ppsspp/Common/GPU/Vulkan/VulkanRenderManager.h
2023-12-30 10:41:59 +01:00

645 lines
24 KiB
C++

#pragma once
// VulkanRenderManager takes the role that a GL driver does of sequencing and optimizing render passes.
// Only draws and binds are handled here, resource creation and allocations are handled as normal -
// that's the nice thing with Vulkan.
#include <algorithm>
#include <atomic>
#include <condition_variable>
#include <cstdint>
#include <mutex>
#include <thread>
#include <queue>
#include "Common/Math/Statistics.h"
#include "Common/Thread/Promise.h"
#include "Common/System/Display.h"
#include "Common/GPU/Vulkan/VulkanContext.h"
#include "Common/GPU/Vulkan/VulkanBarrier.h"
#include "Common/Data/Convert/SmallDataConvert.h"
#include "Common/Data/Collections/FastVec.h"
#include "Common/Math/math_util.h"
#include "Common/GPU/DataFormat.h"
#include "Common/GPU/MiscTypes.h"
#include "Common/GPU/Vulkan/VulkanQueueRunner.h"
#include "Common/GPU/Vulkan/VulkanFramebuffer.h"
#include "Common/GPU/Vulkan/VulkanDescSet.h"
#include "Common/GPU/thin3d.h"
// Forward declaration
VK_DEFINE_HANDLE(VmaAllocation);
struct BoundingRect {
int x1;
int y1;
int x2;
int y2;
BoundingRect() {
Reset();
}
void Reset() {
x1 = 65535;
y1 = 65535;
x2 = -65535;
y2 = -65535;
}
bool Empty() const {
return x2 < 0;
}
void SetRect(int x, int y, int width, int height) {
x1 = x;
y1 = y;
x2 = width;
y2 = height;
}
void Apply(const VkRect2D &rect) {
if (rect.offset.x < x1) x1 = rect.offset.x;
if (rect.offset.y < y1) y1 = rect.offset.y;
int rect_x2 = rect.offset.x + rect.extent.width;
int rect_y2 = rect.offset.y + rect.extent.height;
if (rect_x2 > x2) x2 = rect_x2;
if (rect_y2 > y2) y2 = rect_y2;
}
VkRect2D ToVkRect2D() const {
VkRect2D rect;
rect.offset.x = x1;
rect.offset.y = y1;
rect.extent.width = x2 - x1;
rect.extent.height = y2 - y1;
return rect;
}
};
// All the data needed to create a graphics pipeline.
// TODO: Compress this down greatly.
class VKRGraphicsPipelineDesc : public Draw::RefCountedObject {
public:
VKRGraphicsPipelineDesc() : Draw::RefCountedObject("VKRGraphicsPipelineDesc") {}
VkPipelineCache pipelineCache = VK_NULL_HANDLE;
VkPipelineColorBlendStateCreateInfo cbs{ VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO };
VkPipelineColorBlendAttachmentState blend0{};
VkPipelineDepthStencilStateCreateInfo dss{ VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO };
VkDynamicState dynamicStates[6]{};
VkPipelineDynamicStateCreateInfo ds{ VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO };
VkPipelineRasterizationStateCreateInfo rs{ VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO };
// Replaced the ShaderStageInfo with promises here so we can wait for compiles to finish.
Promise<VkShaderModule> *vertexShader = nullptr;
Promise<VkShaderModule> *fragmentShader = nullptr;
Promise<VkShaderModule> *geometryShader = nullptr;
// These are for pipeline creation failure logging.
// TODO: Store pointers to the string instead? Feels iffy but will probably work.
std::string vertexShaderSource;
std::string fragmentShaderSource;
std::string geometryShaderSource;
VkPrimitiveTopology topology;
VkVertexInputAttributeDescription attrs[8]{};
VkVertexInputBindingDescription ibd{};
VkPipelineVertexInputStateCreateInfo vis{ VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO };
VkPipelineViewportStateCreateInfo views{ VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO };
VKRPipelineLayout *pipelineLayout = nullptr;
// Does not include the render pass type, it's passed in separately since the
// desc is persistent.
