ppsspp/Common/GPU/Vulkan/VulkanQueueRunner.cpp
Henrik Rydgård 0e3a84b4a8 Move most GPU things to Common.
It works after the move, on Windows and Android at least.

Deletes the D3DX9 shader compiler loader, which was not used.
2020-10-04 23:39:02 +02:00

1802 lines
72 KiB
C++

#include <unordered_map>
#include "Common/GPU/DataFormat.h"
#include "Common/Log.h"
#include "Common/TimeUtil.h"
#include "VulkanQueueRunner.h"
#include "VulkanRenderManager.h"
// Debug help: adb logcat -s DEBUG PPSSPPNativeActivity PPSSPP NativeGLView NativeRenderer NativeSurfaceView PowerSaveModeReceiver InputDeviceState
void VulkanQueueRunner::CreateDeviceObjects() {
INFO_LOG(G3D, "VulkanQueueRunner::CreateDeviceObjects");
InitBackbufferRenderPass();
framebufferRenderPass_ = GetRenderPass(VKRRenderPassAction::CLEAR, VKRRenderPassAction::CLEAR, VKRRenderPassAction::CLEAR,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
#if 0
// Just to check whether it makes sense to split some of these. drawidx is way bigger than the others...
// We should probably just move to variable-size data in a raw buffer anyway...
VkRenderData rd;
INFO_LOG(G3D, "sizeof(pipeline): %d", (int)sizeof(rd.pipeline));
INFO_LOG(G3D, "sizeof(draw): %d", (int)sizeof(rd.draw));
INFO_LOG(G3D, "sizeof(drawidx): %d", (int)sizeof(rd.drawIndexed));
INFO_LOG(G3D, "sizeof(clear): %d", (int)sizeof(rd.clear));
INFO_LOG(G3D, "sizeof(viewport): %d", (int)sizeof(rd.viewport));
INFO_LOG(G3D, "sizeof(scissor): %d", (int)sizeof(rd.scissor));
INFO_LOG(G3D, "sizeof(blendColor): %d", (int)sizeof(rd.blendColor));
INFO_LOG(G3D, "sizeof(push): %d", (int)sizeof(rd.push));
#endif
}
void VulkanQueueRunner::ResizeReadbackBuffer(VkDeviceSize requiredSize) {
if (readbackBuffer_ && requiredSize <= readbackBufferSize_) {
return;
}
if (readbackMemory_) {
vulkan_->Delete().QueueDeleteDeviceMemory(readbackMemory_);
}
if (readbackBuffer_) {
vulkan_->Delete().QueueDeleteBuffer(readbackBuffer_);
}
readbackBufferSize_ = requiredSize;
VkDevice device = vulkan_->GetDevice();
VkBufferCreateInfo buf{ VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
buf.size = readbackBufferSize_;
buf.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT;
VkResult res = vkCreateBuffer(device, &buf, nullptr, &readbackBuffer_);
_assert_(res == VK_SUCCESS);
VkMemoryRequirements reqs{};
vkGetBufferMemoryRequirements(device, readbackBuffer_, &reqs);
VkMemoryAllocateInfo allocInfo{ VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
allocInfo.allocationSize = reqs.size;
// For speedy readbacks, we want the CPU cache to be enabled. However on most hardware we then have to
// sacrifice coherency, which means manual flushing. But try to find such memory first! If no cached
// memory type is available we fall back to just coherent.
const VkFlags desiredTypes[] = {
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
};
VkFlags successTypeReqs = 0;
for (VkFlags typeReqs : desiredTypes) {
if (vulkan_->MemoryTypeFromProperties(reqs.memoryTypeBits, typeReqs, &allocInfo.memoryTypeIndex)) {
successTypeReqs = typeReqs;
break;
}
}
_assert_(successTypeReqs != 0);
readbackBufferIsCoherent_ = (successTypeReqs & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0;
res = vkAllocateMemory(device, &allocInfo, nullptr, &readbackMemory_);
if (res != VK_SUCCESS) {
readbackMemory_ = VK_NULL_HANDLE;
vkDestroyBuffer(device, readbackBuffer_, nullptr);
readbackBuffer_ = VK_NULL_HANDLE;
return;
}
uint32_t offset = 0;
vkBindBufferMemory(device, readbackBuffer_, readbackMemory_, offset);
}
void VulkanQueueRunner::DestroyDeviceObjects() {
INFO_LOG(G3D, "VulkanQueueRunner::DestroyDeviceObjects");
if (readbackMemory_) {
vulkan_->Delete().QueueDeleteDeviceMemory(readbackMemory_);
}
if (readbackBuffer_) {
vulkan_->Delete().QueueDeleteBuffer(readbackBuffer_);
}
readbackBufferSize_ = 0;
renderPasses_.Iterate([&](const RPKey &rpkey, VkRenderPass rp) {
_assert_(rp != VK_NULL_HANDLE);
vulkan_->Delete().QueueDeleteRenderPass(rp);
});
renderPasses_.Clear();
_assert_(backbufferRenderPass_ != VK_NULL_HANDLE);
vulkan_->Delete().QueueDeleteRenderPass(backbufferRenderPass_);
backbufferRenderPass_ = VK_NULL_HANDLE;
}
void VulkanQueueRunner::InitBackbufferRenderPass() {
VkAttachmentDescription attachments[2];
attachments[0].format = vulkan_->GetSwapchainFormat();
attachments[0].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; // We don't want to preserve the backbuffer between frames so we really don't care.
attachments[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; // We only render once to the backbuffer per frame so we can do this here.
attachments[0].flags = 0;
attachments[1].format = vulkan_->GetDeviceInfo().preferredDepthStencilFormat; // must use this same format later for the back depth buffer.
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; // Don't care about storing backbuffer Z - we clear it anyway.
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
#ifdef VULKAN_USE_GENERAL_LAYOUT_FOR_DEPTH_STENCIL
attachments[1].initialLayout = VK_IMAGE_LAYOUT_GENERAL;
attachments[1].finalLayout = VK_IMAGE_LAYOUT_GENERAL;
#else
attachments[1].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
#endif
attachments[1].flags = 0;
VkAttachmentReference color_reference{};
color_reference.attachment = 0;
#ifdef VULKAN_USE_GENERAL_LAYOUT_FOR_COLOR
color_reference.layout = VK_IMAGE_LAYOUT_GENERAL;
#else
color_reference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
#endif
VkAttachmentReference depth_reference{};
depth_reference.attachment = 1;
depth_reference.layout = attachments[1].finalLayout;
VkSubpassDescription subpass{};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.flags = 0;
subpass.inputAttachmentCount = 0;
subpass.pInputAttachments = nullptr;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &color_reference;
subpass.pResolveAttachments = nullptr;
subpass.pDepthStencilAttachment = &depth_reference;
subpass.preserveAttachmentCount = 0;
subpass.pPreserveAttachments = nullptr;
// For the built-in layout transitions.
