg != 0) {
firstCheck = ch;
break;
}
}
// Check if we can optimize by running through all the writes we've previously found.
for (size_t ch = firstCheck; ch < checks.size(); ++ch) {
Check &check = checks[ch];
if (check.reg == 0) {
// This means we already optimized this or a later inst depends on it.
continue;
}
bool readsDirectly;
if (IRReadsFromGPR(inst, check.reg, &readsDirectly)) {
// If this reads from the reg, we either depend on it or we can fold or swap.
// That's determined below.
// If this reads and writes the reg (e.g. MovZ, Load32Left), we can't just swap.
bool mutatesReg = IRMutatesDestGPR(inst, check.reg);
// If this doesn't directly read (i.e. Interpret), we can't swap.
bool cannotReplace = !readsDirectly;
if (!mutatesReg && !cannotReplace && check.srcReg >= 0 && lastWrittenTo[check.srcReg] < check.index) {
// Replace with the srcReg instead. This happens with non-nice delay slots.
// We're changing "Mov A, B; Add C, C, A" to "Mov A, B; Add C, C, B" here.
// srcReg should only be set when it was a Mov.
inst = IRReplaceSrcGPR(inst, check.reg, check.srcReg);
// If the Mov modified the same reg as this instruction, we can't optimize from it anymore.
if (inst.dest == check.reg) {
check.reg = 0;
// We can also optimize it out since we've essentially moved now.
insts[check.index].op = IROp::Mov;
insts[check.index].dest = 0;
insts[check.index].src1 = 0;
}
} else if (!IRMutatesDestGPR(insts[check.index], check.reg) && inst.op == IROp::Mov && i == check.index + 1) {
// As long as the previous inst wasn't modifying its dest reg, and this is a Mov, we can swap.
// We're changing "Add A, B, C; Mov B, A" to "Add B, B, C; Mov A, B" here.
// This happens with lwl/lwr temps. Replace the original dest.
insts[check.index] = IRReplaceDestGPR(insts[check.index], check.reg, inst.dest);
lastWrittenTo[inst.dest] = check.index;
// If it's being read from (by inst now), we can't optimize out.
check.reg = 0;
// Update the read by exit flag to match the new reg.
check.readByExit = inst.dest < IRTEMP_0 || inst.dest > IRTEMP_LR_SHIFT;
// And swap the args for this mov, since we changed the other dest. We'll optimize this out later.
std::swap(inst.dest, inst.src1);
} else {
// Legitimately read from, so we can't optimize out.
// Unless this is an exit and a temp not read directly by the exit.
if ((inst.m.flags & IRFLAG_EXIT) == 0 || check.readByExit || readsDirectly)
check.reg = 0;
}
} else if (check.fplen >= 1 && readsFromFPRCheck(inst, check, &readsDirectly)) {
// If one or the other is a Vec, they must match.
bool lenMismatch = false;
auto checkMismatch = [&check, &lenMismatch](IRReg src, char type) {
int srclen = 1;
if (type == 'V')
srclen = 4;
else if (type == '2')
srclen = 2;
else if (type != 'F')
return;
if (src + 32 + srclen > check.reg && src + 32 < check.reg + check.fplen) {
if (src + 32 != check.reg || srclen != check.fplen)
lenMismatch = true;
}
};
checkMismatch(inst.src1, inst.m.types[1]);
checkMismatch(inst.src2, inst.m.types[2]);
if ((inst.m.flags & (IRFLAG_SRC3 | IRFLAG_SRC3DST)) != 0)
checkMismatch(inst.src3, inst.m.types[3]);
bool cannotReplace = !readsDirectly || lenMismatch;
if (!cannotReplace && check.srcReg >= 32 && lastWrittenTo[check.srcReg] < check.index) {
// This is probably not worth doing unless we can get rid of a temp.
if (!check.readByExit) {
if (insts[check.index].dest == inst.src1)
inst.src1 = check.srcReg - 32;
else if (insts[check.index].dest == inst.src2)
inst.src2 = check.srcReg - 32;
else
_assert_msg_(false, "Unexpected src3 read of FPR");
// Check if we've clobbered it entirely.
if (inst.dest == check.reg) {
check.reg = 0;
insts[check.index].op = IROp::Mov;
insts[check.index].dest = 0;
insts[check.index].src1 = 0;
}
} else {
// Let's not bother.
check.reg = 0;
}
} else if ((inst.op == IROp::FMov || inst.op == IROp::Vec4Mov) && !lenMismatch) {
// A swap could be profitable if this is a temp, and maybe in other cases.
// These can happen a lot from mask regs, etc.
