ppsspp/GPU/Directx9/VertexShaderGeneratorHLSL.cpp
2020-10-31 18:32:42 +01:00

738 lines
27 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <cstdio>
#include <locale.h>
#include "Common/StringUtils.h"
#include "GPU/ge_constants.h"
#include "GPU/GPUState.h"
#include "Core/Config.h"
#include "GPU/Directx9/VertexShaderGeneratorHLSL.h"
#include "GPU/Common/VertexDecoderCommon.h"
#include "GPU/Common/ShaderUniforms.h"
#undef WRITE
#define WRITE p+=sprintf
static const char * const boneWeightAttrDecl[9] = {
"#ERROR#",
"float a_w1:TEXCOORD1;\n",
"vec2 a_w1:TEXCOORD1;\n",
"vec3 a_w1:TEXCOORD1;\n",
"vec4 a_w1:TEXCOORD1;\n",
"vec4 a_w1:TEXCOORD1;\n float a_w2:TEXCOORD2;\n",
"vec4 a_w1:TEXCOORD1;\n vec2 a_w2:TEXCOORD2;\n",
"vec4 a_w1:TEXCOORD1;\n vec3 a_w2:TEXCOORD2;\n",
"vec4 a_w1:TEXCOORD1;\n vec4 a_w2:TEXCOORD2;\n",
};
bool GenerateVertexShaderHLSL(const VShaderID &id, char *buffer, ShaderLanguage lang, std::string *errorString) {
char *p = buffer;
bool isModeThrough = id.Bit(VS_BIT_IS_THROUGH);
bool lmode = id.Bit(VS_BIT_LMODE);
bool doTexture = id.Bit(VS_BIT_DO_TEXTURE);
bool doTextureTransform = id.Bit(VS_BIT_DO_TEXTURE_TRANSFORM);
GETexMapMode uvGenMode = static_cast<GETexMapMode>(id.Bits(VS_BIT_UVGEN_MODE, 2));
// this is only valid for some settings of uvGenMode
GETexProjMapMode uvProjMode = static_cast<GETexProjMapMode>(id.Bits(VS_BIT_UVPROJ_MODE, 2));
bool doShadeMapping = uvGenMode == GE_TEXMAP_ENVIRONMENT_MAP;
bool doFlatShading = id.Bit(VS_BIT_FLATSHADE);
bool useHWTransform = id.Bit(VS_BIT_USE_HW_TRANSFORM);
bool hasColor = id.Bit(VS_BIT_HAS_COLOR) || !useHWTransform;
bool hasNormal = id.Bit(VS_BIT_HAS_NORMAL) && useHWTransform;
bool hasTexcoord = id.Bit(VS_BIT_HAS_TEXCOORD) || !useHWTransform;
bool enableFog = id.Bit(VS_BIT_ENABLE_FOG);
bool flipNormal = id.Bit(VS_BIT_NORM_REVERSE);
int ls0 = id.Bits(VS_BIT_LS0, 2);
int ls1 = id.Bits(VS_BIT_LS1, 2);
bool enableBones = id.Bit(VS_BIT_ENABLE_BONES);
bool enableLighting = id.Bit(VS_BIT_LIGHTING_ENABLE);
int matUpdate = id.Bits(VS_BIT_MATERIAL_UPDATE, 3);
bool doBezier = id.Bit(VS_BIT_BEZIER) && !enableBones && useHWTransform;
bool doSpline = id.Bit(VS_BIT_SPLINE) && !enableBones && useHWTransform;
if ((doBezier || doSpline) && !hasNormal) {
// Bad usage.