VkSubpassDependency dep{};
dep.srcSubpass = VK_SUBPASS_EXTERNAL;
dep.dstSubpass = 0;
dep.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dep.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dep.srcAccessMask = 0;
dep.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
VkRenderPassCreateInfo rp_info{ VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO };
rp_info.attachmentCount = 2;
rp_info.pAttachments = attachments;
rp_info.subpassCount = 1;
rp_info.pSubpasses = &subpass;
rp_info.dependencyCount = 1;
rp_info.pDependencies = &dep;
VkResult res = vkCreateRenderPass(vulkan_->GetDevice(), &rp_info, nullptr, &backbufferRenderPass_);
_assert_(res == VK_SUCCESS);
}
VkRenderPass VulkanQueueRunner::GetRenderPass(const RPKey &key) {
auto pass = renderPasses_.Get(key);
if (pass) {
return pass;
}
VkAttachmentDescription attachments[2] = {};
attachments[0].format = VK_FORMAT_R8G8B8A8_UNORM;
attachments[0].samples = VK_SAMPLE_COUNT_1_BIT;
switch (key.colorLoadAction) {
case VKRRenderPassAction::CLEAR:
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
break;
case VKRRenderPassAction::KEEP:
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
break;
case VKRRenderPassAction::DONT_CARE:
default:
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
break;
}
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
#ifdef VULKAN_USE_GENERAL_LAYOUT_FOR_COLOR
attachments[0].initialLayout = VK_IMAGE_LAYOUT_GENERAL;
attachments[0].finalLayout = VK_IMAGE_LAYOUT_GENERAL;
#else
attachments[0].initialLayout = key.prevColorLayout;
attachments[0].finalLayout = key.finalColorLayout;
#endif
attachments[0].flags = 0;
attachments[1].format = vulkan_->GetDeviceInfo().preferredDepthStencilFormat;
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
switch (key.depthLoadAction) {
case VKRRenderPassAction::CLEAR:
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
break;
case VKRRenderPassAction::KEEP:
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
break;
case VKRRenderPassAction::DONT_CARE:
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
break;
}
switch (key.stencilLoadAction) {
case VKRRenderPassAction::CLEAR:
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
break;
case VKRRenderPassAction::KEEP:
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
break;
case VKRRenderPassAction::DONT_CARE:
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
break;
}
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE;
#ifdef VULKAN_USE_GENERAL_LAYOUT_FOR_DEPTH_STENCIL
attachments[1].initialLayout = VK_IMAGE_LAYOUT_GENERAL;
attachments[1].finalLayout = VK_IMAGE_LAYOUT_GENERAL;
#else
attachments[1].initialLayout = key.prevDepthStencilLayout;
attachments[1].finalLayout = key.finalDepthStencilLayout;
#endif
attachments[1].flags = 0;
VkAttachmentReference color_reference{};
color_reference.attachment = 0;
color_reference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference depth_reference{};
depth_reference.attachment = 1;
depth_reference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass{};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.flags = 0;
subpass.inputAttachmentCount = 0;
subpass.pInputAttachments = nullptr;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &color_reference;
subpass.pResolveAttachments = nullptr;
subpass.pDepthStencilAttachment = &depth_reference;
subpass.preserveAttachmentCount = 0;
subpass.pPreserveAttachments = nullptr;
VkSubpassDependency deps[2]{};
int numDeps = 0;
switch (key.prevColorLayout) {
case VK_IMAGE_LAYOUT_UNDEFINED:
// No need to specify stage or access.
break;
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
// Already the right color layout. Unclear that we need to do a lot here..
break;
case VK_IMAGE_LAYOUT_GENERAL:
// We came from the Mali workaround, and are transitioning back to COLOR_ATTACHMENT_OPTIMAL.
deps[numDeps].srcAccessMask |= VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
deps[numDeps].srcStageMask |= VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
deps[numDeps].srcAccessMask |= VK_ACCESS_SHADER_READ_BIT;
deps[numDeps].srcStageMask |= VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
deps[numDeps].srcAccessMask |= VK_ACCESS_TRANSFER_WRITE_BIT;
deps[numDeps].srcStageMask |= VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
deps[numDeps].srcAccessMask |= VK_ACCESS_TRANSFER_READ_BIT;
deps[numDeps].srcStageMask |= VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
default:
_dbg_assert_msg_(false, "GetRenderPass: Unexpected color layout %d", (int)key.prevColorLayout);
break;
}
switch (key.prevDepthStencilLayout) {
case VK_IMAGE_LAYOUT_UNDEFINED:
// No need to specify stage or access.
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
// Already the right depth layout. Unclear that we need to do a lot here..
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
deps[numDeps].srcAccessMask |= VK_ACCESS_SHADER_READ_BIT;
deps[numDeps].srcStageMask |= VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
deps[numDeps].srcAccessMask |= VK_ACCESS_TRANSFER_READ_BIT;
deps[numDeps].srcStageMask |= VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
deps[numDeps].srcAccessMask |= VK_ACCESS_TRANSFER_WRITE_BIT;
deps[numDeps].srcStageMask |= VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
default:
_dbg_assert_msg_(false, "GetRenderPass: Unexpected depth layout %d", (int)key.prevDepthStencilLayout);
break;
}
if (deps[numDeps].srcAccessMask) {
deps[numDeps].srcSubpass = VK_SUBPASS_EXTERNAL;
deps[numDeps].dstSubpass = 0;
deps[numDeps].dependencyFlags = 0;
deps[numDeps].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
deps[numDeps].dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
numDeps++;
}
// And the final transition.
// Don't need to transition it if VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL.
switch (key.finalColorLayout) {
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
deps[numDeps].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
deps[numDeps].dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
deps[numDeps].dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
deps[numDeps].dstStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
deps[numDeps].dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
deps[numDeps].dstStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_UNDEFINED:
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
// Nothing to do.
break;
default:
_dbg_assert_msg_(false, "GetRenderPass: Unexpected final color layout %d", (int)key.finalColorLayout);
break;
}
switch (key.finalDepthStencilLayout) {
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
deps[numDeps].dstAccessMask |= VK_ACCESS_SHADER_READ_BIT;
deps[numDeps].dstStageMask |= VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
deps[numDeps].dstAccessMask |= VK_ACCESS_TRANSFER_READ_BIT;
deps[numDeps].dstStageMask |= VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
deps[numDeps].dstAccessMask |= VK_ACCESS_TRANSFER_READ_BIT;
deps[numDeps].dstStageMask |= VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_UNDEFINED:
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
// Nothing to do.
break;
default:
_dbg_assert_msg_(false, "GetRenderPass: Unexpected final depth layout %d", (int)key.finalDepthStencilLayout);
break;
}
if (deps[numDeps].dstAccessMask) {
deps[numDeps].srcSubpass = 0;
deps[numDeps].dstSubpass = VK_SUBPASS_EXTERNAL;
deps[numDeps].dependencyFlags = 0;
deps[numDeps].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
deps[numDeps].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
numDeps++;
}
VkRenderPassCreateInfo rp{ VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO };
rp.attachmentCount = 2;
rp.pAttachments = attachments;
rp.subpassCount = 1;
rp.pSubpasses = &subpass;
if (numDeps) {
rp.dependencyCount = numDeps;
rp.pDependencies = deps;
}
VkResult res = vkCreateRenderPass(vulkan_->GetDevice(), &rp, nullptr, &pass);
_assert_(res == VK_SUCCESS);
_assert_(pass != VK_NULL_HANDLE);
renderPasses_.Insert(key, pass);
return pass;
}
void VulkanQueueRunner::PreprocessSteps(std::vector<VKRStep *> &steps) {
// Optimizes renderpasses, then sequences them.
// Planned optimizations:
// * Create copies of render target that are rendered to multiple times and textured from in sequence, and push those render passes
// as early as possible in the frame (Wipeout billboards).
for (int j = 0; j < (int)steps.size(); j++) {
if (steps[j]->stepType == VKRStepType::RENDER &&
steps[j]->render.framebuffer) {
if (steps[j]->render.finalColorLayout == VK_IMAGE_LAYOUT_UNDEFINED) {
steps[j]->render.finalColorLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
}
if (steps[j]->render.finalDepthStencilLayout == VK_IMAGE_LAYOUT_UNDEFINED) {
steps[j]->render.finalDepthStencilLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
}
}
}
for (int j = 0; j < (int)steps.size() - 1; j++) {
// Push down empty "Clear/Store" renderpasses, and merge them with the first "Load/Store" to the same framebuffer.
if (steps.size() > 1 && steps[j]->stepType == VKRStepType::RENDER &&
steps[j]->render.numDraws == 0 &&
steps[j]->render.numReads == 0 &&
steps[j]->render.color == VKRRenderPassAction::CLEAR &&
steps[j]->render.stencil == VKRRenderPassAction::CLEAR &&
steps[j]->render.depth == VKRRenderPassAction::CLEAR) {
// Drop the clear step, and merge it into the next step that touches the same framebuffer.
for (int i = j + 1; i < (int)steps.size(); i++) {
if (steps[i]->stepType == VKRStepType::RENDER &&
steps[i]->render.framebuffer == steps[j]->render.framebuffer) {
if (steps[i]->render.color != VKRRenderPassAction::CLEAR) {
steps[i]->render.color = VKRRenderPassAction::CLEAR;
steps[i]->render.clearColor = steps[j]->render.clearColor;
}
if (steps[i]->render.depth != VKRRenderPassAction::CLEAR) {
steps[i]->render.depth = VKRRenderPassAction::CLEAR;
steps[i]->render.clearDepth = steps[j]->render.clearDepth;
}
if (steps[i]->render.stencil != VKRRenderPassAction::CLEAR) {
steps[i]->render.stencil = VKRRenderPassAction::CLEAR;
steps[i]->render.clearStencil = steps[j]->render.clearStencil;
}
// Cheaply skip the first step.
steps[j]->stepType = VKRStepType::RENDER_SKIP;
break;
} else if (steps[i]->stepType == VKRStepType::COPY &&
steps[i]->copy.src == steps[j]->render.framebuffer) {
// Can't eliminate the clear if a game copies from it before it's
// rendered to. However this should be rare.