// But make sure no other changes happened between.
bool destNotChanged = true;
for (int j = 0; j < check.fplen; ++j)
destNotChanged = destNotChanged && lastWrittenTo[inst.dest + 32 + j] < check.index;
bool destNotRead = true;
for (int j = 0; j < check.fplen; ++j)
destNotRead = destNotRead && lastReadFrom[inst.dest + 32 + j] <= check.index;
if (!check.readByExit && destNotChanged && destNotRead) {
_dbg_assert_(insts[check.index].dest == inst.src1);
insts[check.index].dest = inst.dest;
for (int j = 0; j < check.fplen; ++j)
lastWrittenTo[inst.dest + 32 + j] = check.index;
// If it's being read from (by inst now), we can't optimize out.
check.reg = 0;
// Swap the dest and src1 so we can optimize this out later, maybe.
std::swap(inst.dest, inst.src1);
} else {
// Doesn't look like a good candidate.
check.reg = 0;
}
} else {
// Legitimately read from, so we can't optimize out.
if ((inst.m.flags & IRFLAG_EXIT) == 0 || check.readByExit || readsDirectly)
check.reg = 0;
}
} else if (check.readByExit && (inst.m.flags & IRFLAG_EXIT) != 0) {
// This is an exit, and the reg is read by any exit. Clear it.
check.reg = 0;
} else if (IRDestGPR(inst) == check.reg) {
// Clobbered, we can optimize out.
// This happens sometimes with temporaries used for constant addresses.
insts[check.index].op = IROp::Mov;
insts[check.index].dest = 0;
insts[check.index].src1 = 0;
check.reg = 0;
} else if (IRWritesToFPR(inst, check.reg - 32) && check.fplen >= 1) {
IRReg destFPRs[4];
int numFPRs = IRDestFPRs(inst, destFPRs);
if (numFPRs == check.fplen && inst.dest + 32 == check.reg) {
// This means we've clobbered it, and with full overlap.
// Sometimes this happens for non-temps, i.e. vmmov + vinit last row.
insts[check.index].op = IROp::Mov;
insts[check.index].dest = 0;
insts[check.index].src1 = 0;
check.reg = 0;
} else {
// Since there's an overlap, we simply cannot optimize.
check.reg = 0;
}
}
}
int dest = IRDestGPR(inst);
switch (dest) {
case IRTEMP_0:
case IRTEMP_1:
case IRTEMP_2:
case IRTEMP_3:
case IRTEMP_LHS:
case IRTEMP_RHS:
case IRTEMP_LR_ADDR:
case IRTEMP_LR_VALUE:
case IRTEMP_LR_MASK:
case IRTEMP_LR_SHIFT:
// Unlike other registers, these don't need to persist between blocks.
// So we consider them not read unless proven read.
lastWrittenTo[dest] = i;
// If this is a copy, we might be able to optimize out the copy.
if (inst.op == IROp::Mov) {
Check check(dest, i, false);
check.srcReg = inst.src1;
checks.push_back(check);
} else {
checks.push_back(Check(dest, i, false));
}
break;
default:
lastWrittenTo[dest] = i;
if (dest > IRTEMP_LR_SHIFT) {
// These might sometimes be implicitly read/written by other instructions.
break;
}
checks.push_back(Check(dest, i, true));
break;
// Not a GPR output.
case 0:
case -1:
break;
}
IRReg regs[16];
int readGPRs = IRReadsFromGPRs(inst, regs);
if (readGPRs == -1) {
for (int j = 0; j < 256; ++j)
lastReadFrom[j] = i;
} else {
for (int j = 0; j < readGPRs; ++j)
lastReadFrom[regs[j]] = i;
}
int readFPRs = IRReadsFromFPRs(inst, regs);
if (readFPRs == -1) {
for (int j = 0; j < 256; ++j)
lastReadFrom[j] = i;
} else {
for (int j = 0; j < readFPRs; ++j)
lastReadFrom[regs[j] + 32] = i;
}
int destFPRs = IRDestFPRs(inst, regs);
for (int j = 0; j < destFPRs; ++j)
lastWrittenTo[regs[j] + 32] = i;
dest = destFPRs > 0 ? regs[0] + 32 : -1;
if (dest >= 32 && dest < IRTEMP_0) {
// Standard FPU or VFPU reg.
Check check(dest, i, true);
check.fplen = (int8_t)destFPRs;
checks.push_back(check);
} else if (dest >= IRVTEMP_PFX_S + 32 && dest < IRVTEMP_PFX_S + 32 + 16) {
// These are temporary regs and not read by exits.
