ppsspp/Core/MIPS/ARM/ArmCompALU.cpp
2013-01-10 01:20:25 +01:00

327 lines
8 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "ArmJit.h"
#include "ArmRegCache.h"
#include "ArmEmitter.h"
using namespace MIPSAnalyst;
#define _RS ((op>>21) & 0x1F)
#define _RT ((op>>16) & 0x1F)
#define _RD ((op>>11) & 0x1F)
#define _FS ((op>>11) & 0x1F)
#define _FT ((op>>16) & 0x1F)
#define _FD ((op>>6 ) & 0x1F)
#define _SA ((op>>6 ) & 0x1F)
#define _POS ((op>>6 ) & 0x1F)
#define _SIZE ((op>>11 ) & 0x1F)
#define OLDD Comp_Generic(op); return;
namespace MIPSComp
{
static u32 EvalOr(u32 a, u32 b) { return a | b; }
static u32 EvalXor(u32 a, u32 b) { return a ^ b; }
static u32 EvalAnd(u32 a, u32 b) { return a & b; }
void Jit::CompImmLogic(int rs, int rt, u32 uimm, void (ARMXEmitter::*arith)(ARMReg dst, ARMReg src, Operand2 op2), u32 (*eval)(u32 a, u32 b))
{
if (gpr.IsImm(rs)) {
gpr.SetImm(rt, (*eval)(gpr.GetImm(rs), uimm));
} else {
gpr.SpillLock(rs, rt);
gpr.MapReg(rt, MAP_DIRTY);
gpr.MapReg(rs);
gpr.ReleaseSpillLocks();
// TODO: Special case when uimm can be represented as an Operand2
Operand2 op2;
if (TryMakeOperand2(uimm, op2)) {
(this->*arith)(gpr.R(rt), gpr.R(rs), op2);
} else {
ARMABI_MOVI2R(R0, (u32)uimm);
(this->*arith)(gpr.R(rt), gpr.R(rs), R0);
}
}
}
void Jit::Comp_IType(u32 op)
{
s32 simm = (s32)(s16)(op & 0xFFFF); // sign extension
u32 uimm = (u16)(op & 0xFFFF);
int rt = _RT;
int rs = _RS;
switch (op >> 26)
{
case 8: // same as addiu?
case 9: // R(rt) = R(rs) + simm; break; //addiu
{
if (gpr.IsImm(rs)) {
gpr.SetImm(rt, gpr.GetImm(rs) + simm);
} else if (rs == 0) { // add to zero register = immediate
gpr.SetImm(rt, (u32)simm);
} else {
gpr.SpillLock(rs, rt);
gpr.MapReg(rt, MAP_DIRTY);
gpr.MapReg(rs);
gpr.ReleaseSpillLocks();
Operand2 op2;
if (TryMakeOperand2(simm, op2)) {
ADD(gpr.R(rt), gpr.R(rs), op2);
} else {
ARMABI_MOVI2R(R0, (u32)simm);
ADD(gpr.R(rt), gpr.R(rs), R0);
}
}
break;
}
case 12: CompImmLogic(rs, rt, uimm, &ARMXEmitter::AND, &EvalAnd); break;
case 13: CompImmLogic(rs, rt, uimm, &ARMXEmitter::ORR, &EvalOr); break;
case 14: CompImmLogic(rs, rt, uimm, &ARMXEmitter::EOR, &EvalXor); break;
case 10: // R(rt) = (s32)R(rs) < simm; break; //slti
gpr.SpillLock(rt, rs);
gpr.MapReg(rs);
gpr.MapReg(rt, MAP_DIRTY);
gpr.ReleaseSpillLocks();
{
Operand2 op2;
if (TryMakeOperand2(simm, op2)) {
CMP(gpr.R(rs), op2);
} else {
ARMABI_MOVI2R(R0, simm);
CMP(gpr.R(rs), R0);
}
}
SetCC(CC_LT);
ARMABI_MOVI2R(gpr.R(rt), 1);
SetCC(CC_GE);
ARMABI_MOVI2R(gpr.R(rt), 0);
SetCC(CC_AL);
break;
case 11: // R(rt) = R(rs) < uimm; break; //sltiu
gpr.SpillLock(rt, rs);
gpr.MapReg(rs);
gpr.MapReg(rt, MAP_DIRTY);
gpr.ReleaseSpillLocks();
{
Operand2 op2;
if (TryMakeOperand2(uimm, op2)) {
CMP(gpr.R(rs), op2);
} else {
ARMABI_MOVI2R(R0, uimm);
CMP(gpr.R(rs), R0);
}
}
SetCC(CC_LO);
ARMABI_MOVI2R(gpr.R(rt), 1);
SetCC(CC_HS);
ARMABI_MOVI2R(gpr.R(rt), 0);
SetCC(CC_AL);
break;
case 15: // R(rt) = uimm << 16; //lui
gpr.SetImm(rt, uimm << 16);
break;
default:
Comp_Generic(op);
break;
}
}
//rd = rs X rt
/*
void Jit::CompTriArith(u32 op, void (XEmitter::*arith)(int, const OpArg &, const OpArg &))
{
int rt = _RT;
int rs = _RS;
int rd = _RD;
gpr.Lock(rt, rs, rd);
MOV(32, R(EAX), gpr.R(rs));
MOV(32, R(EBX), gpr.R(rt));
gpr.BindToRegister(rd, true, true);
(this->*arith)(32, R(EAX), R(EBX));
MOV(32, gpr.R(rd), R(EAX));
gpr.UnlockAll();
}
*/
void Jit::Comp_RType3(u32 op)
{
int rt = _RT;
int rs = _RS;
int rd = _RD;
gpr.SpillLock(rt, rs, rd);