RPKey rpKey{};
};
// All the data needed to create a compute pipeline.
struct VKRComputePipelineDesc {
VkPipelineCache pipelineCache;
VkComputePipelineCreateInfo pipe{ VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO };
};
// Wrapped pipeline. Doesn't own desc.
struct VKRGraphicsPipeline {
VKRGraphicsPipeline(PipelineFlags flags, const char *tag) : flags_(flags), tag_(tag) {}
~VKRGraphicsPipeline();
bool Create(VulkanContext *vulkan, VkRenderPass compatibleRenderPass, RenderPassType rpType, VkSampleCountFlagBits sampleCount, double scheduleTime, int countToCompile);
void DestroyVariants(VulkanContext *vulkan, bool msaaOnly);
// This deletes the whole VKRGraphicsPipeline, you must remove your last pointer to it when doing this.
void QueueForDeletion(VulkanContext *vulkan);
// This blocks until any background compiles are finished.
// Used during game shutdown before we clear out shaders that these compiles depend on.
void BlockUntilCompiled();
u32 GetVariantsBitmask() const;
void LogCreationFailure() const;
VKRGraphicsPipelineDesc *desc = nullptr;
Promise<VkPipeline> *pipeline[(size_t)RenderPassType::TYPE_COUNT]{};
VkSampleCountFlagBits SampleCount() const { return sampleCount_; }
const char *Tag() const { return tag_.c_str(); }
private:
void DestroyVariantsInstant(VkDevice device);
std::string tag_;
PipelineFlags flags_;
VkSampleCountFlagBits sampleCount_ = VK_SAMPLE_COUNT_FLAG_BITS_MAX_ENUM;
};
struct VKRComputePipeline {
~VKRComputePipeline() {
delete pipeline;
}
VKRComputePipelineDesc *desc = nullptr;
Promise<VkPipeline> *pipeline = nullptr;
bool CreateAsync(VulkanContext *vulkan);
bool Pending() const {
return pipeline == VK_NULL_HANDLE && desc != nullptr;
}
};
struct CompileQueueEntry {
CompileQueueEntry(VKRGraphicsPipeline *p, VkRenderPass _compatibleRenderPass, RenderPassType _renderPassType, VkSampleCountFlagBits _sampleCount)
: type(Type::GRAPHICS), graphics(p), compatibleRenderPass(_compatibleRenderPass), renderPassType(_renderPassType), sampleCount(_sampleCount) {}
CompileQueueEntry(VKRComputePipeline *p) : type(Type::COMPUTE), compute(p), renderPassType(RenderPassType::DEFAULT), sampleCount(VK_SAMPLE_COUNT_1_BIT), compatibleRenderPass(VK_NULL_HANDLE) {} // renderpasstype here shouldn't matter
enum class Type {
GRAPHICS,
COMPUTE,
};
Type type;
VkRenderPass compatibleRenderPass;
RenderPassType renderPassType;
VKRGraphicsPipeline *graphics = nullptr;
VKRComputePipeline *compute = nullptr;
VkSampleCountFlagBits sampleCount;
};
// Pending descriptor sets.
// TODO: Sort these by VKRPipelineLayout to avoid storing it for each element.
struct PendingDescSet {
int offset; // probably enough with a u16.
u8 count;
VkDescriptorSet set;
};
struct PackedDescriptor {
union {
struct {
VkImageView view;
VkSampler sampler;
} image;
struct {
VkBuffer buffer;
uint32_t offset;
uint32_t range;
} buffer;
};
};
// Note that we only support a single descriptor set due to compatibility with some ancient devices.
// We should probably eventually give that up.
struct VKRPipelineLayout {
~VKRPipelineLayout();
enum { MAX_DESC_SET_BINDINGS = 10 };
BindingType bindingTypes[MAX_DESC_SET_BINDINGS];
uint32_t bindingTypesCount = 0;
VkPipelineLayout pipelineLayout = VK_NULL_HANDLE;
VkDescriptorSetLayout descriptorSetLayout = VK_NULL_HANDLE; // only support 1 for now.
int pushConstSize = 0;
const char *tag = nullptr;
struct FrameData {
FrameData() : pool("GameDescPool", true) {}
VulkanDescSetPool pool;
FastVec<PackedDescriptor> descData_;
FastVec<PendingDescSet> descSets_;
// TODO: We should be able to get away with a single descData_/descSets_ and then send it along,
// but it's easier to just segregate by frame id.
int flushedDescriptors_ = 0;
};
FrameData frameData[VulkanContext::MAX_INFLIGHT_FRAMES];
void FlushDescSets(VulkanContext *vulkan, int frame, QueueProfileContext *profile);
};
class VulkanRenderManager {
public:
VulkanRenderManager(VulkanContext *vulkan, bool useThread, HistoryBuffer<FrameTimeData, FRAME_TIME_HISTORY_LENGTH> &frameTimeHistory);
~VulkanRenderManager();
// Makes sure that the GPU has caught up enough that we can start writing buffers of this frame again.