Check check(dest, i, false);
check.fplen = (int8_t)destFPRs;
if (inst.op == IROp::FMov || inst.op == IROp::Vec4Mov) {
check.srcReg = inst.src1 + 32;
}
checks.push_back(check);
} else if (dest != -1) {
_assert_msg_(false, "Unexpected FPR output %d", dest);
}
insts.push_back(inst);
}
// Since we're done with the instructions, all remaining can be nuked.
for (Check &check : checks) {
if (!check.readByExit && check.reg > 0) {
insts[check.index].op = IROp::Mov;
insts[check.index].dest = 0;
insts[check.index].src1 = 0;
}
}
for (const IRInstMeta &inst : insts) {
// Simply skip any Mov 0, 0 instructions, since that's how we nuke one.
if (inst.op != IROp::Mov || inst.dest != 0 || inst.src1 != 0) {
out.Write(inst.i);
}
}
return logBlocks;
}
bool ReduceLoads(const IRWriter &in, IRWriter &out, const IROptions &opts) {
CONDITIONAL_DISABLE;
// This tells us to skip an AND op that has been optimized out.
// Maybe we could skip multiple, but that'd slow things down and is pretty uncommon.
int nextSkip = -1;
bool logBlocks = false;
for (int i = 0, n = (int)in.GetInstructions().size(); i < n; i++) {
IRInst inst = in.GetInstructions()[i];
if (inst.op == IROp::Load32 || inst.op == IROp::Load16 || inst.op == IROp::Load16Ext) {
int dest = IRDestGPR(GetIRMeta(inst));
for (int j = i + 1; j < n; j++) {
const IRInstMeta laterInst = GetIRMeta(in.GetInstructions()[j]);
if ((laterInst.m.flags & (IRFLAG_EXIT | IRFLAG_BARRIER)) != 0) {
// Exit, so we can't do the optimization.
break;
}
if (IRReadsFromGPR(laterInst, dest)) {
if (IRDestGPR(laterInst) == dest && laterInst.op == IROp::AndConst) {
const u32 mask = laterInst.constant;
// Here we are, maybe we can reduce the load size based on the mask.
if ((mask & 0xffffff00) == 0) {
inst.op = IROp::Load8;
if (mask == 0xff) {
nextSkip = j;
}
} else if ((mask & 0xffff0000) == 0 && inst.op == IROp::Load32) {
inst.op = IROp::Load16;
if (mask == 0xffff) {
nextSkip = j;
}
}
}
// If it was read, we can't do the optimization.
break;
}
if (IRDestGPR(laterInst) == dest) {
// Someone else wrote, so we can't do the optimization.
break;
}
}
}
if (i != nextSkip) {
out.Write(inst);
}
}
return logBlocks;
}
static std::vector<IRInst> ReorderLoadStoreOps(std::vector<IRInst> &ops) {
if (ops.size() < 2) {
return ops;
}
bool modifiedRegs[256] = {};
for (size_t i = 0, n = ops.size(); i < n - 1; ++i) {
bool modifiesReg = false;
bool usesFloatReg = false;
switch (ops[i].op) {
case IROp::Load8:
case IROp::Load8Ext:
case IROp::Load16:
case IROp::Load16Ext:
case IROp::Load32:
case IROp::Load32Left:
case IROp::Load32Right:
modifiesReg = true;
if (ops[i].src1 == ops[i].dest) {
// Can't ever reorder these, since it changes.
continue;
}
break;
case IROp::Store8:
case IROp::Store16:
case IROp::Store32:
case IROp::Store32Left:
case IROp::Store32Right:
break;
case IROp::LoadFloat:
case IROp::LoadVec4:
usesFloatReg = true;
modifiesReg = true;
break;
case IROp::StoreFloat:
case IROp::StoreVec4:
usesFloatReg = true;
break;
default:
continue;
}
memset(modifiedRegs, 0, sizeof(modifiedRegs));
size_t start = i;
size_t j;
for (j = i; j < n; ++j) {
if (ops[start].op != ops[j].op || ops[start].src1 != ops[j].src1) {
// Incompatible ops, so let's not reorder.
break;
}
if (modifiedRegs[ops[j].dest] || (!usesFloatReg && modifiedRegs[ops[j].src1])) {
// Can't reorder, this reg was modified.
break;
}
if (modifiesReg) {
// Modifies itself, can't reorder this.
if (!usesFloatReg && ops[j].dest == ops[j].src1) {
break;
}
modifiedRegs[ops[j].dest] = true;
}
// Keep going, these operations are compatible.
}
// Everything up to (but not including) j will be sorted, so skip them.