*errorString = "Invalid flags - tess requires normal.";
return false;
}
bool hasColorTess = id.Bit(VS_BIT_HAS_COLOR_TESS);
bool hasTexcoordTess = id.Bit(VS_BIT_HAS_TEXCOORD_TESS);
bool hasNormalTess = id.Bit(VS_BIT_HAS_NORMAL_TESS);
bool flipNormalTess = id.Bit(VS_BIT_NORM_REVERSE_TESS);
DoLightComputation doLight[4] = { LIGHT_OFF, LIGHT_OFF, LIGHT_OFF, LIGHT_OFF };
if (useHWTransform) {
int shadeLight0 = doShadeMapping ? ls0 : -1;
int shadeLight1 = doShadeMapping ? ls1 : -1;
for (int i = 0; i < 4; i++) {
if (i == shadeLight0 || i == shadeLight1)
doLight[i] = LIGHT_SHADE;
if (enableLighting && id.Bit(VS_BIT_LIGHT0_ENABLE + i))
doLight[i] = LIGHT_FULL;
}
}
int numBoneWeights = 0;
int boneWeightScale = id.Bits(VS_BIT_WEIGHT_FMTSCALE, 2);
if (enableBones) {
numBoneWeights = 1 + id.Bits(VS_BIT_BONES, 3);
}
// Output some compatibility defines
WRITE(p, "#define vec2 float2\n");
WRITE(p, "#define vec3 float3\n");
WRITE(p, "#define vec4 float4\n");
WRITE(p, "#define mat4 float4x4\n");
WRITE(p, "#define mat3x4 float4x3\n"); // note how the conventions are backwards
WRITE(p, "#define splat3(x) vec3(x, x, x)\n");
if (lang == HLSL_DX9) {
WRITE(p, "#pragma warning( disable : 3571 )\n");
if (isModeThrough) {
WRITE(p, "float4x4 u_proj_through : register(c%i);\n", CONST_VS_PROJ_THROUGH);
} else {
WRITE(p, "float4x4 u_proj : register(c%i);\n", CONST_VS_PROJ);
// Add all the uniforms we'll need to transform properly.
}
if (enableFog) {
WRITE(p, "vec2 u_fogcoef : register(c%i);\n", CONST_VS_FOGCOEF);
}
if (useHWTransform || !hasColor)
WRITE(p, "vec4 u_matambientalpha : register(c%i);\n", CONST_VS_MATAMBIENTALPHA); // matambient + matalpha
if (useHWTransform) {
// When transforming by hardware, we need a great deal more uniforms...
WRITE(p, "mat3x4 u_world : register(c%i);\n", CONST_VS_WORLD);
WRITE(p, "mat3x4 u_view : register(c%i);\n", CONST_VS_VIEW);
if (doTextureTransform)
WRITE(p, "mat3x4 u_texmtx : register(c%i);\n", CONST_VS_TEXMTX);
if (enableBones) {
#ifdef USE_BONE_ARRAY
WRITE(p, "mat3x4 u_bone[%i] : register(c%i);\n", numBones, CONST_VS_BONE0);
#else
for (int i = 0; i < numBoneWeights; i++) {
WRITE(p, "mat3x4 u_bone%i : register(c%i);\n", i, CONST_VS_BONE0 + i * 3);
}
#endif
}
if (doTexture) {
WRITE(p, "vec4 u_uvscaleoffset : register(c%i);\n", CONST_VS_UVSCALEOFFSET);
}
for (int i = 0; i < 4; i++) {
if (doLight[i] != LIGHT_OFF) {
// This is needed for shade mapping
WRITE(p, "vec3 u_lightpos%i : register(c%i);\n", i, CONST_VS_LIGHTPOS + i);
}
if (doLight[i] == LIGHT_FULL) {
GELightType type = static_cast<GELightType>(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2));
GELightComputation comp = static_cast<GELightComputation>(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2));
if (type != GE_LIGHTTYPE_DIRECTIONAL)
WRITE(p, "vec3 u_lightatt%i : register(c%i);\n", i, CONST_VS_LIGHTATT + i);
if (type == GE_LIGHTTYPE_SPOT || type == GE_LIGHTTYPE_UNKNOWN) {
WRITE(p, "vec3 u_lightdir%i : register(c%i);\n", i, CONST_VS_LIGHTDIR + i);
WRITE(p, "vec4 u_lightangle_spotCoef%i : register(c%i);\n", i, CONST_VS_LIGHTANGLE_SPOTCOEF + i);
}
WRITE(p, "vec3 u_lightambient%i : register(c%i);\n", i, CONST_VS_LIGHTAMBIENT + i);
WRITE(p, "vec3 u_lightdiffuse%i : register(c%i);\n", i, CONST_VS_LIGHTDIFFUSE + i);
if (comp == GE_LIGHTCOMP_BOTH) {
WRITE(p, "vec3 u_lightspecular%i : register(c%i);\n", i, CONST_VS_LIGHTSPECULAR + i);
}
}
}
if (enableLighting) {
WRITE(p, "vec4 u_ambient : register(c%i);\n", CONST_VS_AMBIENT);
if ((matUpdate & 2) == 0 || !hasColor)
WRITE(p, "vec3 u_matdiffuse : register(c%i);\n", CONST_VS_MATDIFFUSE);
// if ((matUpdate & 4) == 0)
WRITE(p, "vec4 u_matspecular : register(c%i);\n", CONST_VS_MATSPECULAR); // Specular coef is contained in alpha
WRITE(p, "vec3 u_matemissive : register(c%i);\n", CONST_VS_MATEMISSIVE);
}
}
if (!isModeThrough && gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) {
WRITE(p, "vec4 u_depthRange : register(c%i);\n", CONST_VS_DEPTHRANGE);
}
if (!isModeThrough) {
WRITE(p, "vec4 u_cullRangeMin : register(c%i);\n", CONST_VS_CULLRANGEMIN);
WRITE(p, "vec4 u_cullRangeMax : register(c%i);\n", CONST_VS_CULLRANGEMAX);
}
} else {
WRITE(p, "cbuffer base : register(b0) {\n%s};\n", cb_baseStr);
WRITE(p, "cbuffer lights: register(b1) {\n%s};\n", cb_vs_lightsStr);
WRITE(p, "cbuffer bones : register(b2) {\n%s};\n", cb_vs_bonesStr);
}
bool scaleUV = !isModeThrough && (uvGenMode == GE_TEXMAP_TEXTURE_COORDS || uvGenMode == GE_TEXMAP_UNKNOWN);
// And the "varyings".
