ppsspp/GPU/Debugger/Playback.cpp

1034 lines
29 KiB
C++

// Copyright (c) 2017- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <algorithm>
#include <cstring>
#include <functional>
#include <mutex>
#include <condition_variable>
#include <vector>
#include <thread>
#include <snappy-c.h>
#include <zstd.h>
#include "Common/Profiler/Profiler.h"
#include "Common/CommonTypes.h"
#include "Common/Log.h"
#include "Common/Thread/ThreadUtil.h"
#include "Common/System/Request.h"
#include "Core/Config.h"
#include "Core/Core.h"
#include "Core/CoreTiming.h"
#include "Core/Debugger/MemBlockInfo.h"
#include "Core/ELF/ParamSFO.h"
#include "Core/FileSystems/MetaFileSystem.h"
#include "Core/HLE/HLE.h"
#include "Core/HLE/sceDisplay.h"
#include "Core/HLE/sceKernelMemory.h"
#include "Core/MemMap.h"
#include "Core/MIPS/MIPS.h"
#include "Core/MIPS/MIPSCodeUtils.h"
#include "Core/System.h"
#include "Core/Util/GameDB.h"
#include "GPU/GPUCommon.h"
#include "GPU/GPUState.h"
#include "GPU/ge_constants.h"
#include "GPU/Debugger/Playback.h"
#include "GPU/Debugger/Record.h"
#include "GPU/Debugger/RecordFormat.h"
namespace GPURecord {
// Provide the illusion of synchronous execution, although the playback is actually running on a different thread.
enum class OpType {
None,
UpdateStallAddr,
EnqueueList,
ListSync,
ReapplyGfxState,
Done,
};
struct Operation {
OpType type;
u32 listID; // also listPC in EnqueueList
u32 param; // stallAddr generally
};
static std::string lastExecFilename;
static uint32_t lastExecVersion;
static std::vector<Command> lastExecCommands;
static std::vector<u8> lastExecPushbuf;
// This thread is restarted every frame (dump execution) for simplicity. TODO: Make persistent?
// Alternatively, get rid of it, but the code is written in a way that makes it difficult (you'll see if you try).
static std::thread replayThread;
static std::mutex opStartLock;
static std::condition_variable opStartWait;
static std::mutex opFinishLock;
static std::condition_variable opFinishWait;
static Operation g_opToExec;
static u32 g_retVal;
static bool g_opDone = true;
// Runs on operation thread
u32 ExecuteOnMain(Operation opToExec) {
{
std::unique_lock<std::mutex> startLock(opStartLock);
g_opToExec = opToExec;
g_retVal = 0;
g_opDone = false;
opStartWait.notify_one();
}
// now wait for completion. At that point, noone cares about g_opToExec anymore, and we can safely
// overwrite it next time.
{
std::unique_lock<std::mutex> lock(opFinishLock);
opFinishWait.wait(lock, []() { return g_opDone; });
}
return g_retVal;
}
// This class maps pushbuffer (dump data) sections to PSP memory.
// Dumps can be larger than available PSP memory, because they include generated data too.
//
// If possible, it maps to dynamically allocated "slabs" so nearby access is fast.
// Otherwise it uses "extra" allocations to manage sections that straddle two slabs.
// Slabs are managed with LRU, extra buffers are round-robin.
class BufMapping {
public:
BufMapping(const std::vector<u8> &pushbuf) : pushbuf_(pushbuf) {
}
// Returns a pointer to contiguous memory for this access, or else 0 (failure).
u32 Map(u32 bufpos, u32 sz, const std::function<void()> &flush);
// Clear and reset allocations made.
void Reset() {
slabGeneration_ = 0;
extraOffset_ = 0;
for (int i = 0; i < SLAB_COUNT; ++i) {
slabs_[i].Free();
}
for (int i = 0; i < EXTRA_COUNT; ++i) {
extra_[i].Free();
}
}
protected:
u32 MapSlab(u32 bufpos, const std::function<void()> &flush);
u32 MapExtra(u32 bufpos, u32 sz, const std::function<void()> &flush);
enum {
// These numbers kept low because we only have 24 MB of user memory to map into.
SLAB_SIZE = 1 * 1024 * 1024,
// 10 is the number of texture units + verts + inds.
// In the worst case, we could concurrently need 10 slabs/extras at the same time.
SLAB_COUNT = 10,
EXTRA_COUNT = 10,
};
// The current "generation". Static simply as a convenience for access.
