ppsspp/GPU/Debugger/Debugger.cpp

285 lines
8 KiB
C++

// Copyright (c) 2018- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <vector>
#include "Common/Log.h"
#include "Common/StringUtils.h"
#include "Common/TimeUtil.h"
#include "GPU/GPU.h"
#include "GPU/Debugger/Breakpoints.h"
#include "GPU/Debugger/Debugger.h"
#include "GPU/Debugger/Stepping.h"
namespace GPUDebug {
static BreakNext breakNext = BreakNext::NONE;
static int breakAtCount = -1;
static int primsLastFrame = 0;
static int primsThisFrame = 0;
static int thisFlipNum = 0;
bool g_primAfterDraw = false;
static double lastStepTime = -1.0;
static uint32_t g_skipPcOnce = 0;
static std::vector<std::pair<int, int>> restrictPrimRanges;
static std::string restrictPrimRule;
const char *BreakNextToString(BreakNext next) {
switch (next) {
case BreakNext::NONE: return "NONE,";
case BreakNext::OP: return "OP";
case BreakNext::DRAW: return "DRAW";
case BreakNext::TEX: return "TEX";
case BreakNext::NONTEX: return "NONTEX";
case BreakNext::FRAME: return "FRAME";
case BreakNext::VSYNC: return "VSYNC";
case BreakNext::PRIM: return "PRIM";
case BreakNext::CURVE: return "CURVE";
case BreakNext::COUNT: return "COUNT";
default: return "N/A";
}
}
bool NeedsSlowInterpreter() {
return breakNext != BreakNext::NONE || GPUBreakpoints::g_hasBreakpoints;
}
void ClearBreak() {
breakNext = BreakNext::NONE;
breakAtCount = -1;
GPUStepping::ResumeFromStepping();
lastStepTime = -1.0;
}
BreakNext GetBreakNext() {
return breakNext;
}
void SetBreakNext(BreakNext next) {
breakNext = next;
breakAtCount = -1;
if (next == BreakNext::TEX) {
GPUBreakpoints::AddTextureChangeTempBreakpoint();
} else if (next == BreakNext::PRIM || next == BreakNext::COUNT) {
GPUBreakpoints::AddCmdBreakpoint(GE_CMD_PRIM, true);
GPUBreakpoints::AddCmdBreakpoint(GE_CMD_BEZIER, true);
GPUBreakpoints::AddCmdBreakpoint(GE_CMD_SPLINE, true);
GPUBreakpoints::AddCmdBreakpoint(GE_CMD_VAP, true);
} else if (next == BreakNext::CURVE) {
GPUBreakpoints::AddCmdBreakpoint(GE_CMD_BEZIER, true);
GPUBreakpoints::AddCmdBreakpoint(GE_CMD_SPLINE, true);
} else if (next == BreakNext::DRAW) {
// This is now handled by switching to BreakNext::PRIM when we encounter a flush.
// This will take us to the following actual draw.
g_primAfterDraw = true;
}
if (GPUStepping::IsStepping()) {
GPUStepping::ResumeFromStepping();
}
lastStepTime = next == BreakNext::NONE ? -1.0 : time_now_d();
}
void SetBreakCount(int c, bool relative) {
if (relative) {
breakAtCount = primsThisFrame + c;
} else {
breakAtCount = c;
}
}
NotifyResult NotifyCommand(u32 pc) {
u32 op = Memory::ReadUnchecked_U32(pc);
u32 cmd = op >> 24;
if (thisFlipNum != gpuStats.numFlips) {
primsLastFrame = primsThisFrame;
primsThisFrame = 0;
thisFlipNum = gpuStats.numFlips;
}
bool process = true;
if (cmd == GE_CMD_PRIM || cmd == GE_CMD_BEZIER || cmd == GE_CMD_SPLINE || cmd == GE_CMD_VAP) {
primsThisFrame++;
if (!restrictPrimRanges.empty()) {
process = false;
for (const auto &range : restrictPrimRanges) {
if (primsThisFrame >= range.first && primsThisFrame <= range.second) {
process = true;
break;
}
}
}
}
bool isBreakpoint = false;
if (breakNext == BreakNext::OP) {
isBreakpoint = true;
} else if (breakNext == BreakNext::COUNT) {
isBreakpoint = primsThisFrame == breakAtCount;
} else if (GPUBreakpoints::g_hasBreakpoints) {
isBreakpoint = GPUBreakpoints::IsBreakpoint(pc, op);
}
if (isBreakpoint && pc == g_skipPcOnce) {
INFO_LOG(Log::GeDebugger, "Skipping GE break at %08x (last break was here)", g_skipPcOnce);
g_skipPcOnce = 0;
return process ? NotifyResult::Execute : NotifyResult::Skip;
}
g_skipPcOnce = 0;
if (isBreakpoint) {
GPUBreakpoints::ClearTempBreakpoints();
if (coreState == CORE_POWERDOWN || !gpuDebug) {
breakNext = BreakNext::NONE;
return process ? NotifyResult::Execute : NotifyResult::Skip;
}
auto info = gpuDebug->DisassembleOp(pc);
if (lastStepTime >= 0.0) {
NOTICE_LOG(Log::GeDebugger, "Waiting at %08x, %s (%fms)", pc, info.desc.c_str(), (time_now_d() - lastStepTime) * 1000.0);
lastStepTime = -1.0;
} else {
NOTICE_LOG(Log::GeDebugger, "Waiting at %08x, %s", pc, info.desc.c_str());
}
g_skipPcOnce = pc;
breakNext = BreakNext::NONE;
return NotifyResult::Break; // new. caller will call GPUStepping::EnterStepping().