bool texCoordInVec3 = false;
if (useHWTransform) {
WRITE(p, "struct VS_IN { \n");
if ((doSpline || doBezier) && lang == HLSL_D3D11) {
WRITE(p, " uint instanceId : SV_InstanceID;\n");
}
if (enableBones) {
WRITE(p, " %s", boneWeightAttrDecl[numBoneWeights]);
}
if (doTexture && hasTexcoord) {
WRITE(p, " vec2 texcoord : TEXCOORD0;\n");
}
if (hasColor) {
WRITE(p, " vec4 color0 : COLOR0;\n");
}
if (hasNormal) {
WRITE(p, " vec3 normal : NORMAL;\n");
}
WRITE(p, " vec3 position : POSITION;\n");
WRITE(p, "};\n");
} else {
WRITE(p, "struct VS_IN {\n");
WRITE(p, " vec4 position : POSITION;\n");
if (doTexture && hasTexcoord) {
if (doTextureTransform && !isModeThrough) {
texCoordInVec3 = true;
WRITE(p, " vec3 texcoord : TEXCOORD0;\n");
}
else
WRITE(p, " vec2 texcoord : TEXCOORD0;\n");
}
if (hasColor) {
WRITE(p, " vec4 color0 : COLOR0;\n");
}
// only software transform supplies color1 as vertex data
if (lmode) {
WRITE(p, " vec4 color1 : COLOR1;\n");
}
WRITE(p, "};\n");
}
WRITE(p, "struct VS_OUT {\n");
if (doTexture) {
WRITE(p, " vec3 v_texcoord : TEXCOORD0;\n");
}
const char *colorInterpolation = doFlatShading && lang == HLSL_D3D11 ? "nointerpolation " : "";
WRITE(p, " %svec4 v_color0 : COLOR0;\n", colorInterpolation);
if (lmode)
WRITE(p, " vec3 v_color1 : COLOR1;\n");
if (enableFog) {
WRITE(p, " float v_fogdepth: TEXCOORD1;\n");
}
if (lang == HLSL_DX9) {
WRITE(p, " vec4 gl_Position : POSITION;\n");
} else {
WRITE(p, " vec4 gl_Position : SV_Position;\n");
}
WRITE(p, "};\n");
// Confirmed: Through mode gets through exactly the same in GL and D3D in Phantasy Star: Text is 38023.0 in the test scene.
if (!isModeThrough && gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) {
// Apply the projection and viewport to get the Z buffer value, floor to integer, undo the viewport and projection.
// The Z range in D3D is different but we compensate for that using parameters.