i = j - 1;
size_t end = j;
if (start + 1 < end) {
std::stable_sort(ops.begin() + start, ops.begin() + end, [&](const IRInst &a, const IRInst &b) {
return a.constant < b.constant;
});
}
}
return ops;
}
bool ReorderLoadStore(const IRWriter &in, IRWriter &out, const IROptions &opts) {
CONDITIONAL_DISABLE;
bool logBlocks = false;
enum class RegState : u8 {
UNUSED = 0,
READ = 1,
CHANGED = 2,
};
bool queuing = false;
std::vector<IRInst> loadStoreQueue;
std::vector<IRInst> otherQueue;
RegState otherRegs[256] = {};
auto flushQueue = [&]() {
if (!queuing) {
return;
}
std::vector<IRInst> loadStoreUnsorted = loadStoreQueue;
std::vector<IRInst> loadStoreSorted = ReorderLoadStoreOps(loadStoreQueue);
if (memcmp(&loadStoreSorted[0], &loadStoreUnsorted[0], sizeof(IRInst) * loadStoreSorted.size()) != 0) {
logBlocks = true;
}
queuing = false;
for (IRInst queued : loadStoreSorted) {
out.Write(queued);
}
for (IRInst queued : otherQueue) {
out.Write(queued);
}
loadStoreQueue.clear();
otherQueue.clear();
memset(otherRegs, 0, sizeof(otherRegs));
};
for (int i = 0; i < (int)in.GetInstructions().size(); i++) {
IRInst inst = in.GetInstructions()[i];
switch (inst.op) {
case IROp::Load8:
case IROp::Load8Ext:
case IROp::Load16:
case IROp::Load16Ext:
case IROp::Load32:
case IROp::Load32Left:
case IROp::Load32Right:
// To move a load up, its dest can't be changed by things we move down.
if (otherRegs[inst.dest] != RegState::UNUSED || otherRegs[inst.src1] == RegState::CHANGED) {
flushQueue();
}
queuing = true;
loadStoreQueue.push_back(inst);
break;
case IROp::Store8:
case IROp::Store16:
case IROp::Store32:
case IROp::Store32Left:
case IROp::Store32Right:
// A store can move above even if it's read, as long as it's not changed by the other ops.
if (otherRegs[inst.src3] == RegState::CHANGED || otherRegs[inst.src1] == RegState::CHANGED) {
flushQueue();
}
queuing = true;
loadStoreQueue.push_back(inst);
break;
case IROp::LoadVec4:
case IROp::LoadFloat:
case IROp::StoreVec4:
case IROp::StoreFloat:
// Floats can always move as long as their address is safe.
if (otherRegs[inst.src1] == RegState::CHANGED) {
flushQueue();
}
queuing = true;
loadStoreQueue.push_back(inst);
break;
case IROp::Sub:
case IROp::Slt:
case IROp::SltU:
case IROp::Add:
case IROp::And:
case IROp::Or:
case IROp::Xor:
case IROp::Shl:
case IROp::Shr:
case IROp::Ror:
case IROp::Sar:
case IROp::MovZ:
case IROp::MovNZ:
case IROp::Max:
case IROp::Min:
// We'll try to move this downward.
otherRegs[inst.dest] = RegState::CHANGED;
if (inst.src1 && otherRegs[inst.src1] != RegState::CHANGED)
otherRegs[inst.src1] = RegState::READ;
if (inst.src2 && otherRegs[inst.src2] != RegState::CHANGED)
otherRegs[inst.src2] = RegState::READ;
otherQueue.push_back(inst);
queuing = true;
break;
case IROp::Neg:
case IROp::Not:
case IROp::BSwap16:
case IROp::BSwap32:
case IROp::Ext8to32:
case IROp::Ext16to32:
case IROp::ReverseBits:
case IROp::Clz:
case IROp::AddConst:
case IROp::SubConst:
case IROp::AndConst:
case IROp::OrConst:
case IROp::XorConst:
case IROp::SltConst:
case IROp::SltUConst:
case IROp::ShlImm:
case IROp::ShrImm:
case IROp::RorImm:
case IROp::SarImm:
case IROp::Mov:
// We'll try to move this downward.
otherRegs[inst.dest] = RegState::CHANGED;
if (inst.src1 && otherRegs[inst.src1] != RegState::CHANGED)
otherRegs[inst.src1] = RegState::READ;
otherQueue.push_back(inst);
queuing = true;
break;
case IROp::SetConst:
// We'll try to move this downward.
otherRegs[inst.dest] = RegState::CHANGED;
otherQueue.push_back(inst);
queuing = true;
break;
case IROp::Mult:
case IROp::MultU:
case IROp::Madd:
case IROp::MaddU:
case IROp::Msub:
case IROp::MsubU:
case IROp::Div:
case IROp::DivU:
if (inst.src1 && otherRegs[inst.src1] != RegState::CHANGED)
otherRegs[inst.src1] = RegState::READ;
if (inst.src2 && otherRegs[inst.src2] != RegState::CHANGED)
otherRegs[inst.src2] = RegState::READ;
otherQueue.push_back(inst);
queuing = true;
break;
case IROp::MfHi:
case IROp::MfLo:
case IROp::FpCondToReg:
otherRegs[inst.dest] = RegState::CHANGED;
otherQueue.push_back(inst);
queuing = true;
break;
case IROp::MtHi:
case IROp::MtLo:
case IROp::FpCondFromReg:
if (inst.src1 && otherRegs[inst.src1] != RegState::CHANGED)
otherRegs[inst.src1] = RegState::READ;
otherQueue.push_back(inst);
queuing = true;
break;
case IROp::Nop:
case IROp::Downcount:
if (queuing) {
// These are freebies. Sometimes helps with delay slots.