// TODO: This should never happen when we check numReads now.
break;
}
}
}
}
// Queue hacks.
if (hacksEnabled_) {
if (hacksEnabled_ & QUEUE_HACK_MGS2_ACID) {
// Massive speedup.
ApplyMGSHack(steps);
}
if (hacksEnabled_ & QUEUE_HACK_SONIC) {
ApplySonicHack(steps);
}
if (hacksEnabled_ & QUEUE_HACK_RENDERPASS_MERGE) {
ApplyRenderPassMerge(steps);
}
}
}
void VulkanQueueRunner::RunSteps(VkCommandBuffer cmd, std::vector<VKRStep *> &steps, QueueProfileContext *profile) {
if (profile)
profile->cpuStartTime = time_now_d();
bool emitLabels = vulkan_->Extensions().EXT_debug_utils;
for (size_t i = 0; i < steps.size(); i++) {
const VKRStep &step = *steps[i];
if (emitLabels) {
VkDebugUtilsLabelEXT labelInfo{ VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT };
labelInfo.pLabelName = step.tag;
vkCmdBeginDebugUtilsLabelEXT(cmd, &labelInfo);
}
switch (step.stepType) {
case VKRStepType::RENDER:
PerformRenderPass(step, cmd);
break;
case VKRStepType::COPY:
PerformCopy(step, cmd);
break;
case VKRStepType::BLIT:
PerformBlit(step, cmd);
break;
case VKRStepType::READBACK:
PerformReadback(step, cmd);
break;
case VKRStepType::READBACK_IMAGE:
PerformReadbackImage(step, cmd);
break;
case VKRStepType::RENDER_SKIP:
break;
}
if (profile && profile->timestampDescriptions.size() + 1 < MAX_TIMESTAMP_QUERIES) {
vkCmdWriteTimestamp(cmd, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, profile->queryPool, (uint32_t)profile->timestampDescriptions.size());
profile->timestampDescriptions.push_back(StepToString(step));
}
if (emitLabels) {
vkCmdEndDebugUtilsLabelEXT(cmd);
}
}
// Deleting all in one go should be easier on the instruction cache than deleting
// them as we go - and easier to debug because we can look backwards in the frame.
for (size_t i = 0; i < steps.size(); i++) {
delete steps[i];
}
if (profile)
profile->cpuEndTime = time_now_d();
}
void VulkanQueueRunner::ApplyMGSHack(std::vector<VKRStep *> &steps) {
// Really need a sane way to express transforms of steps.
// We want to turn a sequence of copy,render(1),copy,render(1),copy,render(1) to copy,copy,copy,render(n).
for (int i = 0; i < (int)steps.size() - 3; i++) {
int last = -1;
if (!(steps[i]->stepType == VKRStepType::COPY &&
steps[i + 1]->stepType == VKRStepType::RENDER &&
steps[i + 2]->stepType == VKRStepType::COPY &&
steps[i + 1]->render.numDraws == 1 &&
steps[i]->copy.dst == steps[i + 2]->copy.dst))
continue;
// Looks promising! Let's start by finding the last one.
for (int j = i; j < (int)steps.size(); j++) {
switch (steps[j]->stepType) {
case VKRStepType::RENDER:
if (steps[j]->render.numDraws > 1)
last = j - 1;
// should really also check descriptor sets...
if (steps[j]->commands.size()) {
VkRenderData &cmd = steps[j]->commands.back();
if (cmd.cmd == VKRRenderCommand::DRAW_INDEXED && cmd.draw.count != 6)
last = j - 1;
}
break;
case VKRStepType::COPY:
if (steps[j]->copy.dst != steps[i]->copy.dst)
last = j - 1;
break;
default:
break;
}
if (last != -1)
break;
}
if (last != -1) {
// We've got a sequence from i to last that needs reordering.
// First, let's sort it, keeping the same length.
std::vector<VKRStep *> copies;
std::vector<VKRStep *> renders;
copies.reserve((last - i) / 2);
renders.reserve((last - i) / 2);
for (int n = i; n <= last; n++) {
if (steps[n]->stepType == VKRStepType::COPY)
copies.push_back(steps[n]);
else if (steps[n]->stepType == VKRStepType::RENDER)
renders.push_back(steps[n]);
}
// Write the copies back. TODO: Combine them too.
for (int j = 0; j < (int)copies.size(); j++) {
steps[i + j] = copies[j];
}
// Write the renders back (so they will be deleted properly).
for (int j = 0; j < (int)renders.size(); j++) {
steps[i + j + copies.size()] = renders[j];
}
_assert_(steps[i + copies.size()]->stepType == VKRStepType::RENDER);
// Combine the renders.
for (int j = 1; j < (int)renders.size(); j++) {
for (int k = 0; k < (int)renders[j]->commands.size(); k++) {
steps[i + copies.size()]->commands.push_back(renders[j]->commands[k]);
}
steps[i + copies.size() + j]->stepType = VKRStepType::RENDER_SKIP;
}
// We're done.
break;
}
}
// There's also a post processing effect using depals that's just brutal in some parts
// of the game.
for (int i = 0; i < (int)steps.size() - 3; i++) {
int last = -1;
if (!(steps[i]->stepType == VKRStepType::RENDER &&
steps[i + 1]->stepType == VKRStepType::RENDER &&
steps[i + 2]->stepType == VKRStepType::RENDER &&
steps[i]->render.numDraws == 1 &&
steps[i + 1]->render.numDraws == 1 &&
steps[i + 2]->render.numDraws == 1 &&
steps[i]->render.color == VKRRenderPassAction::DONT_CARE &&
steps[i + 1]->render.color == VKRRenderPassAction::KEEP &&
steps[i + 2]->render.color == VKRRenderPassAction::DONT_CARE))
continue;
VKRFramebuffer *depalFramebuffer = steps[i]->render.framebuffer;
VKRFramebuffer *targetFramebuffer = steps[i + 1]->render.framebuffer;
// OK, found the start of a post-process sequence. Let's scan until we find the end.
for (int j = i; j < (int)steps.size() - 3; j++) {
if (((j - i) & 1) == 0) {
// This should be a depal draw.
if (steps[j]->render.numDraws != 1)
break;
if (steps[j]->render.color != VKRRenderPassAction::DONT_CARE)
break;
if (steps[j]->render.framebuffer != depalFramebuffer)
break;
last = j;
} else {
// This should be a target draw.
if (steps[j]->render.numDraws != 1)
break;
if (steps[j]->render.color != VKRRenderPassAction::KEEP)
break;
if (steps[j]->render.framebuffer != targetFramebuffer)
break;
last = j;
}
}
if (last == -1)
continue;
// Combine the depal renders.
for (int j = i + 2; j <= last + 1; j += 2) {
for (int k = 0; k < (int)steps[j]->commands.size(); k++) {
switch (steps[j]->commands[k].cmd) {
case VKRRenderCommand::DRAW:
case VKRRenderCommand::DRAW_INDEXED:
steps[i]->commands.push_back(steps[j]->commands[k]);
break;
default:
break;
}
}
steps[j]->stepType = VKRStepType::RENDER_SKIP;
}
// Combine the target renders.
for (int j = i + 3; j <= last; j += 2) {
for (int k = 0; k < (int)steps[j]->commands.size(); k++) {
switch (steps[j]->commands[k].cmd) {
case VKRRenderCommand::DRAW:
case VKRRenderCommand::DRAW_INDEXED:
steps[i + 1]->commands.push_back(steps[j]->commands[k]);
break;
default:
break;
}
}
steps[j]->stepType = VKRStepType::RENDER_SKIP;
}
// We're done - we only expect one of these sequences per frame.
break;
}
}
void VulkanQueueRunner::ApplySonicHack(std::vector<VKRStep *> &steps) {
// We want to turn a sequence of render(3),render(1),render(6),render(1),render(6),render(1),render(3) to
// render(1), render(1), render(1), render(6), render(6), render(6)
for (int i = 0; i < (int)steps.size() - 4; i++) {
int last = -1;
if (!(steps[i]->stepType == VKRStepType::RENDER &&
steps[i + 1]->stepType == VKRStepType::RENDER &&
steps[i + 2]->stepType == VKRStepType::RENDER &&
steps[i + 3]->stepType == VKRStepType::RENDER &&
steps[i]->render.numDraws == 3 &&
steps[i + 1]->render.numDraws == 1 &&
steps[i + 2]->render.numDraws == 6 &&
steps[i + 3]->render.numDraws == 1 &&
steps[i]->render.framebuffer == steps[i + 2]->render.framebuffer &&
steps[i + 1]->render.framebuffer == steps[i + 3]->render.framebuffer))
continue;
// Looks promising! Let's start by finding the last one.
for (int j = i; j < (int)steps.size(); j++) {
switch (steps[j]->stepType) {
case VKRStepType::RENDER:
if ((j - i) & 1) {
if (steps[j]->render.framebuffer != steps[i + 1]->render.framebuffer)
last = j - 1;
if (steps[j]->render.numDraws != 1)
last = j - 1;
} else {
if (steps[j]->render.framebuffer != steps[i]->render.framebuffer)
last = j - 1;
if (steps[j]->render.numDraws != 3 && steps[j]->render.numDraws != 6)
last = j - 1;
}
break;
default:
break;
}
if (last != -1)
break;
}
if (last != -1) {
// We've got a sequence from i to last that needs reordering.