WRITE(p, "\nvec4 depthRoundZVP(vec4 v) {\n");
WRITE(p, " float z = v.z / v.w;\n");
WRITE(p, " z = (z * u_depthRange.x + u_depthRange.y);\n");
WRITE(p, " z = floor(z);\n");
WRITE(p, " z = (z - u_depthRange.z) * u_depthRange.w;\n");
WRITE(p, " return vec4(v.x, v.y, z * v.w, v.w);\n");
WRITE(p, "}\n\n");
}
// Hardware tessellation
if (doSpline || doBezier) {
if (lang == HLSL_D3D11) {
WRITE(p, "struct TessData {\n");
WRITE(p, " vec3 pos; float pad1;\n");
WRITE(p, " vec2 tex; vec2 pad2;\n");
WRITE(p, " vec4 col;\n");
WRITE(p, "};\n");
WRITE(p, "StructuredBuffer<TessData> tess_data : register(t0);\n");
WRITE(p, "struct TessWeight {\n");
WRITE(p, " vec4 basis;\n");
WRITE(p, " vec4 deriv;\n");
WRITE(p, "};\n");
WRITE(p, "StructuredBuffer<TessWeight> tess_weights_u : register(t1);\n");
WRITE(p, "StructuredBuffer<TessWeight> tess_weights_v : register(t2);\n");
}
const char *init[3] = { "0.0, 0.0", "0.0, 0.0, 0.0", "0.0, 0.0, 0.0, 0.0" };
for (int i = 2; i <= 4; i++) {
// Define 3 types vec2, vec3, vec4
WRITE(p, "float%d tess_sample(in float%d points[16], float4x4 weights) {\n", i, i);
WRITE(p, " float%d pos = float%d(%s);\n", i, i, init[i - 2]);
for (int v = 0; v < 4; ++v) {
for (int u = 0; u < 4; ++u) {
WRITE(p, " pos += weights[%i][%i] * points[%i];\n", v, u, v * 4 + u);
}
}
WRITE(p, " return pos;\n");
WRITE(p, "}\n");
}
WRITE(p, "float4x4 outerProduct(vec4 u, vec4 v) {\n");
WRITE(p, " return mul((float4x1)v, (float1x4)u);\n");
WRITE(p, "}\n");
WRITE(p, "struct Tess {\n");
WRITE(p, " vec3 pos;\n");
if (doTexture)
WRITE(p, " vec2 tex;\n");
WRITE(p, " vec4 col;\n");
if (hasNormalTess)
WRITE(p, " vec3 nrm;\n");
WRITE(p, "};\n");
WRITE(p, "void tessellate(in VS_IN In, out Tess tess) {\n");
WRITE(p, " int2 point_pos = int2(In.position.z, In.normal.z)%s;\n", doBezier ? " * 3" : "");
WRITE(p, " int2 weight_idx = int2(In.position.xy);\n");
// Load 4x4 control points
WRITE(p, " vec3 _pos[16];\n");
WRITE(p, " vec2 _tex[16];\n");
WRITE(p, " vec4 _col[16];\n");
WRITE(p, " int index;\n");
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
WRITE(p, " index = (%i + point_pos.y) * u_spline_counts + (%i + point_pos.x);\n", i, j);
WRITE(p, " _pos[%i] = tess_data[index].pos;\n", i * 4 + j);
if (doTexture && hasTexcoordTess)
WRITE(p, " _tex[%i] = tess_data[index].tex;\n", i * 4 + j);
if (hasColorTess)
WRITE(p, " _col[%i] = tess_data[index].col;\n", i * 4 + j);
}
}
// Basis polynomials as weight coefficients
WRITE(p, " vec4 basis_u = tess_weights_u[weight_idx.x].basis;\n");
WRITE(p, " vec4 basis_v = tess_weights_v[weight_idx.y].basis;\n");
WRITE(p, " float4x4 basis = outerProduct(basis_u, basis_v);\n");
// Tessellate
WRITE(p, " tess.pos = tess_sample(_pos, basis);\n");
if (doTexture) {
if (hasTexcoordTess)
WRITE(p, " tess.tex = tess_sample(_tex, basis);\n");
else
WRITE(p, " tess.tex = In.normal.xy;\n");
}
if (hasColorTess)
WRITE(p, " tess.col = tess_sample(_col, basis);\n");
else
WRITE(p, " tess.col = u_matambientalpha;\n");
if (hasNormalTess) {
// Derivatives as weight coefficients
WRITE(p, " vec4 deriv_u = tess_weights_u[weight_idx.x].deriv;\n");
WRITE(p, " vec4 deriv_v = tess_weights_v[weight_idx.y].deriv;\n");
WRITE(p, " vec3 du = tess_sample(_pos, outerProduct(deriv_u, basis_v));\n");
WRITE(p, " vec3 dv = tess_sample(_pos, outerProduct(basis_u, deriv_v));\n");