}
return process ? NotifyResult::Execute : NotifyResult::Skip;
}
void NotifyFlush() {
if (breakNext == BreakNext::DRAW && !GPUStepping::IsStepping()) {
// Break on the first PRIM after a flush.
if (g_primAfterDraw) {
NOTICE_LOG(Log::GeDebugger, "Flush detected, breaking at next PRIM");
g_primAfterDraw = false;
// Switch to PRIM mode.
SetBreakNext(BreakNext::PRIM);
}
}
}
void NotifyDisplay(u32 framebuf, u32 stride, int format) {
if (breakNext == BreakNext::FRAME) {
// Start stepping at the first op of the new frame.
breakNext = BreakNext::OP;
}
}
void NotifyBeginFrame() {
if (breakNext == BreakNext::VSYNC) {
// Just start stepping as soon as we can once the vblank finishes.
breakNext = BreakNext::OP;
}
}
int PrimsThisFrame() {
return primsThisFrame;
}
int PrimsLastFrame() {
return primsLastFrame;
}
static bool ParseRange(const std::string &s, std::pair<int, int> &range) {
int c = sscanf(s.c_str(), "%d-%d", &range.first, &range.second);
if (c == 0)
return false;
if (c == 1)
range.second = range.first;
return true;
}
bool SetRestrictPrims(const char *rule) {
if (rule == nullptr || rule[0] == 0 || (rule[0] == '*' && rule[1] == 0)) {
restrictPrimRanges.clear();
restrictPrimRule.clear();
return true;
}
static constexpr int MAX_PRIMS = 0x7FFFFFFF;
std::vector<std::string> parts;
SplitString(rule, ',', parts);
// Parse expressions like: 0 or 0-1,4-5 or !2 or !2-3 or !2,!3
std::vector<std::pair<int, int>> updated;
for (auto &part : parts) {
std::pair<int, int> range;
if (part.size() > 1 && part[0] == '!') {
if (!ParseRange(part.substr(1), range))
return false;
// If there's nothing yet, add everything else.
if (updated.empty()) {
if (range.first > 0)
updated.emplace_back(0, range.first - 1);
if (range.second < MAX_PRIMS)
updated.emplace_back(range.second + 1, MAX_PRIMS);
continue;
}
// Otherwise, remove this range from any existing.
for (size_t i = 0; i < updated.size(); ++i) {
auto &sub = updated[i];
if (sub.second < range.first || sub.first > range.second)
continue;
if (sub.first >= range.first && sub.second <= range.second) {
// Entire subrange is inside the deleted entries, nuke.
sub.first = -1;
sub.second = -1;
continue;
}
if (sub.first < range.first && sub.second > range.second) {
// We're slicing a hole in this subrange.
int next = sub.second;
sub.second = range.first - 1;
updated.emplace_back(range.second + 1, next);
continue;
}
// If we got here, we're simply clipping the subrange.
if (sub.first < range.first && sub.second >= range.first && sub.second <= range.second)
sub.second = range.first - 1;
if (sub.first >= range.first && sub.first <= range.second && sub.second < range.second)
sub.first = range.second + 1;
}
} else {
if (!ParseRange(part, range))
return false;
updated.push_back(range);
}
}
restrictPrimRanges = updated;
restrictPrimRule = rule;
return true;
}
const char *GetRestrictPrims() {
return restrictPrimRule.c_str();
}
}