void BeginFrame(bool enableProfiling, bool enableLogProfiler);
// These can run on a different thread!
void Finish();
void Present();
// Zaps queued up commands. Use if you know there's a risk you've queued up stuff that has already been deleted. Can happen during in-game shutdown.
void Wipe();
void SetInvalidationCallback(InvalidationCallback callback) {
invalidationCallback_ = callback;
}
// This starts a new step containing a render pass (unless it can be trivially merged into the previous one, which is pretty common).
//
// After a "CopyFramebuffer" or the other functions that start "steps", you need to call this beforce
// making any new render state changes or draw calls.
//
// The following dynamic state needs to be reset by the caller after calling this (and will thus not safely carry over from
// the previous one):
// * Viewport/Scissor
// * Stencil parameters
// * Blend color
//
// (Most other state is directly decided by your choice of pipeline and descriptor set, so not handled here).
//
// It can be useful to use GetCurrentStepId() to figure out when you need to send all this state again, if you're
// not keeping track of your calls to this function on your own.
void BindFramebufferAsRenderTarget(VKRFramebuffer *fb, VKRRenderPassLoadAction color, VKRRenderPassLoadAction depth, VKRRenderPassLoadAction stencil, uint32_t clearColor, float clearDepth, uint8_t clearStencil, const char *tag);
// Returns an ImageView corresponding to a framebuffer. Is called BindFramebufferAsTexture to maintain a similar interface
// as the other backends, even though there's no actual binding happening here.
// For layer, we use the same convention as thin3d, where layer = -1 means all layers together. For texturing, that means that you
// get an array texture view.
VkImageView BindFramebufferAsTexture(VKRFramebuffer *fb, int binding, VkImageAspectFlags aspectBits, int layer);
bool CopyFramebufferToMemory(VKRFramebuffer *src, VkImageAspectFlags aspectBits, int x, int y, int w, int h, Draw::DataFormat destFormat, uint8_t *pixels, int pixelStride, Draw::ReadbackMode mode, const char *tag);
void CopyImageToMemorySync(VkImage image, int mipLevel, int x, int y, int w, int h, Draw::DataFormat destFormat, uint8_t *pixels, int pixelStride, const char *tag);
void CopyFramebuffer(VKRFramebuffer *src, VkRect2D srcRect, VKRFramebuffer *dst, VkOffset2D dstPos, VkImageAspectFlags aspectMask, const char *tag);
void BlitFramebuffer(VKRFramebuffer *src, VkRect2D srcRect, VKRFramebuffer *dst, VkRect2D dstRect, VkImageAspectFlags aspectMask, VkFilter filter, const char *tag);
// Deferred creation, like in GL. Unlike GL though, the purpose is to allow background creation and avoiding
// stalling the emulation thread as much as possible.
// We delay creating pipelines until the end of the current render pass, so we can create the right type immediately.
// Unless a variantBitmask is passed in, in which case we can just go ahead.
// WARNING: desc must stick around during the lifetime of the pipeline! It's not enough to build it on the stack and drop it.
VKRGraphicsPipeline *CreateGraphicsPipeline(VKRGraphicsPipelineDesc *desc, PipelineFlags pipelineFlags, uint32_t variantBitmask, VkSampleCountFlagBits sampleCount, bool cacheLoad, const char *tag);
VKRComputePipeline *CreateComputePipeline(VKRComputePipelineDesc *desc);
VKRPipelineLayout *CreatePipelineLayout(BindingType *bindingTypes, size_t bindingCount, bool geoShadersEnabled, const char *tag);
void DestroyPipelineLayout(VKRPipelineLayout *pipelineLayout);
void ReportBadStateForDraw();
void NudgeCompilerThread() {
compileMutex_.lock();
compileCond_.notify_one();
compileMutex_.unlock();
}
// This is the first call in a draw operation. Instead of asserting like we used to, you can now check the
// return value and skip the draw if we're in a bad state. In that case, call ReportBadState.