otherQueue.push_back(inst);
} else {
out.Write(inst);
}
break;
default:
flushQueue();
out.Write(inst);
break;
}
}
return logBlocks;
}
bool MergeLoadStore(const IRWriter &in, IRWriter &out, const IROptions &opts) {
CONDITIONAL_DISABLE;
bool logBlocks = false;
auto opsCompatible = [&](const IRInst &a, const IRInst &b, int dist) {
if (a.op != b.op || a.src1 != b.src1) {
// Not similar enough at all.
return false;
}
u32 off1 = a.constant;
u32 off2 = b.constant;
if (off1 + dist != off2) {
// Not immediately sequential.
return false;
}
return true;
};
IRInst prev = { IROp::Nop };
for (int i = 0, n = (int)in.GetInstructions().size(); i < n; i++) {
IRInst inst = in.GetInstructions()[i];
int c = 0;
switch (inst.op) {
case IROp::Store8:
for (c = 1; c < 4 && i + c < n; ++c) {
const IRInst &nextInst = in.GetInstructions()[i + c];
// TODO: Might be nice to check if this is an obvious constant.
if (inst.src3 != nextInst.src3 || inst.src3 != 0) {
break;
}
if (!opsCompatible(inst, nextInst, c)) {
break;
}
}
if ((c == 2 || c == 3) && opts.unalignedLoadStore) {
inst.op = IROp::Store16;
out.Write(inst);
prev = inst;
// Skip the next one (the 3rd will be separate.)
++i;
continue;
}
if (c == 4 && opts.unalignedLoadStore) {
inst.op = IROp::Store32;
out.Write(inst);
prev = inst;
// Skip all 4.
i += 3;
continue;
}
out.Write(inst);
prev = inst;
break;
case IROp::Store16:
for (c = 1; c < 2 && i + c < n; ++c) {
const IRInst &nextInst = in.GetInstructions()[i + c];
// TODO: Might be nice to check if this is an obvious constant.
if (inst.src3 != nextInst.src3 || inst.src3 != 0) {
break;
}
if (!opsCompatible(inst, nextInst, c * 2)) {
break;
}
}
if (c == 2 && opts.unalignedLoadStore) {
inst.op = IROp::Store32;
out.Write(inst);
prev = inst;
// Skip the next one.
++i;
continue;
}
out.Write(inst);
prev = inst;
break;
case IROp::Load32:
if (prev.src1 == inst.src1 && prev.src2 == inst.src2) {
// A store and then an immediate load. This is sadly common in minis.
if (prev.op == IROp::Store32 && prev.src3 == inst.dest) {
// Even the same reg, a volatile variable? Skip it.
continue;
}
// Store16 and Store8 in rare cases happen... could be made AndConst, but not worth the trouble.
if (prev.op == IROp::Store32) {
inst.op = IROp::Mov;
inst.src1 = prev.src3;
inst.src2 = 0;
} else if (prev.op == IROp::StoreFloat) {
inst.op = IROp::FMovToGPR;
inst.src1 = prev.src3;
inst.src2 = 0;
}
// The actual op is written below.
}
out.Write(inst);
prev = inst;
break;
case IROp::LoadFloat:
if (prev.src1 == inst.src1 && prev.src2 == inst.src2) {
// A store and then an immediate load, of a float.
if (prev.op == IROp::StoreFloat && prev.src3 == inst.dest) {
// Volatile float, I suppose?
continue;
}
if (prev.op == IROp::StoreFloat) {
inst.op = IROp::FMov;
inst.src1 = prev.src3;
inst.src2 = 0;
} else if (prev.op == IROp::Store32) {
inst.op = IROp::FMovFromGPR;
inst.src1 = prev.src3;
inst.src2 = 0;
}
// The actual op is written below.
}
out.Write(inst);
prev = inst;
break;
default:
out.Write(inst);
prev = inst;
break;
}
}
return logBlocks;
}
struct IRMemoryOpInfo {
int size;
bool isWrite;
bool isWordLR;
};
static IRMemoryOpInfo IROpMemoryAccessSize(IROp op) {
// Assumes all take src1 + constant.
switch (op) {
case IROp::Load8:
case IROp::Load8Ext:
case IROp::Store8:
return { 1, op == IROp::Store8 };
case IROp::Load16:
case IROp::Load16Ext:
case IROp::Store16:
return { 2, op == IROp::Store16 };
case IROp::Load32:
case IROp::Load32Linked:
case IROp::LoadFloat:
case IROp::Store32:
case IROp::Store32Conditional:
case IROp::StoreFloat:
return { 4, op == IROp::Store32 || op == IROp::Store32Conditional || op == IROp::StoreFloat };
case IROp::LoadVec4:
case IROp::StoreVec4:
return { 16, op == IROp::StoreVec4 };
case IROp::Load32Left:
case IROp::Load32Right:
case IROp::Store32Left:
case IROp::Store32Right:
// This explicitly does not require alignment, so validate as an 8-bit operation.