// First, let's sort it, keeping the same length.
std::vector<VKRStep *> type1;
std::vector<VKRStep *> type2;
type1.reserve((last - i) / 2);
type2.reserve((last - i) / 2);
for (int n = i; n <= last; n++) {
if (steps[n]->render.framebuffer == steps[i]->render.framebuffer)
type1.push_back(steps[n]);
else
type2.push_back(steps[n]);
}
// Write the renders back in order. Same amount, so deletion will work fine.
for (int j = 0; j < (int)type1.size(); j++) {
steps[i + j] = type1[j];
}
for (int j = 0; j < (int)type2.size(); j++) {
steps[i + j + type1.size()] = type2[j];
}
// Combine the renders.
for (int j = 1; j < (int)type1.size(); j++) {
for (int k = 0; k < (int)type1[j]->commands.size(); k++) {
steps[i]->commands.push_back(type1[j]->commands[k]);
}
steps[i + j]->stepType = VKRStepType::RENDER_SKIP;
}
for (int j = 1; j < (int)type2.size(); j++) {
for (int k = 0; k < (int)type2[j]->commands.size(); k++) {
steps[i + type1.size()]->commands.push_back(type2[j]->commands[k]);
}
steps[i + j + type1.size()]->stepType = VKRStepType::RENDER_SKIP;
}
// We're done.
break;
}
}
}
const char *AspectToString(VkImageAspectFlags aspect) {
switch (aspect) {
case VK_IMAGE_ASPECT_COLOR_BIT: return "COLOR";
case VK_IMAGE_ASPECT_DEPTH_BIT: return "DEPTH";
case VK_IMAGE_ASPECT_STENCIL_BIT: return "STENCIL";
case VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT: return "DEPTHSTENCIL";
default: return "UNUSUAL";
}
}
std::string VulkanQueueRunner::StepToString(const VKRStep &step) const {
char buffer[256];
switch (step.stepType) {
case VKRStepType::RENDER:
{
int w = step.render.framebuffer ? step.render.framebuffer->width : vulkan_->GetBackbufferWidth();
int h = step.render.framebuffer ? step.render.framebuffer->height : vulkan_->GetBackbufferHeight();
snprintf(buffer, sizeof(buffer), "RENDER %s (draws: %d, %dx%d, fb: %p, )", step.tag, step.render.numDraws, w, h, step.render.framebuffer);
break;
}
case VKRStepType::COPY:
snprintf(buffer, sizeof(buffer), "COPY '%s' %s -> %s (%dx%d, %s)", step.tag, step.copy.src->tag.c_str(), step.copy.dst->tag.c_str(), step.copy.srcRect.extent.width, step.copy.srcRect.extent.height, AspectToString(step.copy.aspectMask));
break;
case VKRStepType::BLIT:
snprintf(buffer, sizeof(buffer), "BLIT '%s' %s -> %s (%dx%d->%dx%d, %s)", step.tag, step.copy.src->tag.c_str(), step.copy.dst->tag.c_str(), step.blit.srcRect.extent.width, step.blit.srcRect.extent.height, step.blit.dstRect.extent.width, step.blit.dstRect.extent.height, AspectToString(step.blit.aspectMask));
break;
case VKRStepType::READBACK:
snprintf(buffer, sizeof(buffer), "READBACK '%s' %s (%dx%d, %s)", step.tag, step.readback.src->tag.c_str(), step.readback.srcRect.extent.width, step.readback.srcRect.extent.height, AspectToString(step.readback.aspectMask));
break;
case VKRStepType::READBACK_IMAGE:
snprintf(buffer, sizeof(buffer), "READBACK_IMAGE '%s' (%dx%d)", step.tag, step.readback_image.srcRect.extent.width, step.readback_image.srcRect.extent.height);
break;
case VKRStepType::RENDER_SKIP:
snprintf(buffer, sizeof(buffer), "(RENDER_SKIP) %s", step.tag);
break;
default:
buffer[0] = 0;
break;
}
return std::string(buffer);
}
// Ideally, this should be cheap enough to be applied to all games. At least on mobile, it's pretty
// much a guaranteed neutral or win in terms of GPU power. However, dependency calculation really
// must be perfect!
void VulkanQueueRunner::ApplyRenderPassMerge(std::vector<VKRStep *> &steps) {
// First let's count how many times each framebuffer is rendered to.
// If it's more than one, let's do our best to merge them. This can help God of War quite a bit.
std::unordered_map<VKRFramebuffer *, int> counts;
for (int i = 0; i < (int)steps.size(); i++) {
if (steps[i]->stepType == VKRStepType::RENDER) {
counts[steps[i]->render.framebuffer]++;
}
}
auto mergeRenderSteps = [](VKRStep *dst, VKRStep *src) {
// OK. Now, if it's a render, slurp up all the commands and kill the step.
// Also slurp up any pretransitions.
dst->preTransitions.insert(dst->preTransitions.end(), src->preTransitions.begin(), src->preTransitions.end());
dst->commands.insert(dst->commands.end(), src->commands.begin(), src->commands.end());
// So we don't consider it for other things, maybe doesn't matter.
src->dependencies.clear();
src->stepType = VKRStepType::RENDER_SKIP;
};
auto renderHasClear = [](const VKRStep *step) {
const auto &r = step->render;
return r.color == VKRRenderPassAction::CLEAR || r.depth == VKRRenderPassAction::CLEAR || r.stencil == VKRRenderPassAction::CLEAR;
};
// Now, let's go through the steps. If we find one that is rendered to more than once,
// we'll scan forward and slurp up any rendering that can be merged across.
for (int i = 0; i < (int)steps.size(); i++) {
if (steps[i]->stepType == VKRStepType::RENDER && counts[steps[i]->render.framebuffer] > 1) {
auto fb = steps[i]->render.framebuffer;
TinySet<VKRFramebuffer *, 8> touchedFramebuffers; // must be the same fast-size as the dependencies TinySet for annoying reasons.
for (int j = i + 1; j < (int)steps.size(); j++) {
// If any other passes are reading from this framebuffer as-is, we cancel the scan.
if (steps[j]->dependencies.contains(fb)) {
// Reading from itself means a KEEP, which is okay.
if (steps[j]->stepType != VKRStepType::RENDER || steps[j]->render.framebuffer != fb)
break;
}
switch (steps[j]->stepType) {
case VKRStepType::RENDER:
if (steps[j]->render.framebuffer == fb) {
// Prevent Unknown's example case from https://github.com/hrydgard/ppsspp/pull/12242
if (renderHasClear(steps[j]) || steps[j]->dependencies.contains(touchedFramebuffers)) {
goto done_fb;
} else {
// Safe to merge, great.
mergeRenderSteps(steps[i], steps[j]);
}
} else {
// Remember the framebuffer this wrote to. We can't merge with later passes that depend on these.
touchedFramebuffers.insert(steps[j]->render.framebuffer);
}
break;
case VKRStepType::COPY:
if (steps[j]->copy.dst == fb) {
// Without framebuffer "renaming", we can't merge past a clobbered fb.
goto done_fb;
}
touchedFramebuffers.insert(steps[j]->copy.dst);
break;
case VKRStepType::BLIT:
if (steps[j]->blit.dst == fb) {
// Without framebuffer "renaming", we can't merge past a clobbered fb.
goto done_fb;
}
touchedFramebuffers.insert(steps[j]->blit.dst);
break;
case VKRStepType::READBACK:
// Not sure this has much effect, when executed READBACK is always the last step
// since we stall the GPU and wait immediately after.