// This increments on every allocation, for a simple LRU.
static int slabGeneration_;
// An aligned large mapping of the pushbuffer in PSP RAM.
struct SlabInfo {
u32 psp_pointer_ = 0;
u32 buf_pointer_ = 0;
int last_used_ = 0;
bool Matches(u32 bufpos) const {
// We check psp_pointer_ because bufpos = 0 is valid, and the initial value.
return buf_pointer_ == bufpos && psp_pointer_ != 0;
}
// Automatically marks used for LRU purposes.
u32 Ptr(u32 bufpos) {
last_used_ = slabGeneration_;
return psp_pointer_ + (bufpos - buf_pointer_);
}
int Age() const {
// If not allocated, it's as expired as it's gonna get.
if (psp_pointer_ == 0)
return std::numeric_limits<int>::max();
return slabGeneration_ - last_used_;
}
bool Alloc();
void Free();
bool Setup(u32 bufpos, const std::vector<u8> &pushbuf_);
};
// An adhoc mapping of the pushbuffer (either larger than a slab or straddling slabs.)
// Remember: texture data, verts, etc. must be contiguous.
struct ExtraInfo {
u32 psp_pointer_ = 0;
u32 buf_pointer_ = 0;
u32 size_ = 0;
bool Matches(u32 bufpos, u32 sz) const {
// We check psp_pointer_ because bufpos = 0 is valid, and the initial value.
return buf_pointer_ == bufpos && psp_pointer_ != 0 && size_ >= sz;
}
u32 Ptr() const {
return psp_pointer_;
}
bool Alloc(u32 bufpos, u32 sz, const std::vector<u8> &pushbuf_);
void Free();
};
SlabInfo slabs_[SLAB_COUNT]{};
u32 lastSlab_ = 0;
u32 extraOffset_ = 0;
ExtraInfo extra_[EXTRA_COUNT]{};
const std::vector<u8> &pushbuf_;
};
u32 BufMapping::Map(u32 bufpos, u32 sz, const std::function<void()> &flush) {
int slab1 = bufpos / SLAB_SIZE;
int slab2 = (bufpos + sz - 1) / SLAB_SIZE;
if (slab1 == slab2) {
// Shortcut in case it's simply the most recent slab.
if (slabs_[lastSlab_].Matches(slab1 * SLAB_SIZE))
return slabs_[lastSlab_].Ptr(bufpos);
// Doesn't straddle, so we can just map to a slab.
return MapSlab(bufpos, flush);
} else {
// We need contiguous, so we'll just allocate separately.
return MapExtra(bufpos, sz, flush);
}
}
u32 BufMapping::MapSlab(u32 bufpos, const std::function<void()> &flush) {
u32 slab_pos = (bufpos / SLAB_SIZE) * SLAB_SIZE;
int best = 0;
for (int i = 0; i < SLAB_COUNT; ++i) {
if (slabs_[i].Matches(slab_pos)) {
return slabs_[i].Ptr(bufpos);
}
if (slabs_[i].Age() > slabs_[best].Age()) {
best = i;
}
}
// Stall before mapping a new slab.
flush();
// Okay, we need to allocate.
if (!slabs_[best].Setup(slab_pos, pushbuf_)) {
return 0;
}
lastSlab_ = best;
return slabs_[best].Ptr(bufpos);
}
u32 BufMapping::MapExtra(u32 bufpos, u32 sz, const std::function<void()> &flush) {
for (int i = 0; i < EXTRA_COUNT; ++i) {
// Might be likely to reuse larger buffers straddling slabs.
if (extra_[i].Matches(bufpos, sz)) {
return extra_[i].Ptr();
}
}
// Stall first, so we don't stomp existing RAM.
flush();
int i = extraOffset_;
extraOffset_ = (extraOffset_ + 1) % EXTRA_COUNT;
if (!extra_[i].Alloc(bufpos, sz, pushbuf_)) {
// Let's try to power on - hopefully none of these are still in use.
for (int i = 0; i < EXTRA_COUNT; ++i) {
extra_[i].Free();
}
if (!extra_[i].Alloc(bufpos, sz, pushbuf_)) {
return 0;
}
}
return extra_[i].Ptr();
}
bool BufMapping::SlabInfo::Alloc() {
u32 sz = SLAB_SIZE;
psp_pointer_ = userMemory.Alloc(sz, false, "Slab");
if (psp_pointer_ == -1) {
psp_pointer_ = 0;
}
return psp_pointer_ != 0;
}
void BufMapping::SlabInfo::Free() {
if (psp_pointer_) {
userMemory.Free(psp_pointer_);
psp_pointer_ = 0;
buf_pointer_ = 0;
last_used_ = 0;
}
}
bool BufMapping::ExtraInfo::Alloc(u32 bufpos, u32 sz, const std::vector<u8> &pushbuf_) {
// Make sure we've freed any previous allocation first.