return { 1, op == IROp::Store32Left || op == IROp::Store32Right, true };
default:
return { 0 };
}
}
bool ApplyMemoryValidation(const IRWriter &in, IRWriter &out, const IROptions &opts) {
CONDITIONAL_DISABLE;
if (g_Config.bFastMemory)
DISABLE;
int spLower = 0;
int spUpper = -1;
bool spWrite = false;
bool spModified = false;
for (IRInst inst : in.GetInstructions()) {
IRMemoryOpInfo info = IROpMemoryAccessSize(inst.op);
// Note: we only combine word aligned accesses.
if (info.size != 0 && inst.src1 == MIPS_REG_SP && info.size == 4) {
if (spModified) {
// No good, it was modified and then we did more accesses. Can't combine.
spUpper = -1;
break;
}
if ((int)inst.constant < 0 || (int)inst.constant >= 0x4000) {
// Let's assume this might cross boundaries or something. Uncommon.
spUpper = -1;
break;
}
spLower = std::min(spLower, (int)inst.constant);
spUpper = std::max(spUpper, (int)inst.constant + info.size);
spWrite = spWrite || info.isWrite;
}
const IRMeta *m = GetIRMeta(inst.op);
if (m->types[0] == 'G' && (m->flags & IRFLAG_SRC3) == 0 && inst.dest == MIPS_REG_SP) {
// We only care if it changes after we start combining.
spModified = spUpper != -1;
}
}
bool skipSP = spUpper != -1;
bool flushedSP = false;
std::map<uint64_t, uint8_t> checks;
const auto addValidate = [&](IROp validate, uint8_t sz, const IRInst &inst, bool isStore) {
if (inst.src1 == MIPS_REG_SP && skipSP && validate == IROp::ValidateAddress32) {
if (!flushedSP) {
out.Write(IROp::ValidateAddress32, 0, MIPS_REG_SP, spWrite ? 1U : 0U, spLower);
if (spUpper > spLower + 4)
out.Write(IROp::ValidateAddress32, 0, MIPS_REG_SP, spWrite ? 1U : 0U, spUpper - 4);
flushedSP = true;
}
return;
}
uint64_t key = ((uint64_t)inst.src1 << 32) | inst.constant;
auto it = checks.find(key);
if (it == checks.end() || it->second < sz) {
out.Write(validate, 0, inst.src1, isStore ? 1U : 0U, inst.constant);
checks[key] = sz;
}
};
bool logBlocks = false;
for (IRInst inst : in.GetInstructions()) {
IRMemoryOpInfo info = IROpMemoryAccessSize(inst.op);
IROp validateOp = IROp::Nop;
switch (info.size) {
case 1: validateOp = IROp::ValidateAddress8; break;
case 2: validateOp = IROp::ValidateAddress16; break;
case 4: validateOp = IROp::ValidateAddress32; break;
case 16: validateOp = IROp::ValidateAddress128; break;
case 0: break;
default: _assert_msg_(false, "Unexpected memory access size");
}
if (validateOp != IROp::Nop) {
addValidate(validateOp, info.size, inst, info.isWrite);
}
const IRMeta *m = GetIRMeta(inst.op);
if (m->types[0] == 'G' && (m->flags & IRFLAG_SRC3) == 0) {
uint64_t key = (uint64_t)inst.dest << 32;
// Wipe out all the already done checks since this was modified.
checks.erase(checks.lower_bound(key), checks.upper_bound(key | 0xFFFFFFFFULL));
}
// Always write out the original. We're only adding.
out.Write(inst);
}
return logBlocks;
}
bool ReduceVec4Flush(const IRWriter &in, IRWriter &out, const IROptions &opts) {
CONDITIONAL_DISABLE;
// Only do this when using a SIMD backend.
if (!opts.preferVec4) {
DISABLE;
}
bool isVec4[256]{};
bool isUsed[256]{};
bool isVec4Dirty[256]{};
auto updateVec4 = [&](char type, IRReg r) {
bool downgraded = false;
switch (type) {
case 'F':
downgraded = isVec4[r & ~3];
isVec4[r & ~3] = false;
isUsed[r] = true;
break;
case 'V':
_dbg_assert_((r & 3) == 0);
isVec4[r] = true;
for (int i = 0; i < 4; ++i)
isUsed[r + i] = true;
break;
case '2':
downgraded = isVec4[r & ~3];
isVec4[r & ~3] = false;
for (int i = 0; i < 2; ++i)
isUsed[r + i] = true;
break;
default:
break;
}
return downgraded;
};
auto updateVec4Dest = [&](char type, IRReg r, uint32_t flags) {
if ((flags & IRFLAG_SRC3) == 0) {
switch (type) {
case 'F':
isVec4Dirty[r & ~3] = false;
break;
case 'V':
_dbg_assert_((r & 3) == 0);
isVec4Dirty[r] = true;
break;
case '2':
isVec4Dirty[r & ~3] = false;
break;
default:
break;
}
}
return updateVec4(type, r);
};
// Checks overlap from r1 to other params.