break;
case VKRStepType::RENDER_SKIP:
case VKRStepType::READBACK_IMAGE:
break;
default:
// We added a new step? Might be unsafe.
goto done_fb;
}
}
done_fb:
;
}
}
}
void VulkanQueueRunner::LogSteps(const std::vector<VKRStep *> &steps, bool verbose) {
INFO_LOG(G3D, "=================== FRAME ====================");
for (size_t i = 0; i < steps.size(); i++) {
const VKRStep &step = *steps[i];
switch (step.stepType) {
case VKRStepType::RENDER:
LogRenderPass(step, verbose);
break;
case VKRStepType::COPY:
LogCopy(step);
break;
case VKRStepType::BLIT:
LogBlit(step);
break;
case VKRStepType::READBACK:
LogReadback(step);
break;
case VKRStepType::READBACK_IMAGE:
LogReadbackImage(step);
break;
case VKRStepType::RENDER_SKIP:
INFO_LOG(G3D, "(skipped render pass)");
break;
}
}
INFO_LOG(G3D, "------------------- SUBMIT ------------------");
}
const char *RenderPassActionName(VKRRenderPassAction a) {
switch (a) {
case VKRRenderPassAction::CLEAR:
return "CLEAR";
case VKRRenderPassAction::DONT_CARE:
return "DONT_CARE";
case VKRRenderPassAction::KEEP:
return "KEEP";
}
return "?";
}
const char *ImageLayoutToString(VkImageLayout layout) {
switch (layout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: return "COLOR_ATTACHMENT";
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL: return "DEPTH_STENCIL_ATTACHMENT";
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: return "SHADER_READ_ONLY";
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: return "TRANSFER_SRC";
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: return "TRANSFER_DST";
case VK_IMAGE_LAYOUT_GENERAL: return "GENERAL";
case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: return "PRESENT_SRC_KHR";
case VK_IMAGE_LAYOUT_UNDEFINED: return "UNDEFINED";
default: return "(unknown)";
}
}
void VulkanQueueRunner::LogRenderPass(const VKRStep &pass, bool verbose) {
const auto &r = pass.render;
const char *framebuf = r.framebuffer ? r.framebuffer->tag.c_str() : "backbuffer";
int w = r.framebuffer ? r.framebuffer->width : vulkan_->GetBackbufferWidth();
int h = r.framebuffer ? r.framebuffer->height : vulkan_->GetBackbufferHeight();
INFO_LOG(G3D, "RENDER %s Begin(%s, draws: %d, %dx%d, %s, %s, %s)", pass.tag, framebuf, r.numDraws, w, h, RenderPassActionName(r.color), RenderPassActionName(r.depth), RenderPassActionName(r.stencil));
// TODO: Log these in detail.
for (int i = 0; i < pass.preTransitions.size(); i++) {
INFO_LOG(G3D, " PRETRANSITION: %s %s -> %s", pass.preTransitions[i].fb->tag.c_str(), AspectToString(pass.preTransitions[i].aspect), ImageLayoutToString(pass.preTransitions[i].targetLayout));
}
if (verbose) {
for (auto &cmd : pass.commands) {
switch (cmd.cmd) {
case VKRRenderCommand::REMOVED:
INFO_LOG(G3D, " (Removed)");
break;
case VKRRenderCommand::BIND_PIPELINE:
INFO_LOG(G3D, " BindPipeline(%x)", (int)(intptr_t)cmd.pipeline.pipeline);
break;
case VKRRenderCommand::BLEND:
INFO_LOG(G3D, " BlendColor(%08x)", cmd.blendColor.color);
break;
case VKRRenderCommand::CLEAR:
INFO_LOG(G3D, " Clear");
break;
case VKRRenderCommand::DRAW:
INFO_LOG(G3D, " Draw(%d)", cmd.draw.count);
break;
case VKRRenderCommand::DRAW_INDEXED:
INFO_LOG(G3D, " DrawIndexed(%d)", cmd.drawIndexed.count);
break;
case VKRRenderCommand::SCISSOR:
INFO_LOG(G3D, " Scissor(%d, %d, %d, %d)", (int)cmd.scissor.scissor.offset.x, (int)cmd.scissor.scissor.offset.y, (int)cmd.scissor.scissor.extent.width, (int)cmd.scissor.scissor.extent.height);
break;
case VKRRenderCommand::STENCIL:
INFO_LOG(G3D, " Stencil(ref=%d, compare=%d, write=%d)", cmd.stencil.stencilRef, cmd.stencil.stencilCompareMask, cmd.stencil.stencilWriteMask);
break;
case VKRRenderCommand::VIEWPORT:
INFO_LOG(G3D, " Viewport(%f, %f, %f, %f, %f, %f)", cmd.viewport.vp.x, cmd.viewport.vp.y, cmd.viewport.vp.width, cmd.viewport.vp.height, cmd.viewport.vp.minDepth, cmd.viewport.vp.maxDepth);
break;
case VKRRenderCommand::PUSH_CONSTANTS:
INFO_LOG(G3D, " PushConstants(%d)", cmd.push.size);
break;
case VKRRenderCommand::NUM_RENDER_COMMANDS:
break;
}
}
}
INFO_LOG(G3D, " Final: %s %s", ImageLayoutToString(pass.render.finalColorLayout), ImageLayoutToString(pass.render.finalDepthStencilLayout));
INFO_LOG(G3D, "RENDER End(%s) - %d commands executed", framebuf, (int)pass.commands.size());
}
void VulkanQueueRunner::LogCopy(const VKRStep &step) {
INFO_LOG(G3D, "%s", StepToString(step).c_str());
}
void VulkanQueueRunner::LogBlit(const VKRStep &step) {
INFO_LOG(G3D, "%s", StepToString(step).c_str());
}
void VulkanQueueRunner::LogReadback(const VKRStep &step) {
INFO_LOG(G3D, "%s", StepToString(step).c_str());
}
void VulkanQueueRunner::LogReadbackImage(const VKRStep &step) {
INFO_LOG(G3D, "%s", StepToString(step).c_str());
}
void VulkanQueueRunner::PerformRenderPass(const VKRStep &step, VkCommandBuffer cmd) {
// TODO: If there are multiple, we can transition them together.
for (const auto &iter : step.preTransitions) {
if (iter.aspect == VK_IMAGE_ASPECT_COLOR_BIT && iter.fb->color.layout != iter.targetLayout) {
VkImageMemoryBarrier barrier{ VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER };
barrier.oldLayout = iter.fb->color.layout;
barrier.subresourceRange.layerCount = 1;
barrier.subresourceRange.levelCount = 1;
barrier.image = iter.fb->color.image;
VkPipelineStageFlags srcStage{};
VkPipelineStageFlags dstStage{};
switch (barrier.oldLayout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
srcStage = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
break;
case VK_IMAGE_LAYOUT_UNDEFINED:
barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
srcStage = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
srcStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
srcStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
default:
_assert_msg_(false, "PerformRenderPass: Unexpected oldLayout: %d", (int)barrier.oldLayout);
break;
}
barrier.newLayout = iter.targetLayout;
switch (barrier.newLayout) {
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
dstStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
break;
default:
_assert_msg_(false, "PerformRenderPass: Unexpected newLayout: %d", (int)barrier.newLayout);
break;
}
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
vkCmdPipelineBarrier(cmd, srcStage, dstStage, 0, 0, nullptr, 0, nullptr, 1, &barrier);
iter.fb->color.layout = barrier.newLayout;
} else if ((iter.aspect & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) && iter.fb->depth.layout != iter.targetLayout) {
VkImageMemoryBarrier barrier{ VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER };
barrier.oldLayout = iter.fb->depth.layout;
barrier.subresourceRange.layerCount = 1;
barrier.subresourceRange.levelCount = 1;
barrier.image = iter.fb->depth.image;
barrier.srcAccessMask = 0;
VkPipelineStageFlags srcStage;
VkPipelineStageFlags dstStage;
switch (barrier.oldLayout) {
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;
srcStage = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
srcStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
srcStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
default:
Crash();
break;
}
barrier.newLayout = iter.targetLayout;
switch (barrier.newLayout) {
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
dstStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
break;
default:
Crash();
break;
}
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
vkCmdPipelineBarrier(cmd, srcStage, dstStage, 0, 0, nullptr, 0, nullptr, 1, &barrier);
iter.fb->depth.layout = barrier.newLayout;
}
}
// Don't execute empty renderpasses that keep the contents.
if (step.commands.empty() && step.render.color == VKRRenderPassAction::KEEP && step.render.depth == VKRRenderPassAction::KEEP && step.render.stencil == VKRRenderPassAction::KEEP) {
// Nothing to do.