Free();
u32 allocSize = sz;
psp_pointer_ = userMemory.Alloc(allocSize, false, "Straddle extra");
if (psp_pointer_ == -1) {
psp_pointer_ = 0;
}
if (psp_pointer_ == 0) {
return false;
}
buf_pointer_ = bufpos;
size_ = sz;
Memory::MemcpyUnchecked(psp_pointer_, pushbuf_.data() + bufpos, sz);
return true;
}
void BufMapping::ExtraInfo::Free() {
if (psp_pointer_) {
userMemory.Free(psp_pointer_);
psp_pointer_ = 0;
buf_pointer_ = 0;
}
}
bool BufMapping::SlabInfo::Setup(u32 bufpos, const std::vector<u8> &pushbuf_) {
// If it already has RAM, we're simply taking it over. Slabs come only in one size.
if (psp_pointer_ == 0) {
if (!Alloc()) {
return false;
}
}
buf_pointer_ = bufpos;
u32 sz = std::min((u32)SLAB_SIZE, (u32)pushbuf_.size() - bufpos);
Memory::MemcpyUnchecked(psp_pointer_, pushbuf_.data() + bufpos, sz);
slabGeneration_++;
last_used_ = slabGeneration_;
return true;
}
int BufMapping::slabGeneration_ = 0;
class DumpExecute {
public:
DumpExecute(const std::vector<u8> &pushbuf, const std::vector<Command> &commands, uint32_t version)
: pushbuf_(pushbuf), commands_(commands), mapping_(pushbuf), version_(version) {
}
~DumpExecute();
ReplayResult Run();
private:
void SyncStall();
void SubmitListEnd();
void Init(u32 ptr, u32 sz);
void Registers(u32 ptr, u32 sz);
void Vertices(u32 ptr, u32 sz);
void Indices(u32 ptr, u32 sz);
void ClutAddr(u32 ptr, u32 sz);
void Clut(u32 ptr, u32 sz);
void TransferSrc(u32 ptr, u32 sz);
void Memset(u32 ptr, u32 sz);
void MemcpyDest(u32 ptr, u32 sz);
void Memcpy(u32 ptr, u32 sz);
void Texture(int level, u32 ptr, u32 sz);
void Framebuf(int level, u32 ptr, u32 sz);
void Display(u32 ptr, u32 sz, bool allowFlip);
void EdramTrans(u32 ptr, u32 sz);
u32 execMemcpyDest = 0;
u32 execClutAddr = 0;
u32 execClutFlags = 0;
u32 execListBuf = 0;
u32 execListPos = 0;
u32 execListID = 0;
const int LIST_BUF_SIZE = 256 * 1024;
std::vector<u32> execListQueue;
u16 lastBufw_[8]{};
u32 lastTex_[8]{};
u32 lastBase_ = 0;
const std::vector<u8> &pushbuf_;
const std::vector<Command> &commands_;
BufMapping mapping_;
uint32_t version_ = 0;
int resumeIndex_ = -1;
};
void DumpExecute::SyncStall() {
if (execListBuf == 0) {
VERBOSE_LOG(Log::GeDebugger, "SyncStall: No active display list");
return;
}
ExecuteOnMain(Operation{ OpType::UpdateStallAddr, execListID, execListPos });
s64 listTicks = gpu->GetListTicks(execListID);
if (listTicks != -1) {
s64 nowTicks = CoreTiming::GetTicks();
if (listTicks > nowTicks) {
currentMIPS->downcount -= listTicks - nowTicks;
}
}
// Make sure downcount doesn't overflow. (can this even happen?)
// Also this doesn't do anything in this context, we don't reschedule... or at least
// aren't supposed to.
// CoreTiming::ForceCheck();
}
void DumpExecute::Registers(u32 ptr, u32 sz) {
if (execListBuf == 0) {
u32 allocSize = LIST_BUF_SIZE;
execListBuf = userMemory.Alloc(allocSize, true, "List buf");
if (execListBuf == -1) {
execListBuf = 0;
}
if (execListBuf == 0) {
ERROR_LOG(Log::GeDebugger, "Unable to allocate for display list");
return;
}
execListPos = execListBuf;
Memory::Write_U32(GE_CMD_NOP << 24, execListPos);
execListPos += 4;
// TODO: Why do we disable interrupts here?
gpu->EnableInterrupts(false);
execListID = ExecuteOnMain(Operation{ OpType::EnqueueList, execListBuf, execListPos });
gpu->EnableInterrupts(true);
}
u32 pendingSize = (u32)execListQueue.size() * sizeof(u32);
// Validate space for jump.
u32 allocSize = pendingSize + sz + 8;
if (execListPos + allocSize >= execListBuf + LIST_BUF_SIZE) {
Memory::Write_U32((GE_CMD_BASE << 24) | ((execListBuf >> 8) & 0x00FF0000), execListPos);
Memory::Write_U32((GE_CMD_JUMP << 24) | (execListBuf & 0x00FFFFFF), execListPos + 4);
execListPos = execListBuf;
lastBase_ = execListBuf & 0xFF000000;
// Don't continue until we've stalled.