auto overlapped = [](IRReg r1, int l1, IRReg r2, int l2, IRReg r3 = IRREG_INVALID, int l3 = 0) {
if (r1 < r2 + l2 && r1 + l1 > r2)
return true;
if (r1 < r3 + l3 && r1 + l1 > r3)
return true;
return false;
};
bool logBlocks = false;
int inCount = (int)in.GetInstructions().size();
for (int i = 0; i < inCount; ++i) {
IRInst inst = in.GetInstructions()[i];
const IRMeta *m = GetIRMeta(inst.op);
if ((m->flags & (IRFLAG_EXIT | IRFLAG_BARRIER)) != 0) {
memset(isVec4, 0, sizeof(isVec4));
out.Write(inst);
continue;
}
IRReg temp = IRREG_INVALID;
auto findAvailTempVec4 = [&]() {
// If it's not used yet in this block, we can use it.
// Note: even if the instruction uses it to write, that should be fine.
for (IRReg r = IRVTEMP_PFX_S; r < IRVTEMP_0 + 4; r += 4) {
if (isUsed[r])
continue;
bool usable = true;
for (int j = 1; j < 4; ++j)
usable = usable && !isUsed[r + j];
if (usable) {
temp = r;
// We don't update isUsed because our temporary doesn't need to last.
return true;
}
}
return false;
};
auto usedLaterAsVec4 = [&](IRReg r) {
for (int j = i + 1; j < inCount; ++j) {
IRInst inst = in.GetInstructions()[j];
const IRMeta *m = GetIRMeta(inst.op);
if (m->types[0] == 'V' && inst.dest == r)
return true;
if (m->types[1] == 'V' && inst.src1 == r)
return true;
if (m->types[2] == 'V' && inst.src2 == r)
return true;
}
return false;
};
bool skip = false;
switch (inst.op) {
case IROp::SetConstF:
if (isVec4[inst.dest & ~3] && findAvailTempVec4()) {
// Check if we're setting multiple in a row, this is a bit common.
u8 blendMask = 1 << (inst.dest & 3);
while (i + 1 < inCount) {
IRInst next = in.GetInstructions()[i + 1];
if (next.op != IROp::SetConstF || (next.dest & ~3) != (inst.dest & ~3))
break;
if (next.constant != inst.constant)
break;
blendMask |= 1 << (next.dest & 3);
i++;
}
if (inst.constant == 0) {
out.Write(IROp::Vec4Init, temp, (int)Vec4Init::AllZERO);
} else if (inst.constant == 0x3F800000) {
out.Write(IROp::Vec4Init, temp, (int)Vec4Init::AllONE);
} else if (inst.constant == 0xBF800000) {
out.Write(IROp::Vec4Init, temp, (int)Vec4Init::AllMinusONE);
} else {
out.Write(IROp::SetConstF, temp, out.AddConstant(inst.constant));
out.Write(IROp::Vec4Shuffle, temp, temp, 0);
}
out.Write(IROp::Vec4Blend, inst.dest & ~3, inst.dest & ~3, temp, blendMask);
isVec4Dirty[inst.dest & ~3] = true;
continue;
}
break;
case IROp::FMovFromGPR:
if (isVec4[inst.dest & ~3] && findAvailTempVec4()) {
u8 blendMask = 1 << (inst.dest & 3);
out.Write(IROp::FMovFromGPR, temp, inst.src1);
out.Write(IROp::Vec4Shuffle, temp, temp, 0);
out.Write(IROp::Vec4Blend, inst.dest & ~3, inst.dest & ~3, temp, blendMask);
isVec4Dirty[inst.dest & ~3] = true;
continue;
}
break;
case IROp::LoadFloat:
if (isVec4[inst.dest & ~3] && isVec4Dirty[inst.dest & ~3] && usedLaterAsVec4(inst.dest & ~3) && findAvailTempVec4()) {
u8 blendMask = 1 << (inst.dest & 3);
out.Write(inst.op, temp, inst.src1, inst.src2, inst.constant);
out.Write(IROp::Vec4Shuffle, temp, temp, 0);
out.Write(IROp::Vec4Blend, inst.dest & ~3, inst.dest & ~3, temp, blendMask);
isVec4Dirty[inst.dest & ~3] = true;
continue;
}
break;
case IROp::StoreFloat:
if (isVec4[inst.src3 & ~3] && isVec4Dirty[inst.src3 & ~3] && usedLaterAsVec4(inst.src3 & ~3) && findAvailTempVec4()) {
out.Write(IROp::FMov, temp, inst.src3, 0);
out.Write(inst.op, temp, inst.src1, inst.src2, inst.constant);
continue;
}
break;
case IROp::FMov:
if (isVec4[inst.dest & ~3] && (inst.dest & ~3) == (inst.src1 & ~3)) {
// Oh, actually a shuffle?