// TODO: Though - a later step might have used this step's finalColorLayout etc to get things in a layout it expects.
// Should we just do a barrier? Or just let the later step deal with not having things in its preferred layout, like now?
return;
}
// Write-after-write hazards. Fixed flicker in God of War on ARM (before we added another fix that removed these).
if (step.render.framebuffer) {
int n = 0;
int stage = 0;
VkImageMemoryBarrier barriers[2]{};
if (step.render.framebuffer->color.layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
barriers[n].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barriers[n].oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
barriers[n].newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
barriers[n].subresourceRange.layerCount = 1;
barriers[n].subresourceRange.levelCount = 1;
barriers[n].image = step.render.framebuffer->color.image;
barriers[n].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
barriers[n].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
barriers[n].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
barriers[n].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barriers[n].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
stage |= VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
n++;
}
if (step.render.framebuffer->depth.layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) {
barriers[n].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barriers[n].oldLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
barriers[n].newLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
barriers[n].subresourceRange.layerCount = 1;
barriers[n].subresourceRange.levelCount = 1;
barriers[n].image = step.render.framebuffer->depth.image;
barriers[n].srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
barriers[n].dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;
barriers[n].subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
barriers[n].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barriers[n].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
stage |= VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
n++;
}
if (stage) {
vkCmdPipelineBarrier(cmd, stage, stage, 0, 0, nullptr, 0, nullptr, n, barriers);
// No need to modify the image layouts here - it's just an execution barrier.
}
}
// This reads the layout of the color and depth images, and chooses a render pass using them that
// will transition to the desired final layout.
PerformBindFramebufferAsRenderTarget(step, cmd);
int curWidth = step.render.framebuffer ? step.render.framebuffer->width : vulkan_->GetBackbufferWidth();
int curHeight = step.render.framebuffer ? step.render.framebuffer->height : vulkan_->GetBackbufferHeight();
VKRFramebuffer *fb = step.render.framebuffer;
VkPipeline lastPipeline = VK_NULL_HANDLE;
auto &commands = step.commands;
// We can do a little bit of state tracking here to eliminate some calls into the driver.
// The stencil ones are very commonly mostly redundant so let's eliminate them where possible.
int lastStencilWriteMask = -1;
int lastStencilCompareMask = -1;
int lastStencilReference = -1;
for (const auto &c : commands) {
switch (c.cmd) {
case VKRRenderCommand::REMOVED:
break;
case VKRRenderCommand::BIND_PIPELINE:
if (c.pipeline.pipeline != lastPipeline) {
vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, c.pipeline.pipeline);
lastPipeline = c.pipeline.pipeline;
// Reset dynamic state so it gets refreshed with the new pipeline.
lastStencilWriteMask = -1;
lastStencilCompareMask = -1;
lastStencilReference = -1;
}
break;
case VKRRenderCommand::VIEWPORT:
if (fb != nullptr) {
vkCmdSetViewport(cmd, 0, 1, &c.viewport.vp);
} else {
const VkViewport &vp = c.viewport.vp;
DisplayRect<float> rc{ vp.x, vp.y, vp.width, vp.height };
RotateRectToDisplay(rc, (float)vulkan_->GetBackbufferWidth(), (float)vulkan_->GetBackbufferHeight());
VkViewport final_vp;
final_vp.x = rc.x;
final_vp.y = rc.y;
final_vp.width = rc.w;
final_vp.height = rc.h;
final_vp.maxDepth = vp.maxDepth;
final_vp.minDepth = vp.minDepth;
vkCmdSetViewport(cmd, 0, 1, &final_vp);
}
break;
case VKRRenderCommand::SCISSOR:
{
if (fb != nullptr) {
vkCmdSetScissor(cmd, 0, 1, &c.scissor.scissor);
} else {
// Rendering to backbuffer. Might need to rotate.
const VkRect2D &rc = c.scissor.scissor;
DisplayRect<int> rotated_rc{ rc.offset.x, rc.offset.y, (int)rc.extent.width, (int)rc.extent.height };
RotateRectToDisplay(rotated_rc, vulkan_->GetBackbufferWidth(), vulkan_->GetBackbufferHeight());
_dbg_assert_(rotated_rc.x >= 0);
_dbg_assert_(rotated_rc.y >= 0);
VkRect2D finalRect = VkRect2D{ { rotated_rc.x, rotated_rc.y }, { (uint32_t)rotated_rc.w, (uint32_t)rotated_rc.h} };
vkCmdSetScissor(cmd, 0, 1, &finalRect);
}
break;
}
case VKRRenderCommand::BLEND:
{
float bc[4];
Uint8x4ToFloat4(bc, c.blendColor.color);
vkCmdSetBlendConstants(cmd, bc);
break;
}
case VKRRenderCommand::PUSH_CONSTANTS:
vkCmdPushConstants(cmd, c.push.pipelineLayout, c.push.stages, c.push.offset, c.push.size, c.push.data);
break;
case VKRRenderCommand::STENCIL:
if (lastStencilWriteMask != c.stencil.stencilWriteMask) {
lastStencilWriteMask = (int)c.stencil.stencilWriteMask;
vkCmdSetStencilWriteMask(cmd, VK_STENCIL_FRONT_AND_BACK, c.stencil.stencilWriteMask);
}
if (lastStencilCompareMask != c.stencil.stencilCompareMask) {
lastStencilCompareMask = c.stencil.stencilCompareMask;
vkCmdSetStencilCompareMask(cmd, VK_STENCIL_FRONT_AND_BACK, c.stencil.stencilCompareMask);
}
if (lastStencilReference != c.stencil.stencilRef) {
lastStencilReference = c.stencil.stencilRef;
vkCmdSetStencilReference(cmd, VK_STENCIL_FRONT_AND_BACK, c.stencil.stencilRef);
}
break;
case VKRRenderCommand::DRAW_INDEXED:
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, c.drawIndexed.pipelineLayout, 0, 1, &c.drawIndexed.ds, c.drawIndexed.numUboOffsets, c.drawIndexed.uboOffsets);
vkCmdBindIndexBuffer(cmd, c.drawIndexed.ibuffer, c.drawIndexed.ioffset, c.drawIndexed.indexType);
vkCmdBindVertexBuffers(cmd, 0, 1, &c.drawIndexed.vbuffer, &c.drawIndexed.voffset);
vkCmdDrawIndexed(cmd, c.drawIndexed.count, c.drawIndexed.instances, 0, 0, 0);
break;
case VKRRenderCommand::DRAW:
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, c.draw.pipelineLayout, 0, 1, &c.draw.ds, c.draw.numUboOffsets, c.draw.uboOffsets);
if (c.draw.vbuffer) {
vkCmdBindVertexBuffers(cmd, 0, 1, &c.draw.vbuffer, &c.draw.voffset);
}
vkCmdDraw(cmd, c.draw.count, 1, c.draw.offset, 0);
break;
case VKRRenderCommand::CLEAR:
{
// If we get here, we failed to merge a clear into a render pass load op. This is bad for perf.
int numAttachments = 0;
VkClearRect rc{};
rc.baseArrayLayer = 0;
rc.layerCount = 1;
rc.rect.extent.width = (uint32_t)curWidth;
rc.rect.extent.height = (uint32_t)curHeight;
VkClearAttachment attachments[2]{};
if (c.clear.clearMask & VK_IMAGE_ASPECT_COLOR_BIT) {
VkClearAttachment &attachment = attachments[numAttachments++];
attachment.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
attachment.colorAttachment = 0;
Uint8x4ToFloat4(attachment.clearValue.color.float32, c.clear.clearColor);
}
if (c.clear.clearMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
VkClearAttachment &attachment = attachments[numAttachments++];
attachment.aspectMask = 0;
if (c.clear.clearMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
attachment.clearValue.depthStencil.depth = c.clear.clearZ;
attachment.aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
}
if (c.clear.clearMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
attachment.clearValue.depthStencil.stencil = (uint32_t)c.clear.clearStencil;
attachment.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
}
if (numAttachments) {
vkCmdClearAttachments(cmd, numAttachments, attachments, 1, &rc);
}
break;
}
default:
ERROR_LOG(G3D, "Unimpl queue command");
;
}
}
vkCmdEndRenderPass(cmd);
// The renderpass handles the layout transition.
if (fb) {
fb->color.layout = step.render.finalColorLayout;
fb->depth.layout = step.render.finalDepthStencilLayout;
}
}
void VulkanQueueRunner::PerformBindFramebufferAsRenderTarget(const VKRStep &step, VkCommandBuffer cmd) {
VkRenderPass renderPass;
int numClearVals = 0;
VkClearValue clearVal[2]{};
VkFramebuffer framebuf;
int w;
int h;
if (step.render.framebuffer) {
_dbg_assert_(step.render.finalColorLayout != VK_IMAGE_LAYOUT_UNDEFINED);
_dbg_assert_(step.render.finalDepthStencilLayout != VK_IMAGE_LAYOUT_UNDEFINED);
VKRFramebuffer *fb = step.render.framebuffer;
framebuf = fb->framebuf;
w = fb->width;
h = fb->height;
// Mali driver on S8 (Android O) and S9 mishandles renderpasses that do just a clear
// and then no draw calls. Memory transaction elimination gets mis-flagged or something.