// TODO: Is this really needed? It seems fine without it.
SyncStall();
}
Memory::MemcpyUnchecked(execListPos, execListQueue.data(), pendingSize);
execListPos += pendingSize;
u32 writePos = execListPos;
void *srcData = (void *)(pushbuf_.data() + ptr);
Memory::MemcpyUnchecked(execListPos, srcData, sz);
execListPos += sz;
// TODO: Unfortunate. Maybe Texture commands should contain the bufw instead.
// The goal here is to realistically combine prims in dumps. Stalling for the bufw flushes.
u32_le *ops = (u32_le *)Memory::GetPointerUnchecked(writePos);
u32 lastTexHigh[8]{};
for (int i = 0; i < 8; ++i)
lastTexHigh[i] = ((lastTex_[i] & 0xFF000000) >> 8) | ((GE_CMD_TEXBUFWIDTH0 + i) << 24);
for (u32 i = 0; i < sz / 4; ++i) {
u32 cmd = ops[i] >> 24;
if (cmd >= GE_CMD_TEXBUFWIDTH0 && cmd <= GE_CMD_TEXBUFWIDTH7) {
int level = cmd - GE_CMD_TEXBUFWIDTH0;
u16 bufw = ops[i] & 0xFFFF;
// NOP the address part of the command to avoid a flush too.
if (bufw == lastBufw_[level])
ops[i] = GE_CMD_NOP << 24;
else
ops[i] = lastTexHigh[level] | bufw;
lastBufw_[level] = bufw;
}
// Since we're here anyway, also NOP out texture addresses.
// This makes Step Tex not hit phantom textures, but we rely on it for lastTex_[].
if (cmd >= GE_CMD_TEXADDR0 && cmd <= GE_CMD_TEXADDR7) {
ops[i] = GE_CMD_NOP << 24;
}
if (cmd == GE_CMD_SIGNAL || cmd == GE_CMD_BASE) {
lastBase_ = 0xFFFFFFFF;
}
}
execListQueue.clear();
}
void DumpExecute::SubmitListEnd() {
if (execListPos == 0) {
return;
}
// There's always space for the end, same size as a jump.
Memory::Write_U32(GE_CMD_FINISH << 24, execListPos);
Memory::Write_U32(GE_CMD_END << 24, execListPos + 4);
execListPos += 8;
for (int i = 0; i < 8; ++i)
lastTex_[i] = 0;
lastBase_ = 0xFFFFFFFF;
SyncStall();
ExecuteOnMain(Operation{ OpType::ListSync, execListID });
}
void DumpExecute::Init(u32 ptr, u32 sz) {
gstate.Restore((u32_le *)(pushbuf_.data() + ptr));
ExecuteOnMain(Operation{ OpType::ReapplyGfxState });
for (int i = 0; i < 8; ++i) {
lastBufw_[i] = 0;
lastTex_[i] = 0;
}
lastBase_ = 0xFFFFFFFF;
}
void DumpExecute::Vertices(u32 ptr, u32 sz) {
u32 psp = mapping_.Map(ptr, sz, std::bind(&DumpExecute::SyncStall, this));
if (psp == 0) {
ERROR_LOG(Log::GeDebugger, "Unable to allocate for vertices");
return;
}
if (lastBase_ != (psp & 0xFF000000)) {
execListQueue.push_back((GE_CMD_BASE << 24) | ((psp >> 8) & 0x00FF0000));
lastBase_ = psp & 0xFF000000;
}
execListQueue.push_back((GE_CMD_VADDR << 24) | (psp & 0x00FFFFFF));
}
void DumpExecute::Indices(u32 ptr, u32 sz) {
u32 psp = mapping_.Map(ptr, sz, std::bind(&DumpExecute::SyncStall, this));
if (psp == 0) {
ERROR_LOG(Log::GeDebugger, "Unable to allocate for indices");
return;
}
if (lastBase_ != (psp & 0xFF000000)) {
execListQueue.push_back((GE_CMD_BASE << 24) | ((psp >> 8) & 0x00FF0000));
lastBase_ = psp & 0xFF000000;
}
execListQueue.push_back((GE_CMD_IADDR << 24) | (psp & 0x00FFFFFF));
}
void DumpExecute::ClutAddr(u32 ptr, u32 sz) {
struct ClutAddrData {
u32 addr;
u32 flags;
};
const ClutAddrData *data = (const ClutAddrData *)(pushbuf_.data() + ptr);
execClutAddr = data->addr;
execClutFlags = data->flags;
}
void DumpExecute::Clut(u32 ptr, u32 sz) {
// This is always run when we have the actual address set.