// The old assert wasn't very helpful in figuring out what caused it anyway...
bool BindPipeline(VKRGraphicsPipeline *pipeline, PipelineFlags flags, VKRPipelineLayout *pipelineLayout) {
_dbg_assert_(curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER && pipeline != nullptr);
if (!curRenderStep_ || curRenderStep_->stepType != VKRStepType::RENDER) {
return false;
}
VkRenderData &data = curRenderStep_->commands.push_uninitialized();
data.cmd = VKRRenderCommand::BIND_GRAPHICS_PIPELINE;
pipelinesToCheck_.push_back(pipeline);
data.graphics_pipeline.pipeline = pipeline;
data.graphics_pipeline.pipelineLayout = pipelineLayout;
// This can be used to debug cases where depth/stencil rendering is used on color-only framebuffers.
// if ((flags & PipelineFlags::USES_DEPTH_STENCIL) && curRenderStep_->render.framebuffer && !curRenderStep_->render.framebuffer->HasDepth()) {
// DebugBreak();
// }
curPipelineFlags_ |= flags;
curPipelineLayout_ = pipelineLayout;
return true;
}
void SetViewport(const VkViewport &vp) {
_dbg_assert_(curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER);
_dbg_assert_((int)vp.width >= 0);
_dbg_assert_((int)vp.height >= 0);
VkRenderData &data = curRenderStep_->commands.push_uninitialized();
data.cmd = VKRRenderCommand::VIEWPORT;
data.viewport.vp.x = vp.x;
data.viewport.vp.y = vp.y;
data.viewport.vp.width = vp.width;
data.viewport.vp.height = vp.height;
// We can't allow values outside this range unless we use VK_EXT_depth_range_unrestricted.
// Sometimes state mapping produces 65536/65535 which is slightly outside.
// TODO: This should be fixed at the source.
data.viewport.vp.minDepth = clamp_value(vp.minDepth, 0.0f, 1.0f);
data.viewport.vp.maxDepth = clamp_value(vp.maxDepth, 0.0f, 1.0f);
curStepHasViewport_ = true;
}
// It's OK to set scissor outside the valid range - the function will automatically clip.
void SetScissor(int x, int y, int width, int height) {
_dbg_assert_(curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER);
if (x < 0) {
width += x; // since x is negative, this shrinks width.
x = 0;
}
if (y < 0) {
height += y;
y = 0;
}
if (x + width > curWidth_) {
width = curWidth_ - x;
}
if (y + height > curHeight_) {
height = curHeight_ - y;
}
// Check validity.
if (width < 0 || height < 0 || x >= curWidth_ || y >= curHeight_) {
// TODO: If any of the dimensions are now zero or negative, we should flip a flag and not do draws, probably.
// Instead, if we detect an invalid scissor rectangle, we just put a 1x1 rectangle in the upper left corner.
x = 0;
y = 0;
width = 1;
height = 1;
}
VkRect2D rc;
rc.offset.x = x;
rc.offset.y = y;
rc.extent.width = width;
rc.extent.height = height;
curRenderArea_.Apply(rc);
VkRenderData &data = curRenderStep_->commands.push_uninitialized();
data.cmd = VKRRenderCommand::SCISSOR;
data.scissor.scissor = rc;
curStepHasScissor_ = true;
}
void SetStencilParams(uint8_t writeMask, uint8_t compareMask, uint8_t refValue) {
_dbg_assert_(curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER);
VkRenderData &data = curRenderStep_->commands.push_uninitialized();
data.cmd = VKRRenderCommand::STENCIL;
data.stencil.stencilWriteMask = writeMask;
data.stencil.stencilCompareMask = compareMask;
data.stencil.stencilRef = refValue;
}
void SetBlendFactor(uint32_t color) {
_dbg_assert_(curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER);
VkRenderData &data = curRenderStep_->commands.push_uninitialized();
data.cmd = VKRRenderCommand::BLEND;
data.blendColor.color = color;
}
void PushConstants(VkPipelineLayout pipelineLayout, VkShaderStageFlags stages, int offset, int size, void *constants) {
_dbg_assert_(curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER);
_dbg_assert_(size + offset < 40);
VkRenderData &data = curRenderStep_->commands.push_uninitialized();
data.cmd = VKRRenderCommand::PUSH_CONSTANTS;
data.push.stages = stages;
data.push.offset = offset;
data.push.size = size;
memcpy(data.push.data, constants, size);
}
void Clear(uint32_t clearColor, float clearZ, int clearStencil, int clearMask);
// Cheaply set that we don't care about the contents of a surface at the start of the current render pass.
// This set the corresponding load-op of the current render pass to DONT_CARE.