// To avoid this, we transition to GENERAL and back in this case (ARM-approved workaround).
// See pull request #10723.
bool maliBugWorkaround = step.render.numDraws == 0 &&
step.render.color == VKRRenderPassAction::CLEAR &&
vulkan_->GetPhysicalDeviceProperties().properties.driverVersion == 0xaa9c4b29;
if (maliBugWorkaround) {
TransitionImageLayout2(cmd, step.render.framebuffer->color.image, 0, 1, VK_IMAGE_ASPECT_COLOR_BIT,
fb->color.layout, VK_IMAGE_LAYOUT_GENERAL,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT);
fb->color.layout = VK_IMAGE_LAYOUT_GENERAL;
}
renderPass = GetRenderPass(
step.render.color, step.render.depth, step.render.stencil,
fb->color.layout, fb->depth.layout,
step.render.finalColorLayout,
step.render.finalDepthStencilLayout);
// We now do any layout pretransitions as part of the render pass.
fb->color.layout = step.render.finalColorLayout;
fb->depth.layout = step.render.finalDepthStencilLayout;
if (step.render.color == VKRRenderPassAction::CLEAR) {
Uint8x4ToFloat4(clearVal[0].color.float32, step.render.clearColor);
numClearVals = 1;
}
if (step.render.depth == VKRRenderPassAction::CLEAR || step.render.stencil == VKRRenderPassAction::CLEAR) {
clearVal[1].depthStencil.depth = step.render.clearDepth;
clearVal[1].depthStencil.stencil = step.render.clearStencil;
numClearVals = 2;
}
} else {
framebuf = backbuffer_;
w = vulkan_->GetBackbufferWidth();
h = vulkan_->GetBackbufferHeight();
renderPass = GetBackbufferRenderPass();
Uint8x4ToFloat4(clearVal[0].color.float32, step.render.clearColor);
numClearVals = 2; // We don't bother with a depth buffer here.
clearVal[1].depthStencil.depth = 0.0f;
clearVal[1].depthStencil.stencil = 0;
}
VkRenderPassBeginInfo rp_begin = { VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO };
rp_begin.renderPass = renderPass;
rp_begin.framebuffer = framebuf;
rp_begin.renderArea.offset.x = 0;
rp_begin.renderArea.offset.y = 0;
rp_begin.renderArea.extent.width = w;
rp_begin.renderArea.extent.height = h;
rp_begin.clearValueCount = numClearVals;
rp_begin.pClearValues = numClearVals ? clearVal : nullptr;
vkCmdBeginRenderPass(cmd, &rp_begin, VK_SUBPASS_CONTENTS_INLINE);
}
void VulkanQueueRunner::PerformCopy(const VKRStep &step, VkCommandBuffer cmd) {
VKRFramebuffer *src = step.copy.src;
VKRFramebuffer *dst = step.copy.dst;
VkImageCopy copy{};
copy.srcOffset.x = step.copy.srcRect.offset.x;
copy.srcOffset.y = step.copy.srcRect.offset.y;
copy.srcOffset.z = 0;
copy.srcSubresource.mipLevel = 0;
copy.srcSubresource.layerCount = 1;
copy.dstOffset.x = step.copy.dstPos.x;
copy.dstOffset.y = step.copy.dstPos.y;
copy.dstOffset.z = 0;
copy.dstSubresource.mipLevel = 0;
copy.dstSubresource.layerCount = 1;
copy.extent.width = step.copy.srcRect.extent.width;
copy.extent.height = step.copy.srcRect.extent.height;
copy.extent.depth = 1;
VkImageMemoryBarrier srcBarriers[2]{};
VkImageMemoryBarrier dstBarriers[2]{};
int srcCount = 0;
int dstCount = 0;
VkPipelineStageFlags srcStage = 0;
VkPipelineStageFlags dstStage = 0;
// First source barriers.
if (step.copy.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
if (src->color.layout != VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) {
SetupTransitionToTransferSrc(src->color, srcBarriers[srcCount++], srcStage, VK_IMAGE_ASPECT_COLOR_BIT);
}
if (dst->color.layout != VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
SetupTransitionToTransferDst(dst->color, dstBarriers[dstCount++], dstStage, VK_IMAGE_ASPECT_COLOR_BIT);
}
}
// We can't copy only depth or only stencil unfortunately - or can we?.
if (step.copy.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
if (src->depth.layout != VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) {
SetupTransitionToTransferSrc(src->depth, srcBarriers[srcCount++], srcStage, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
}
if (dst->depth.layout != VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
SetupTransitionToTransferDst(dst->depth, dstBarriers[dstCount++], dstStage, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
_dbg_assert_(dst->depth.layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
}
}
if (srcCount) {
vkCmdPipelineBarrier(cmd, srcStage, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, srcCount, srcBarriers);
}
if (dstCount) {
vkCmdPipelineBarrier(cmd, dstStage, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, dstCount, dstBarriers);
}
if (step.copy.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
copy.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
vkCmdCopyImage(cmd, src->color.image, src->color.layout, dst->color.image, dst->color.layout, 1, &copy);
}
if (step.copy.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
copy.srcSubresource.aspectMask = step.copy.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
copy.dstSubresource.aspectMask = step.copy.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
vkCmdCopyImage(cmd, src->depth.image, src->depth.layout, dst->depth.image, dst->depth.layout, 1, &copy);
}
}
void VulkanQueueRunner::PerformBlit(const VKRStep &step, VkCommandBuffer cmd) {
VkImageMemoryBarrier srcBarriers[2]{};
VkImageMemoryBarrier dstBarriers[2]{};
VKRFramebuffer *src = step.blit.src;
VKRFramebuffer *dst = step.blit.dst;
// If any validation needs to be performed here, it should probably have been done
// already when the blit was queued. So don't validate here.
VkImageBlit blit{};
blit.srcOffsets[0].x = step.blit.srcRect.offset.x;
blit.srcOffsets[0].y = step.blit.srcRect.offset.y;
blit.srcOffsets[0].z = 0;
blit.srcOffsets[1].x = step.blit.srcRect.offset.x + step.blit.srcRect.extent.width;
blit.srcOffsets[1].y = step.blit.srcRect.offset.y + step.blit.srcRect.extent.height;
blit.srcOffsets[1].z = 1;
blit.srcSubresource.mipLevel = 0;
blit.srcSubresource.layerCount = 1;
blit.dstOffsets[0].x = step.blit.dstRect.offset.x;
blit.dstOffsets[0].y = step.blit.dstRect.offset.y;
blit.dstOffsets[0].z = 0;
blit.dstOffsets[1].x = step.blit.dstRect.offset.x + step.blit.dstRect.extent.width;
blit.dstOffsets[1].y = step.blit.dstRect.offset.y + step.blit.dstRect.extent.height;
blit.dstOffsets[1].z = 1;
blit.dstSubresource.mipLevel = 0;
blit.dstSubresource.layerCount = 1;
VkPipelineStageFlags srcStage = 0;
VkPipelineStageFlags dstStage = 0;
int srcCount = 0;
int dstCount = 0;
// First source barriers.
if (step.blit.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
if (src->color.layout != VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) {
SetupTransitionToTransferSrc(src->color, srcBarriers[srcCount++], srcStage, VK_IMAGE_ASPECT_COLOR_BIT);
}
if (dst->color.layout != VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
SetupTransitionToTransferDst(dst->color, dstBarriers[dstCount++], dstStage, VK_IMAGE_ASPECT_COLOR_BIT);
}
}
// We can't copy only depth or only stencil unfortunately.
if (step.blit.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
if (src->depth.layout != VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) {
SetupTransitionToTransferSrc(src->depth, srcBarriers[srcCount++], srcStage, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
}
if (dst->depth.layout != VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
SetupTransitionToTransferDst(dst->depth, dstBarriers[dstCount++], dstStage, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
}
}
if (srcCount) {
vkCmdPipelineBarrier(cmd, srcStage, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, srcCount, srcBarriers);
}
if (dstCount) {
vkCmdPipelineBarrier(cmd, dstStage, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, dstCount, dstBarriers);
}
if (step.blit.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
blit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
vkCmdBlitImage(cmd, src->color.image, src->color.layout, dst->color.image, dst->color.layout, 1, &blit, step.blit.filter);
}
// TODO: Need to check if the depth format is blittable.