if (execClutAddr != 0) {
const bool isTarget = (execClutFlags & 1) != 0;
// Could potentially always skip if !isTarget, but playing it safe for offset texture behavior.
if (Memory::IsValidRange(execClutAddr, sz) && (!isTarget || !g_Config.bSoftwareRendering)) {
// Intentionally don't trigger an upload here.
Memory::MemcpyUnchecked(execClutAddr, pushbuf_.data() + ptr, sz);
NotifyMemInfo(MemBlockFlags::WRITE, execClutAddr, sz, "ReplayClut");
}
execClutAddr = 0;
} else {
u32 psp = mapping_.Map(ptr, sz, std::bind(&DumpExecute::SyncStall, this));
if (psp == 0) {
ERROR_LOG(Log::GeDebugger, "Unable to allocate for clut");
return;
}
execListQueue.push_back((GE_CMD_CLUTADDRUPPER << 24) | ((psp >> 8) & 0x00FF0000));
execListQueue.push_back((GE_CMD_CLUTADDR << 24) | (psp & 0x00FFFFFF));
}
}
void DumpExecute::TransferSrc(u32 ptr, u32 sz) {
u32 psp = mapping_.Map(ptr, sz, std::bind(&DumpExecute::SyncStall, this));
if (psp == 0) {
ERROR_LOG(Log::GeDebugger, "Unable to allocate for transfer");
return;
}
// Need to sync in order to access gstate.transfersrcw.
SyncStall();
execListQueue.push_back((gstate.transfersrcw & 0xFF00FFFF) | ((psp >> 8) & 0x00FF0000));
execListQueue.push_back(((GE_CMD_TRANSFERSRC) << 24) | (psp & 0x00FFFFFF));
}
void DumpExecute::Memset(u32 ptr, u32 sz) {
PROFILE_THIS_SCOPE("ReplayMemset");
struct MemsetCommand {
u32 dest;
int value;
u32 sz;
};
const MemsetCommand *data = (const MemsetCommand *)(pushbuf_.data() + ptr);
if (Memory::IsVRAMAddress(data->dest)) {
SyncStall();
// TODO: should probably do this as an operation.
gpu->PerformMemorySet(data->dest, (u8)data->value, data->sz);
}
}
void DumpExecute::MemcpyDest(u32 ptr, u32 sz) {
execMemcpyDest = *(const u32 *)(pushbuf_.data() + ptr);
}
void DumpExecute::Memcpy(u32 ptr, u32 sz) {
PROFILE_THIS_SCOPE("ReplayMemcpy");
if (Memory::IsVRAMAddress(execMemcpyDest)) {
SyncStall();
Memory::MemcpyUnchecked(execMemcpyDest, pushbuf_.data() + ptr, sz);
NotifyMemInfo(MemBlockFlags::WRITE, execMemcpyDest, sz, "ReplayMemcpy");
gpu->PerformWriteColorFromMemory(execMemcpyDest, sz);
}
}
void DumpExecute::Texture(int level, u32 ptr, u32 sz) {
u32 psp = mapping_.Map(ptr, sz, std::bind(&DumpExecute::SyncStall, this));
if (psp == 0) {
ERROR_LOG(Log::GeDebugger, "Unable to allocate for texture");
return;
}
if (lastTex_[level] != psp) {
u32 bufwCmd = GE_CMD_TEXBUFWIDTH0 + level;
u32 addrCmd = GE_CMD_TEXADDR0 + level;
execListQueue.push_back((bufwCmd << 24) | ((psp >> 8) & 0x00FF0000) | lastBufw_[level]);
execListQueue.push_back((addrCmd << 24) | (psp & 0x00FFFFFF));
lastTex_[level] = psp;
}
}
void DumpExecute::Framebuf(int level, u32 ptr, u32 sz) {
PROFILE_THIS_SCOPE("ReplayFramebuf");
struct FramebufData {
u32 addr;
int bufw;
u32 flags;
u32 pad;
};
FramebufData *framebuf = (FramebufData *)(pushbuf_.data() + ptr);
if (lastTex_[level] != framebuf->addr || lastBufw_[level] != framebuf->bufw) {
u32 bufwCmd = GE_CMD_TEXBUFWIDTH0 + level;
u32 addrCmd = GE_CMD_TEXADDR0 + level;
execListQueue.push_back((bufwCmd << 24) | ((framebuf->addr >> 8) & 0x00FF0000) | framebuf->bufw);
execListQueue.push_back((addrCmd << 24) | (framebuf->addr & 0x00FFFFFF));
lastTex_[level] = framebuf->addr;
lastBufw_[level] = framebuf->bufw;
}
// And now also copy the data into VRAM (in case it wasn't actually rendered.)