WRITE(p, " tess.nrm = normalize(cross(du, dv));\n");
}
WRITE(p, "}\n");
}
WRITE(p, "VS_OUT main(VS_IN In) {\n");
WRITE(p, " VS_OUT Out;\n");
if (!useHWTransform) {
// Simple pass-through of vertex data to fragment shader
if (doTexture) {
if (texCoordInVec3) {
WRITE(p, " Out.v_texcoord = In.texcoord;\n");
} else {
WRITE(p, " Out.v_texcoord = vec3(In.texcoord, 1.0);\n");
}
}
if (hasColor) {
WRITE(p, " Out.v_color0 = In.color0;\n");
if (lmode)
WRITE(p, " Out.v_color1 = In.color1.rgb;\n");
} else {
WRITE(p, " Out.v_color0 = In.u_matambientalpha;\n");
if (lmode)
WRITE(p, " Out.v_color1 = vec3(0.0);\n");
}
if (enableFog) {
WRITE(p, " Out.v_fogdepth = In.position.w;\n");
}
if (lang == HLSL_D3D11) {
if (isModeThrough) {
WRITE(p, " float4 outPos = mul(u_proj_through, vec4(In.position.xyz, 1.0));\n");
} else {
if (gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) {
WRITE(p, " vec4 outPos = depthRoundZVP(mul(u_proj, vec4(In.position.xyz, 1.0)));\n");
} else {
WRITE(p, " vec4 outPos = mul(u_proj, vec4(In.position.xyz, 1.0));\n");
}
}
} else {
if (isModeThrough) {
WRITE(p, " vec4 outPos = mul(vec4(In.position.xyz, 1.0), u_proj_through);\n");
} else {
if (gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) {
WRITE(p, " vec4 outPos = depthRoundZVP(mul(vec4(In.position.xyz, 1.0), u_proj));\n");
} else {
WRITE(p, " vec4 outPos = mul(vec4(In.position.xyz, 1.0), u_proj);\n");
}
}
}
} else {
// Step 1: World Transform / Skinning
if (!enableBones) {
if (doSpline || doBezier) {
// Hardware tessellation
WRITE(p, " Tess tess;\n");
WRITE(p, " tessellate(In, tess);\n");
WRITE(p, " vec3 worldpos = mul(vec4(tess.pos.xyz, 1.0), u_world);\n");
if (hasNormalTess)
WRITE(p, " vec3 worldnormal = normalize(mul(vec4(%stess.nrm, 0.0), u_world));\n", flipNormalTess ? "-" : "");
else
WRITE(p, " vec3 worldnormal = vec3(0.0, 0.0, 1.0);\n");
} else {
// No skinning, just standard T&L.
WRITE(p, " vec3 worldpos = mul(vec4(In.position.xyz, 1.0), u_world);\n");
if (hasNormal)
WRITE(p, " vec3 worldnormal = normalize(mul(vec4(%sIn.normal, 0.0), u_world));\n", flipNormal ? "-" : "");
else
WRITE(p, " vec3 worldnormal = vec3(0.0, 0.0, 1.0);\n");
}
} else {
static const char * const boneWeightAttr[8] = {
"a_w1.x", "a_w1.y", "a_w1.z", "a_w1.w",
"a_w2.x", "a_w2.y", "a_w2.z", "a_w2.w",
};
if (lang == HLSL_D3D11) {
if (numBoneWeights == 1)
WRITE(p, " mat3x4 skinMatrix = mul(In.a_w1, u_bone[0])");
else
WRITE(p, " float4x3 skinMatrix = mul(In.a_w1.x, u_bone[0])");
for (int i = 1; i < numBoneWeights; i++) {
const char *weightAttr = boneWeightAttr[i];
// workaround for "cant do .x of scalar" issue
if (numBoneWeights == 1 && i == 0) weightAttr = "a_w1";
if (numBoneWeights == 5 && i == 4) weightAttr = "a_w2";
WRITE(p, " + mul(In.%s, u_bone[%i])", weightAttr, i);
}
} else {
if (numBoneWeights == 1)
WRITE(p, " float4x3 skinMatrix = mul(In.a_w1, u_bone0)");
else
WRITE(p, " float4x3 skinMatrix = mul(In.a_w1.x, u_bone0)");
for (int i = 1; i < numBoneWeights; i++) {
const char *weightAttr = boneWeightAttr[i];
// workaround for "cant do .x of scalar" issue
if (numBoneWeights == 1 && i == 0) weightAttr = "a_w1";
if (numBoneWeights == 5 && i == 4) weightAttr = "a_w2";
WRITE(p, " + mul(In.%s, u_bone%i)", weightAttr, i);
}
}
WRITE(p, ";\n");
// Trying to simplify this results in bugs in LBP...