// Useful when we don't know at bind-time whether we will overwrite the surface or not.
void SetLoadDontCare(VkImageAspectFlags aspects) {
_dbg_assert_(curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER);
if (aspects & VK_IMAGE_ASPECT_COLOR_BIT)
curRenderStep_->render.colorLoad = VKRRenderPassLoadAction::DONT_CARE;
if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
curRenderStep_->render.depthLoad = VKRRenderPassLoadAction::DONT_CARE;
if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT)
curRenderStep_->render.stencilLoad = VKRRenderPassLoadAction::DONT_CARE;
}
// Cheaply set that we don't care about the contents of a surface at the end of the current render pass.
// This set the corresponding store-op of the current render pass to DONT_CARE.
void SetStoreDontCare(VkImageAspectFlags aspects) {
_dbg_assert_(curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER);
if (aspects & VK_IMAGE_ASPECT_COLOR_BIT)
curRenderStep_->render.colorStore = VKRRenderPassStoreAction::DONT_CARE;
if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
curRenderStep_->render.depthStore = VKRRenderPassStoreAction::DONT_CARE;
if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT)
curRenderStep_->render.stencilStore = VKRRenderPassStoreAction::DONT_CARE;
}
// Descriptors will match the current pipeline layout, set by the last call to BindPipeline.
// Count is the count of void*s. Two are needed for COMBINED_IMAGE_SAMPLER, everything else is a single one.
// The goal is to keep this function very small and fast, and do the expensive work on the render thread or
// another thread.
PackedDescriptor *PushDescriptorSet(int count, int *descSetIndex) {
_dbg_assert_(curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER);
int curFrame = vulkan_->GetCurFrame();
VKRPipelineLayout::FrameData &data = curPipelineLayout_->frameData[curFrame];
size_t offset = data.descData_.size();
PackedDescriptor *retval = data.descData_.extend_uninitialized(count);
int setIndex = (int)data.descSets_.size();
PendingDescSet &descSet = data.descSets_.push_uninitialized();
descSet.offset = (uint32_t)offset;
descSet.count = count;
// descSet.set = VK_NULL_HANDLE; // to be filled in
*descSetIndex = setIndex;
return retval;
}
void Draw(int descSetIndex, int numUboOffsets, const uint32_t *uboOffsets, VkBuffer vbuffer, int voffset, int count, int offset = 0) {
_dbg_assert_(curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER && curStepHasViewport_ && curStepHasScissor_);
VkRenderData &data = curRenderStep_->commands.push_uninitialized();
data.cmd = VKRRenderCommand::DRAW;
data.draw.count = count;
data.draw.offset = offset;
data.draw.descSetIndex = descSetIndex;
data.draw.vbuffer = vbuffer;
data.draw.voffset = voffset;
data.draw.numUboOffsets = numUboOffsets;
_dbg_assert_(numUboOffsets <= ARRAY_SIZE(data.draw.uboOffsets));
for (int i = 0; i < numUboOffsets; i++)
data.draw.uboOffsets[i] = uboOffsets[i];
curRenderStep_->render.numDraws++;
}
void DrawIndexed(int descSetIndex, int numUboOffsets, const uint32_t *uboOffsets, VkBuffer vbuffer, int voffset, VkBuffer ibuffer, int ioffset, int count, int numInstances) {
_dbg_assert_(curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER && curStepHasViewport_ && curStepHasScissor_);
VkRenderData &data = curRenderStep_->commands.push_uninitialized();
data.cmd = VKRRenderCommand::DRAW_INDEXED;
data.drawIndexed.count = count;
data.drawIndexed.instances = numInstances;
data.drawIndexed.descSetIndex = descSetIndex;
data.drawIndexed.vbuffer = vbuffer;
data.drawIndexed.voffset = voffset;
data.drawIndexed.ibuffer = ibuffer;
data.drawIndexed.ioffset = ioffset;
data.drawIndexed.numUboOffsets = numUboOffsets;
_dbg_assert_(numUboOffsets <= ARRAY_SIZE(data.drawIndexed.uboOffsets));
for (int i = 0; i < numUboOffsets; i++)
data.drawIndexed.uboOffsets[i] = uboOffsets[i];
curRenderStep_->render.numDraws++;
}
// These can be useful both when inspecting in RenderDoc, and when manually inspecting recorded commands
// in the debugger.