u32 headerSize = (u32)sizeof(FramebufData);
u32 pspSize = sz - headerSize;
const bool isTarget = (framebuf->flags & 1) != 0;
const bool unchangedVRAM = version_ >= 6 && (framebuf->flags & 2) != 0;
// TODO: Could use drawnVRAM flag, but it can be wrong.
// Could potentially always skip if !isTarget, but playing it safe for offset texture behavior.
if (Memory::IsValidRange(framebuf->addr, pspSize) && !unchangedVRAM && (!isTarget || !g_Config.bSoftwareRendering)) {
// Intentionally don't trigger an upload here.
Memory::MemcpyUnchecked(framebuf->addr, pushbuf_.data() + ptr + headerSize, pspSize);
NotifyMemInfo(MemBlockFlags::WRITE, framebuf->addr, pspSize, "ReplayTex");
}
}
void DumpExecute::Display(u32 ptr, u32 sz, bool allowFlip) {
struct DisplayBufData {
PSPPointer<u8> topaddr;
int linesize, pixelFormat;
};
DisplayBufData *disp = (DisplayBufData *)(pushbuf_.data() + ptr);
// Sync up drawing.
SyncStall();
__DisplaySetFramebuf(disp->topaddr.ptr, disp->linesize, disp->pixelFormat, 1);
if (allowFlip) {
__DisplaySetFramebuf(disp->topaddr.ptr, disp->linesize, disp->pixelFormat, 0);
}
}
void DumpExecute::EdramTrans(u32 ptr, u32 sz) {
uint32_t value;
memcpy(&value, pushbuf_.data() + ptr, 4);
// Sync up drawing.
SyncStall();
if (gpu)
gpu->SetAddrTranslation(value);
}
DumpExecute::~DumpExecute() {
execMemcpyDest = 0;
if (execListBuf) {
userMemory.Free(execListBuf);
execListBuf = 0;
}
execListPos = 0;
mapping_.Reset();
}
ReplayResult DumpExecute::Run() {
// Start with the default value.
if (gpu)
gpu->SetAddrTranslation(0x400);
if (resumeIndex_ >= 0) {
SyncStall();
}
int start = resumeIndex_ >= 0 ? resumeIndex_ : 0;
for (size_t i = start; i < commands_.size(); i++) {
const Command &cmd = commands_[i];
switch (cmd.type) {
case CommandType::INIT:
Init(cmd.ptr, cmd.sz);
break;
case CommandType::REGISTERS:
Registers(cmd.ptr, cmd.sz);
break;
case CommandType::VERTICES:
Vertices(cmd.ptr, cmd.sz);
break;
case CommandType::INDICES:
Indices(cmd.ptr, cmd.sz);
break;
case CommandType::CLUTADDR:
ClutAddr(cmd.ptr, cmd.sz);
break;
case CommandType::CLUT:
Clut(cmd.ptr, cmd.sz);
break;
case CommandType::TRANSFERSRC:
TransferSrc(cmd.ptr, cmd.sz);
break;
case CommandType::MEMSET:
Memset(cmd.ptr, cmd.sz);
break;
case CommandType::MEMCPYDEST:
MemcpyDest(cmd.ptr, cmd.sz);
break;
case CommandType::MEMCPYDATA:
Memcpy(cmd.ptr, cmd.sz);
break;
case CommandType::EDRAMTRANS:
EdramTrans(cmd.ptr, cmd.sz);
break;
case CommandType::TEXTURE0:
case CommandType::TEXTURE1:
case CommandType::TEXTURE2:
case CommandType::TEXTURE3:
case CommandType::TEXTURE4:
case CommandType::TEXTURE5:
case CommandType::TEXTURE6:
case CommandType::TEXTURE7:
Texture((int)cmd.type - (int)CommandType::TEXTURE0, cmd.ptr, cmd.sz);
break;
case CommandType::FRAMEBUF0:
case CommandType::FRAMEBUF1:
case CommandType::FRAMEBUF2:
case CommandType::FRAMEBUF3:
case CommandType::FRAMEBUF4:
case CommandType::FRAMEBUF5:
case CommandType::FRAMEBUF6:
case CommandType::FRAMEBUF7:
Framebuf((int)cmd.type - (int)CommandType::FRAMEBUF0, cmd.ptr, cmd.sz);
break;
case CommandType::DISPLAY:
Display(cmd.ptr, cmd.sz, i == commands_.size() - 1);
break;