uint8_t shuffle = (uint8_t)VFPU_SWIZZLE(0, 1, 2, 3);
uint8_t destShift = (inst.dest & 3) * 2;
shuffle = (shuffle & ~(3 << destShift)) | ((inst.src1 & 3) << destShift);
out.Write(IROp::Vec4Shuffle, inst.dest & ~3, inst.dest & ~3, shuffle);
isVec4Dirty[inst.dest & ~3] = true;
continue;
} else if (isVec4[inst.dest & ~3] && (inst.dest & 3) == (inst.src1 & 3)) {
// We can turn this directly into a blend, since it's the same lane.
out.Write(IROp::Vec4Blend, inst.dest & ~3, inst.dest & ~3, inst.src1 & ~3, 1 << (inst.dest & 3));
isVec4Dirty[inst.dest & ~3] = true;
continue;
} else if (isVec4[inst.dest & ~3] && isVec4[inst.src1 & ~3] && findAvailTempVec4()) {
// For this, we'll need a temporary to move to the right lane.
int lane = inst.src1 & 3;
uint8_t shuffle = (uint8_t)VFPU_SWIZZLE(lane, lane, lane, lane);
out.Write(IROp::Vec4Shuffle, temp, inst.src1 & ~3, shuffle);
out.Write(IROp::Vec4Blend, inst.dest & ~3, inst.dest & ~3, temp, 1 << (inst.dest & 3));
isVec4Dirty[inst.dest & ~3] = true;
continue;
}
break;
case IROp::FAdd:
case IROp::FSub:
case IROp::FMul:
case IROp::FDiv:
if (isVec4[inst.dest & ~3] && isVec4Dirty[inst.dest & ~3] && usedLaterAsVec4(inst.dest & ~3)) {
if (!overlapped(inst.dest & ~3, 4, inst.src1, 1, inst.src2, 1) && findAvailTempVec4()) {
u8 blendMask = 1 << (inst.dest & 3);
out.Write(inst.op, temp, inst.src1, inst.src2);
out.Write(IROp::Vec4Shuffle, temp, temp, 0);
out.Write(IROp::Vec4Blend, inst.dest & ~3, inst.dest & ~3, temp, blendMask);
updateVec4('F', inst.src1);
updateVec4('F', inst.src2);
isVec4Dirty[inst.dest & ~3] = true;
continue;
}
}
break;
case IROp::Vec4Dot:
if (overlapped(inst.dest, 1, inst.src1, 4, inst.src2, 4) && findAvailTempVec4()) {
out.Write(inst.op, temp, inst.src1, inst.src2, inst.constant);
if (usedLaterAsVec4(inst.dest & ~3)) {
out.Write(IROp::Vec4Shuffle, temp, inst.src1 & ~3, 0);
out.Write(IROp::Vec4Blend, inst.dest & ~3, inst.dest & ~3, temp, 1 << (inst.dest & 3));
// It's overlapped, so it'll get marked as Vec4 and used anyway.
isVec4Dirty[inst.dest & ~3] = true;
inst.dest = IRREG_INVALID;
} else {
out.Write(IROp::FMov, inst.dest, temp);
}
skip = true;
}
break;
case IROp::Vec4Scale:
if (overlapped(inst.src2, 1, inst.src1, 4, inst.dest, 4) && findAvailTempVec4()) {
out.Write(IROp::FMov, temp, inst.src2);
out.Write(inst.op, inst.dest, inst.src1, temp, inst.constant);
skip = true;
inst.src2 = IRREG_INVALID;
} else if (isVec4[inst.src2 & 3] && usedLaterAsVec4(inst.src2 & ~3) && findAvailTempVec4()) {
out.Write(IROp::FMov, temp, inst.src2);
out.Write(inst.op, inst.dest, inst.src1, temp, inst.constant);
skip = true;
inst.src2 = IRREG_INVALID;
}
break;
default:
break;
}
bool downgrade = false;
if (inst.src1 != IRREG_INVALID && updateVec4(m->types[1], inst.src1))
downgrade = true;
if (inst.src2 != IRREG_INVALID && updateVec4(m->types[2], inst.src2))
downgrade = true;
if (inst.dest != IRREG_INVALID && updateVec4Dest(m->types[0], inst.dest, m->flags))
downgrade = true;
if (downgrade) {
//WARN_LOG(JIT, "Vec4 downgrade by: %s", m->name);
}
if (!skip)
out.Write(inst);
}
return logBlocks;
}