WRITE(p, " vec3 skinnedpos = mul(float4(In.position.xyz, 1.0), skinMatrix);\n");
WRITE(p, " vec3 worldpos = mul(float4(skinnedpos, 1.0), u_world);\n");
if (hasNormal) {
WRITE(p, " vec3 skinnednormal = mul(float4(%sIn.normal, 0.0), skinMatrix);\n", flipNormal ? "-" : "");
} else {
WRITE(p, " vec3 skinnednormal = mul(float4(0.0, 0.0, %s1.0, 0.0), skinMatrix);\n", flipNormal ? "-" : "");
}
WRITE(p, " vec3 worldnormal = normalize(mul(float4(skinnednormal, 0.0), u_world));\n");
}
WRITE(p, " vec4 viewPos = vec4(mul(vec4(worldpos, 1.0), u_view), 1.0);\n");
if (lang == HLSL_D3D11) {
// Final view and projection transforms.
if (gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) {
WRITE(p, " vec4 outPos = depthRoundZVP(mul(u_proj, viewPos));\n");
} else {
WRITE(p, " vec4 outPos = mul(u_proj, viewPos);\n");
}
} else {
// Final view and projection transforms.
if (gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) {
WRITE(p, " vec4 outPos = depthRoundZVP(mul(viewPos, u_proj));\n");
} else {
WRITE(p, " vec4 outPos = mul(viewPos, u_proj);\n");
}
}
// TODO: Declare variables for dots for shade mapping if needed.
const char *ambientStr = (matUpdate & 1) && hasColor ? "In.color0" : "u_matambientalpha";
const char *diffuseStr = (matUpdate & 2) && hasColor ? "In.color0.rgb" : "u_matdiffuse";
const char *specularStr = (matUpdate & 4) && hasColor ? "In.color0.rgb" : "u_matspecular.rgb";
if (doBezier || doSpline) {
// TODO: Probably, should use hasColorTess but FF4 has a problem with drawing the background.
ambientStr = (matUpdate & 1) && hasColor ? "tess.col" : "u_matambientalpha";
diffuseStr = (matUpdate & 2) && hasColor ? "tess.col.rgb" : "u_matdiffuse";
specularStr = (matUpdate & 4) && hasColor ? "tess.col.rgb" : "u_matspecular.rgb";
}
bool diffuseIsZero = true;
bool specularIsZero = true;
bool distanceNeeded = false;
bool anySpots = false;
if (enableLighting) {
WRITE(p, " vec4 lightSum0 = u_ambient * %s + float4(u_matemissive, 0.0);\n", ambientStr);
for (int i = 0; i < 4; i++) {
GELightType type = static_cast<GELightType>(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2));
GELightComputation comp = static_cast<GELightComputation>(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2));
if (doLight[i] != LIGHT_FULL)
continue;
diffuseIsZero = false;
if (comp == GE_LIGHTCOMP_BOTH)
specularIsZero = false;
if (type != GE_LIGHTTYPE_DIRECTIONAL)
distanceNeeded = true;
if (type == GE_LIGHTTYPE_SPOT || type == GE_LIGHTTYPE_UNKNOWN)
anySpots = true;
}
if (!specularIsZero) {
WRITE(p, " vec3 lightSum1 = 0;\n");
}
if (!diffuseIsZero) {
WRITE(p, " vec3 toLight;\n");
WRITE(p, " vec3 diffuse;\n");
}
if (distanceNeeded) {
WRITE(p, " float distance;\n");
WRITE(p, " float lightScale;\n");
}
WRITE(p, " float ldot;\n");
if (anySpots) {
WRITE(p, " float angle;\n");
}
}
// Calculate lights if needed. If shade mapping is enabled, lights may need to be
// at least partially calculated.
for (int i = 0; i < 4; i++) {
if (doLight[i] != LIGHT_FULL)
continue;
GELightType type = static_cast<GELightType>(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2));
GELightComputation comp = static_cast<GELightComputation>(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2));
if (type == GE_LIGHTTYPE_DIRECTIONAL) {
// We prenormalize light positions for directional lights.
WRITE(p, " toLight = u_lightpos%i;\n", i);
} else {
WRITE(p, " toLight = u_lightpos%i - worldpos;\n", i);
WRITE(p, " distance = length(toLight);\n");
WRITE(p, " toLight /= distance;\n");
}
bool doSpecular = comp == GE_LIGHTCOMP_BOTH;
bool poweredDiffuse = comp == GE_LIGHTCOMP_ONLYPOWDIFFUSE;
WRITE(p, " ldot = dot(toLight, worldnormal);\n");
if (poweredDiffuse) {
// pow(0.0, 0.0) may be undefined, but the PSP seems to treat it as 1.0.