default:
ERROR_LOG(Log::GeDebugger, "Unsupported GE dump command: %d", (int)cmd.type);
return ReplayResult::Error;
}
}
SubmitListEnd();
return ReplayResult::Done;
}
static bool ReadCompressed(u32 fp, void *dest, size_t sz, uint32_t version) {
u32 compressed_size = 0;
if (pspFileSystem.ReadFile(fp, (u8 *)&compressed_size, sizeof(compressed_size)) != sizeof(compressed_size)) {
return false;
}
u8 *compressed = new u8[compressed_size];
if (pspFileSystem.ReadFile(fp, compressed, compressed_size) != compressed_size) {
delete[] compressed;
return false;
}
size_t real_size = sz;
if (version < 5)
snappy_uncompress((const char *)compressed, compressed_size, (char *)dest, &real_size);
else
real_size = ZSTD_decompress(dest, real_size, compressed, compressed_size);
delete[] compressed;
return real_size == sz;
}
static u32 LoadReplay(const std::string &filename) {
PROFILE_THIS_SCOPE("ReplayLoad");
NOTICE_LOG(Log::GeDebugger, "LoadReplay %s", filename.c_str());
u32 fp = pspFileSystem.OpenFile(filename, FILEACCESS_READ);
Header header;
pspFileSystem.ReadFile(fp, (u8 *)&header, sizeof(header));
u32 version = header.version;
if (memcmp(header.magic, HEADER_MAGIC, sizeof(header.magic)) != 0 || header.version > VERSION || header.version < MIN_VERSION) {
ERROR_LOG(Log::GeDebugger, "Invalid GE dump or unsupported version");
pspFileSystem.CloseFile(fp);
return 0;
}
if (header.version <= 3) {
pspFileSystem.SeekFile(fp, 12, FILEMOVE_BEGIN);
memset(header.gameID, 0, sizeof(header.gameID));
}
size_t gameIDLength = strnlen(header.gameID, sizeof(header.gameID));
if (gameIDLength != 0) {
g_paramSFO.SetValue("DISC_ID", std::string(header.gameID, gameIDLength), (int)sizeof(header.gameID));
std::vector<GameDBInfo> info;
std::string gameTitle = "(unknown title)";
#if !defined(__LIBRETRO__)
if (g_gameDB.GetGameInfos(header.gameID, &info)) {
gameTitle = info[0].title;
g_paramSFO.SetValue("TITLE", gameTitle, (int)gameTitle.size());
}
#endif
System_SetWindowTitle(g_paramSFO.GetValueString("DISC_ID") + " : " + gameTitle + " (GE frame dump)");
} else {
System_SetWindowTitle("(GE frame dump: old format, missing DISC_ID)");
}
u32 sz = 0;
pspFileSystem.ReadFile(fp, (u8 *)&sz, sizeof(sz));
u32 bufsz = 0;
pspFileSystem.ReadFile(fp, (u8 *)&bufsz, sizeof(bufsz));
lastExecCommands.resize(sz);
lastExecPushbuf.resize(bufsz);
bool truncated = false;
truncated = truncated || !ReadCompressed(fp, lastExecCommands.data(), sizeof(Command) * sz, header.version);
truncated = truncated || !ReadCompressed(fp, lastExecPushbuf.data(), bufsz, header.version);
pspFileSystem.CloseFile(fp);
if (truncated) {
ERROR_LOG(Log::GeDebugger, "Truncated GE dump detected - can't replay");
return 0;
}
lastExecFilename = filename;
lastExecVersion = version;
return version;
}
void Replay_Unload() {
_dbg_assert_(!replayThread.joinable());
lastExecFilename.clear();
lastExecVersion = 0;
lastExecCommands.clear();
lastExecPushbuf.clear();
g_opDone = true;
g_retVal = 0;
}
void WriteRunDumpCode(u32 codeStart) {
// NOTE: Not static, since parts are run-time computed (MIPS_MAKE_SYSCALL etc)
const u32 runDumpCode[] = {
// Save the filename.