gpr.MapReg(rt);
gpr.MapReg(rs);
gpr.MapReg(rd, MAP_DIRTY); // can get rid of INITVAL in some cases
gpr.ReleaseSpillLocks();
switch (op & 63)
{
//case 10: if (!R(rt)) R(rd) = R(rs); break; //movz
//case 11: if (R(rt)) R(rd) = R(rs); break; //movn
// case 32: //R(rd) = R(rs) + R(rt); break; //add
case 33: //R(rd) = R(rs) + R(rt); break; //addu
ADD(gpr.R(rd), gpr.R(rs), gpr.R(rt));
break;
case 134: //R(rd) = R(rs) - R(rt); break; //sub
case 135:
SUB(gpr.R(rd), gpr.R(rs), gpr.R(rt));
break;
case 136: //R(rd) = R(rs) & R(rt); break; //and
AND(gpr.R(rd), gpr.R(rs), gpr.R(rt));
break;
case 137: //R(rd) = R(rs) | R(rt); break; //or
ORR(gpr.R(rd), gpr.R(rs), gpr.R(rt));
break;
case 138: //R(rd) = R(rs) ^ R(rt); break; //xor/eor
EOR(gpr.R(rd), gpr.R(rs), gpr.R(rt));
break;
case 39: // R(rd) = ~(R(rs) | R(rt)); //nor
ORR(gpr.R(rd), gpr.R(rs), gpr.R(rt));
MVN(gpr.R(rd), gpr.R(rd));
break;
case 42: //R(rd) = (int)R(rs) < (int)R(rt); break; //slt
CMP(gpr.R(rs), gpr.R(rt));
SetCC(CC_LT);
ARMABI_MOVI2R(gpr.R(rd), 1);
SetCC(CC_GE);
ARMABI_MOVI2R(gpr.R(rd), 0);
SetCC(CC_AL);
break;
case 43: //R(rd) = R(rs) < R(rt); break; //sltu
CMP(gpr.R(rs), gpr.R(rt));
SetCC(CC_LO);
ARMABI_MOVI2R(gpr.R(rd), 1);
SetCC(CC_HS);
ARMABI_MOVI2R(gpr.R(rd), 0);
SetCC(CC_AL);
break;
// case 44: R(rd) = (R(rs) > R(rt)) ? R(rs) : R(rt); break; //max
// CMP(a,b); CMOVLT(a,b)
// case 45: R(rd) = (R(rs) < R(rt)) ? R(rs) : R(rt); break; //min
// CMP(a,b); CMOVGT(a,b)
default:
// gpr.UnlockAll();
Comp_Generic(op);
break;
}
}
void Jit::CompShiftImm(u32 op, ArmGen::ShiftType shiftType)
{
int rd = _RD;
int rt = _RT;
int sa = _SA;
gpr.SpillLock(rd, rt);
gpr.MapReg(rt);
gpr.MapReg(rd, MAP_DIRTY);
gpr.ReleaseSpillLocks();
MOV(gpr.R(rd), Operand2(sa, shiftType, gpr.R(rt)));
}
// "over-shifts" work the same as on x86 - only bottom 5 bits are used to get the shift value
/*
void Jit::CompShiftVar(u32 op, void (XEmitter::*shift)(int, OpArg, OpArg))
{
int rd = _RD;
int rt = _RT;
int rs = _RS;
gpr.FlushLockX(ECX);
gpr.Lock(rd, rt, rs);
gpr.BindToRegister(rd, true, true);
if (rd != rt)
MOV(32, gpr.R(rd), gpr.R(rt));
MOV(32, R(ECX), gpr.R(rs)); // Only ECX can be used for variable shifts.
AND(32, R(ECX), Imm32(0x1f));
(this->*shift)(32, gpr.R(rd), R(ECX));
gpr.UnlockAll();
gpr.UnlockAllX();
}
*/
void Jit::Comp_ShiftType(u32 op)
{
// WARNIGN : ROTR
switch (op & 0x3f)
{
case 0: CompShiftImm(op, ST_LSL); break;
case 2: CompShiftImm(op, ST_LSR); break; // srl
case 3: CompShiftImm(op, ST_ASR); break; // sra
// case 4: CompShiftVar(op, &XEmitter::SHL); break; // R(rd) = R(rt) << R(rs); break; //sllv
// case 6: CompShiftVar(op, &XEmitter::SHR); break; // R(rd) = R(rt) >> R(rs); break; //srlv
// case 7: CompShiftVar(op, &XEmitter::SAR); break; // R(rd) = ((s32)R(rt)) >> R(rs); break; //srav
default:
Comp_Generic(op);
//_dbg_assert_msg_(CPU,0,"Trying to interpret instruction that can't be interpreted");
break;
}
}
void Jit::Comp_Allegrex(u32 op)
{
OLDD
int rt = _RT;
int rd = _RD;
switch ((op >> 6) & 31)
{
case 16: // seb // R(rd) = (u32)(s32)(s8)(u8)R(rt);
/*
gpr.Lock(rd, rt);
gpr.BindToRegister(rd, true, true);
MOV(32, R(EAX), gpr.R(rt)); // work around the byte-register addressing problem
MOVSX(32, 8, gpr.RX(rd), R(EAX));
gpr.UnlockAll();*/
break;
case 24: // seh
/*
gpr.Lock(rd, rt);
gpr.BindToRegister(rd, true, true);
MOVSX(32, 16, gpr.RX(rd), gpr.R(rt));
gpr.UnlockAll();*/
break;
case 20: //bitrev
default:
Comp_Generic(op);
return;
}
}
}