void DebugAnnotate(const char *annotation) {
_dbg_assert_(curRenderStep_);
VkRenderData &data = curRenderStep_->commands.push_uninitialized();
data.cmd = VKRRenderCommand::DEBUG_ANNOTATION;
data.debugAnnotation.annotation = annotation;
}
VkCommandBuffer GetInitCmd();
bool CreateBackbuffers();
void DestroyBackbuffers();
bool HasBackbuffers() {
return queueRunner_.HasBackbuffers();
}
void SetInflightFrames(int f) {
newInflightFrames_ = f < 1 || f > VulkanContext::MAX_INFLIGHT_FRAMES ? VulkanContext::MAX_INFLIGHT_FRAMES : f;
}
VulkanContext *GetVulkanContext() {
return vulkan_;
}
// Be careful with this. Only meant to be used for fetching render passes for shader cache initialization.
VulkanQueueRunner *GetQueueRunner() {
return &queueRunner_;
}
std::string GetGpuProfileString() const {
return frameData_[vulkan_->GetCurFrame()].profile.profileSummary;
}
bool NeedsSwapchainRecreate() const {
// Accepting a few of these makes shutdown simpler.
return outOfDateFrames_ > VulkanContext::MAX_INFLIGHT_FRAMES;
}
void Invalidate(InvalidationFlags flags);
VulkanBarrier &PostInitBarrier() {
return postInitBarrier_;
}
void ResetStats();
void DrainAndBlockCompileQueue();
void ReleaseCompileQueue();
private:
void EndCurRenderStep();
void ThreadFunc();
void CompileThreadFunc();
void Run(VKRRenderThreadTask &task);
// Bad for performance but sometimes necessary for synchronous CPU readbacks (screenshots and whatnot).
void FlushSync();
void StopThread();
void PresentWaitThreadFunc();
void PollPresentTiming();
void ResetDescriptorLists(int frame);
void FlushDescriptors(int frame);
FrameDataShared frameDataShared_;
FrameData frameData_[VulkanContext::MAX_INFLIGHT_FRAMES];
int newInflightFrames_ = -1;
int inflightFramesAtStart_ = 0;
int outOfDateFrames_ = 0;
// Submission time state
// Note: These are raw backbuffer-sized. Rotated.
int curWidthRaw_ = -1;
int curHeightRaw_ = -1;
// Pre-rotation (as you'd expect).
int curWidth_ = -1;
int curHeight_ = -1;
bool insideFrame_ = false;
bool run_ = false;
bool useRenderThread_ = true;
bool measurePresentTime_ = false;
// This is the offset within this frame, in case of a mid-frame sync.
VKRStep *curRenderStep_ = nullptr;
bool curStepHasViewport_ = false;
bool curStepHasScissor_ = false;
PipelineFlags curPipelineFlags_{};
BoundingRect curRenderArea_;
std::vector<VKRStep *> steps_;
// Execution time state
VulkanContext *vulkan_;
std::thread thread_;
VulkanQueueRunner queueRunner_;
// For pushing data on the queue.
std::mutex pushMutex_;
std::condition_variable pushCondVar_;
std::queue<VKRRenderThreadTask *> renderThreadQueue_;
// For readbacks and other reasons we need to sync with the render thread.
std::mutex syncMutex_;
std::condition_variable syncCondVar_;
// Shader compilation thread to compile while emulating the rest of the frame.
// Only one right now but we could use more.
std::thread compileThread_;
// Sync
std::condition_variable compileCond_;
std::mutex compileMutex_;
std::vector<CompileQueueEntry> compileQueue_;
bool compileBlocked_ = false;
// Thread for measuring presentation delay.
std::thread presentWaitThread_;
// pipelines to check and possibly create at the end of the current render pass.
std::vector<VKRGraphicsPipeline *> pipelinesToCheck_;
// For nicer output in the little internal GPU profiler.
SimpleStat initTimeMs_;
SimpleStat totalGPUTimeMs_;
SimpleStat renderCPUTimeMs_;
SimpleStat descUpdateTimeMs_;
VulkanBarrier postInitBarrier_;
std::function<void(InvalidationCallbackFlags)> invalidationCallback_;
uint64_t frameIdGen_ = FRAME_TIME_HISTORY_LENGTH;
HistoryBuffer<FrameTimeData, FRAME_TIME_HISTORY_LENGTH> &frameTimeHistory_;
VKRPipelineLayout *curPipelineLayout_ = nullptr;
std::vector<VKRPipelineLayout *> pipelineLayouts_;
};