MIPS_MAKE_ORI(MIPS_REG_S0, MIPS_REG_A0, 0),
MIPS_MAKE_ORI(MIPS_REG_S1, MIPS_REG_A1, 0),
// Call the actual render. Jump here to start over.
MIPS_MAKE_SYSCALL("FakeSysCalls", "__KernelGPUReplay"),
MIPS_MAKE_NOP(),
// Re-run immediately if requested by the return value from __KernelGPUReplay
MIPS_MAKE_BNEZ(codeStart + 4 * 4, codeStart + 8, MIPS_REG_V0),
MIPS_MAKE_NOP(),
// When done (__KernelGPUReplay returned 0), make sure we don't get out of sync (is this needed?)
MIPS_MAKE_LUI(MIPS_REG_A0, 0),
MIPS_MAKE_SYSCALL("sceGe_user", "sceGeDrawSync"),
MIPS_MAKE_NOP(),
// Wait for the next vblank to render again, then (through the delay slot) jump right back up to __KernelGPUReplay.
MIPS_MAKE_SYSCALL("sceDisplay", "sceDisplayWaitVblankStart"),
MIPS_MAKE_NOP(),
MIPS_MAKE_J(codeStart + 8),
MIPS_MAKE_NOP(),
// This never gets reached, just here to be "safe".
MIPS_MAKE_BREAK(0),
};
for (size_t i = 0; i < ARRAY_SIZE(runDumpCode); ++i) {
Memory::WriteUnchecked_U32(runDumpCode[i], codeStart + (u32)i * sizeof(u32_le));
}
}
// This is called by the syscall.
ReplayResult RunMountedReplay(const std::string &filename) {
_assert_msg_(!gpuDebug->GetRecorder()->IsActivePending(), "Cannot run replay while recording.");
uint32_t version = lastExecVersion;
if (lastExecFilename != filename) {
// Does this ever happen? Can the filename change, without going through core shutdown/startup?
if (replayThread.joinable()) {
replayThread.join();
}
version = LoadReplay(filename);
if (!version) {
ERROR_LOG(Log::GeDebugger, "bad version %08x", version);
return ReplayResult::Error;
}
}
if (g_opToExec.type != OpType::None) {
std::unique_lock<std::mutex> waitLock(opFinishLock);
g_opDone = true;
g_opToExec = Operation{ OpType::None };
opFinishWait.notify_one();
}
if (!replayThread.joinable()) {
_dbg_assert_(g_opToExec.type == OpType::None);
g_opToExec = Operation{ OpType::None };
replayThread = std::thread([version]() {
SetCurrentThreadName("Replay");
DumpExecute executor(lastExecPushbuf, lastExecCommands, version);
GPURecord::ReplayResult retval = executor.Run();
// Finish up
ExecuteOnMain(Operation{ OpType::Done });
});
}
// OK, now wait for and perform the desired action.
{
std::unique_lock<std::mutex> lock(opStartLock);
opStartWait.wait(lock, []() { return g_opToExec.type != OpType::None; });
}
switch (g_opToExec.type) {
case OpType::UpdateStallAddr:
{
bool runList;
hleEatCycles(190);
hleCoreTimingForceCheck();
gpu->UpdateStall(g_opToExec.listID, g_opToExec.param, &runList);
if (runList) {
hleSplitSyscallOverGe();
}
// We're not done yet, request another go.
return ReplayResult::Break;
}
case OpType::EnqueueList:
{
bool runList;
u32 listPC = g_opToExec.listID;
u32 execListPos = g_opToExec.param;
auto optParam = PSPPointer<PspGeListArgs>::Create(0);
g_retVal = gpu->EnqueueList(listPC, execListPos, -1, optParam, false, &runList);
if (runList) {
hleSplitSyscallOverGe();
}
// We're not done yet, request another go.
hleEatCycles(490);
hleCoreTimingForceCheck();
return ReplayResult::Break;
}
case OpType::ReapplyGfxState:
{
// try again but no need to split the sys call
gpu->ReapplyGfxState();
return ReplayResult::Break;
}
case OpType::ListSync:
{
u32 execListID = g_opToExec.listID;
u32 mode = g_opToExec.param;
// try again but no need to split the sys call
hleEatCycles(220);
gpu->ListSync(execListID, mode);
return ReplayResult::Break;
}
case OpType::Done:
{
_dbg_assert_(replayThread.joinable());
{
std::unique_lock<std::mutex> lock(opFinishLock);
g_opDone = true;
opFinishWait.notify_one();
}
replayThread.join();
g_opToExec = { OpType::None };
break;
}
case OpType::None:
break;
}
return ReplayResult::Done;
}
} // namespace GPURecord