// Seen in Tales of the World: Radiant Mythology (#2424.)
WRITE(p, " if (u_matspecular.a <= 0.0) {\n");
WRITE(p, " ldot = 1.0;\n");
WRITE(p, " } else {\n");
WRITE(p, " ldot = pow(max(ldot, 0.0), u_matspecular.a);\n");
WRITE(p, " }\n");
}
const char *timesLightScale = " * lightScale";
// Attenuation
switch (type) {
case GE_LIGHTTYPE_DIRECTIONAL:
timesLightScale = "";
break;
case GE_LIGHTTYPE_POINT:
WRITE(p, " lightScale = clamp(1.0 / dot(u_lightatt%i, vec3(1.0, distance, distance*distance)), 0.0, 1.0);\n", i);
break;
case GE_LIGHTTYPE_SPOT:
case GE_LIGHTTYPE_UNKNOWN:
WRITE(p, " angle = length(u_lightdir%i) == 0.0 ? 0.0 : dot(normalize(u_lightdir%i), toLight);\n", i, i);
WRITE(p, " if (angle >= u_lightangle_spotCoef%i.x) {\n", i);
WRITE(p, " lightScale = clamp(1.0 / dot(u_lightatt%i, vec3(1.0, distance, distance*distance)), 0.0, 1.0) * (u_lightangle_spotCoef%i.y <= 0.0 ? 1.0 : pow(angle, u_lightangle_spotCoef%i.y));\n", i, i, i);
WRITE(p, " } else {\n");
WRITE(p, " lightScale = 0.0;\n");
WRITE(p, " }\n");
break;
default:
// ILLEGAL
break;
}
WRITE(p, " diffuse = (u_lightdiffuse%i * %s) * max(ldot, 0.0);\n", i, diffuseStr);
if (doSpecular) {
WRITE(p, " if (ldot >= 0.0) {\n");
WRITE(p, " ldot = dot(normalize(toLight + vec3(0.0, 0.0, 1.0)), worldnormal);\n");
WRITE(p, " if (u_matspecular.a <= 0.0) {\n");
WRITE(p, " ldot = 1.0;\n");
WRITE(p, " } else {\n");
WRITE(p, " ldot = pow(max(ldot, 0.0), u_matspecular.a);\n");
WRITE(p, " }\n");
WRITE(p, " if (ldot > 0.0)\n");
WRITE(p, " lightSum1 += u_lightspecular%i * %s * ldot %s;\n", i, specularStr, timesLightScale);
WRITE(p, " }\n");
}
WRITE(p, " lightSum0.rgb += (u_lightambient%i * %s.rgb + diffuse)%s;\n", i, ambientStr, timesLightScale);
}
if (enableLighting) {
// Sum up ambient, emissive here.
if (lmode) {
WRITE(p, " Out.v_color0 = clamp(lightSum0, 0.0, 1.0);\n");
// v_color1 only exists when lmode = 1.
if (specularIsZero) {
WRITE(p, " Out.v_color1 = splat3(0.0);\n");
} else {
WRITE(p, " Out.v_color1 = clamp(lightSum1, 0.0, 1.0);\n");
}
} else {
if (specularIsZero) {
WRITE(p, " Out.v_color0 = clamp(lightSum0, 0.0, 1.0);\n");
} else {
WRITE(p, " Out.v_color0 = clamp(clamp(lightSum0, 0.0, 1.0) + float4(lightSum1, 0.0), 0.0, 1.0);\n");
}
}
} else {
// Lighting doesn't affect color.
if (hasColor) {
if (doBezier || doSpline)
WRITE(p, " Out.v_color0 = tess.col;\n");
else
WRITE(p, " Out.v_color0 = In.color0;\n");
} else {
WRITE(p, " Out.v_color0 = u_matambientalpha;\n");
}
if (lmode)
WRITE(p, " Out.v_color1 = splat3(0.0);\n");
}
// Step 3: UV generation
if (doTexture) {
switch (uvGenMode) {
case GE_TEXMAP_TEXTURE_COORDS: // Scale-offset. Easy.
case GE_TEXMAP_UNKNOWN: // Not sure what this is, but Riviera uses it. Treating as coords works.
if (scaleUV) {
if (hasTexcoord) {
if (doBezier || doSpline)
WRITE(p, " Out.v_texcoord = vec3(tess.tex.xy * u_uvscaleoffset.xy + u_uvscaleoffset.zw, 0.0);\n");
else
WRITE(p, " Out.v_texcoord = vec3(In.texcoord.xy * u_uvscaleoffset.xy, 0.0);\n");
} else {
WRITE(p, " Out.v_texcoord = splat3(0.0);\n");
}
} else {
if (hasTexcoord) {
WRITE(p, " Out.v_texcoord = vec3(In.texcoord.xy * u_uvscaleoffset.xy + u_uvscaleoffset.zw, 0.0);\n");
} else {
WRITE(p, " Out.v_texcoord = vec3(u_uvscaleoffset.zw, 0.0);\n");
}
}
break;
case GE_TEXMAP_TEXTURE_MATRIX: // Projection mapping.
{
std::string temp_tc;
switch (uvProjMode) {
case GE_PROJMAP_POSITION: // Use model space XYZ as source
temp_tc = "vec4(In.position.xyz, 1.0)";
break;
case GE_PROJMAP_UV: // Use unscaled UV as source
{
if (hasTexcoord) {
temp_tc = StringFromFormat("vec4(In.texcoord.xy, 0.0, 1.0)");
} else {
temp_tc = "vec4(0.0, 0.0, 0.0, 1.0)";
}
}
break;
case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized transformed normal as source
if (hasNormal)
temp_tc = flipNormal ? "vec4(normalize(-In.normal), 1.0)" : "vec4(normalize(In.normal), 1.0)";
else
temp_tc = "vec4(0.0, 0.0, 1.0, 1.0)";
break;
case GE_PROJMAP_NORMAL: // Use non-normalized transformed normal as source
if (hasNormal)
temp_tc = flipNormal ? "vec4(-In.normal, 1.0)" : "vec4(In.normal, 1.0)";
else
temp_tc = "vec4(0.0, 0.0, 1.0, 1.0)";
break;
}
// Transform by texture matrix. XYZ as we are doing projection mapping.
WRITE(p, " Out.v_texcoord.xyz = mul(%s, u_texmtx) * vec3(u_uvscaleoffset.xy, 1.0);\n", temp_tc.c_str());
}
break;
case GE_TEXMAP_ENVIRONMENT_MAP: // Shade mapping - use dots from light sources.
{
std::string lightFactor0 = StringFromFormat("(length(u_lightpos%i) == 0.0 ? worldnormal.z : dot(normalize(u_lightpos%i), worldnormal))", ls0, ls0);
std::string lightFactor1 = StringFromFormat("(length(u_lightpos%i) == 0.0 ? worldnormal.z : dot(normalize(u_lightpos%i), worldnormal))", ls1, ls1);
WRITE(p, " Out.v_texcoord = vec3(u_uvscaleoffset.xy * vec2(1.0 + %s, 1.0 + %s) * 0.5, 1.0);\n", lightFactor0.c_str(), lightFactor1.c_str());
}
break;
default:
// Should be unreachable.
_assert_(false);
return false;
}
}
// Compute fogdepth
if (enableFog) {
WRITE(p, " Out.v_fogdepth = (viewPos.z + u_fogcoef.x) * u_fogcoef.y;\n");
}
}
if (!isModeThrough && gstate_c.Supports(GPU_SUPPORTS_VS_RANGE_CULLING)) {
WRITE(p, " vec3 projPos = outPos.xyz / outPos.w;\n");
// Vertex range culling doesn't happen when depth is clamped, so only do this if in range.
WRITE(p, " if (u_cullRangeMin.w <= 0.0 || (projPos.z >= u_cullRangeMin.z && projPos.z <= u_cullRangeMax.z)) {\n");
const char *outMin = "projPos.x < u_cullRangeMin.x || projPos.y < u_cullRangeMin.y || projPos.z < u_cullRangeMin.z";
const char *outMax = "projPos.x > u_cullRangeMax.x || projPos.y > u_cullRangeMax.y || projPos.z > u_cullRangeMax.z";
WRITE(p, " if (%s || %s) {\n", outMin, outMax);
WRITE(p, " outPos.w = u_cullRangeMax.w;\n");
WRITE(p, " }\n");
WRITE(p, " }\n");
}
WRITE(p, " Out.gl_Position = outPos;\n");
WRITE(p, " return Out;\n");
WRITE(p, "}\n");
return true;
}