// Actually, we should probably almost always use copies rather than blits for depth buffers.
if (step.blit.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
blit.srcSubresource.aspectMask = 0;
blit.dstSubresource.aspectMask = 0;
if (step.blit.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
blit.srcSubresource.aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
blit.dstSubresource.aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
}
if (step.blit.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
blit.srcSubresource.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
blit.dstSubresource.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
vkCmdBlitImage(cmd, src->depth.image, src->depth.layout, dst->depth.image, dst->depth.layout, 1, &blit, step.blit.filter);
}
}
void VulkanQueueRunner::SetupTransitionToTransferSrc(VKRImage &img, VkImageMemoryBarrier &barrier, VkPipelineStageFlags &stage, VkImageAspectFlags aspect) {
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.oldLayout = img.layout;
barrier.subresourceRange.layerCount = 1;
barrier.subresourceRange.levelCount = 1;
barrier.image = img.image;
barrier.srcAccessMask = 0;
switch (img.layout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
stage |= VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
stage |= VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
stage |= VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
stage |= VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
break;
default:
_dbg_assert_msg_(false, "Transition from this layout to transfer src not supported (%d)", (int)img.layout);
break;
}
barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
if (img.format == VK_FORMAT_D16_UNORM_S8_UINT || img.format == VK_FORMAT_D24_UNORM_S8_UINT || img.format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
// Barrier must specify both for combined depth/stencil buffers.
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
} else {
barrier.subresourceRange.aspectMask = aspect;
}
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
img.layout = barrier.newLayout;
// NOTE: Must do this AFTER updating img.layout to avoid behaviour differences.
#ifdef VULKAN_USE_GENERAL_LAYOUT_FOR_COLOR
if (aspect == VK_IMAGE_ASPECT_COLOR_BIT) {
if (barrier.oldLayout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL || barrier.oldLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
barrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
if (barrier.newLayout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL || barrier.newLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
}
#endif
#ifdef VULKAN_USE_GENERAL_LAYOUT_FOR_DEPTH_STENCIL
if (aspect != VK_IMAGE_ASPECT_COLOR_BIT) {
if (barrier.oldLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL || barrier.oldLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
barrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
if (barrier.newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL || barrier.newLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
}
#endif
}
void VulkanQueueRunner::SetupTransitionToTransferDst(VKRImage &img, VkImageMemoryBarrier &barrier, VkPipelineStageFlags &stage, VkImageAspectFlags aspect) {
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.oldLayout = img.layout;
barrier.subresourceRange.layerCount = 1;
barrier.subresourceRange.levelCount = 1;
barrier.image = img.image;
barrier.srcAccessMask = 0;
switch (img.layout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
stage |= VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
stage |= VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
stage |= VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
stage |= VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
break;
default:
_dbg_assert_msg_(false, "Transition from this layout to transfer dst not supported (%d)", (int)img.layout);
break;
}
barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
if (img.format == VK_FORMAT_D16_UNORM_S8_UINT || img.format == VK_FORMAT_D24_UNORM_S8_UINT || img.format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
// Barrier must specify both for combined depth/stencil buffers.
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
} else {
barrier.subresourceRange.aspectMask = aspect;
}
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
img.layout = barrier.newLayout;
// NOTE: Must do this AFTER updating img.layout to avoid behaviour differences.
#ifdef VULKAN_USE_GENERAL_LAYOUT_FOR_COLOR
if (aspect == VK_IMAGE_ASPECT_COLOR_BIT) {
if (barrier.oldLayout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL || barrier.oldLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
barrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
if (barrier.newLayout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL || barrier.newLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
}
#endif
#ifdef VULKAN_USE_GENERAL_LAYOUT_FOR_DEPTH_STENCIL
if (aspect != VK_IMAGE_ASPECT_COLOR_BIT) {
if (barrier.oldLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL || barrier.oldLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
barrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
if (barrier.newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL || barrier.newLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
}
#endif
}
void VulkanQueueRunner::PerformReadback(const VKRStep &step, VkCommandBuffer cmd) {
ResizeReadbackBuffer(sizeof(uint32_t) * step.readback.srcRect.extent.width * step.readback.srcRect.extent.height);
VkBufferImageCopy region{};
region.imageOffset = { step.readback.srcRect.offset.x, step.readback.srcRect.offset.y, 0 };
region.imageExtent = { step.readback.srcRect.extent.width, step.readback.srcRect.extent.height, 1 };
region.imageSubresource.aspectMask = step.readback.aspectMask;
region.imageSubresource.layerCount = 1;
region.bufferOffset = 0;
region.bufferRowLength = step.readback.srcRect.extent.width;
region.bufferImageHeight = step.readback.srcRect.extent.height;
VkImage image;
VkImageLayout copyLayout;
// Special case for backbuffer readbacks.
if (step.readback.src == nullptr) {
// We only take screenshots after the main render pass (anything else would be stupid) so we need to transition out of PRESENT,
// and then back into it.
TransitionImageLayout2(cmd, backbufferImage_, 0, 1, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT,
0, VK_ACCESS_TRANSFER_READ_BIT);
copyLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
image = backbufferImage_;
} else {
VKRImage *srcImage;
if (step.readback.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
srcImage = &step.readback.src->color;
} else if (step.readback.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
srcImage = &step.readback.src->depth;
} else {
_dbg_assert_msg_(false, "No image aspect to readback?");
return;
}
VkImageMemoryBarrier barrier{ VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER };
VkPipelineStageFlags stage = 0;
if (srcImage->layout != VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) {
SetupTransitionToTransferSrc(*srcImage, barrier, stage, step.readback.aspectMask);
vkCmdPipelineBarrier(cmd, stage, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 1, &barrier);
}
image = srcImage->image;
copyLayout = srcImage->layout;
}
vkCmdCopyImageToBuffer(cmd, image, copyLayout, readbackBuffer_, 1, &region);
// NOTE: Can't read the buffer using the CPU here - need to sync first.
// If we copied from the backbuffer, transition it back.
if (step.readback.src == nullptr) {
// We only take screenshots after the main render pass (anything else would be stupid) so we need to transition out of PRESENT,
// and then back into it.
TransitionImageLayout2(cmd, backbufferImage_, 0, 1, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_ACCESS_TRANSFER_READ_BIT, 0);
copyLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
}
}
void VulkanQueueRunner::PerformReadbackImage(const VKRStep &step, VkCommandBuffer cmd) {
// TODO: Clean this up - just reusing `SetupTransitionToTransferSrc`.
VKRImage srcImage{};
srcImage.image = step.readback_image.image;
srcImage.layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
VkImageMemoryBarrier barrier{ VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER };
VkPipelineStageFlags stage = 0;
SetupTransitionToTransferSrc(srcImage, barrier, stage, VK_IMAGE_ASPECT_COLOR_BIT);
vkCmdPipelineBarrier(cmd, stage, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 1, &barrier);
ResizeReadbackBuffer(sizeof(uint32_t) * step.readback_image.srcRect.extent.width * step.readback_image.srcRect.extent.height);
VkBufferImageCopy region{};
region.imageOffset = { step.readback_image.srcRect.offset.x, step.readback_image.srcRect.offset.y, 0 };
region.imageExtent = { step.readback_image.srcRect.extent.width, step.readback_image.srcRect.extent.height, 1 };
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.imageSubresource.layerCount = 1;
region.imageSubresource.mipLevel = step.readback_image.mipLevel;
region.bufferOffset = 0;
region.bufferRowLength = step.readback_image.srcRect.extent.width;
region.bufferImageHeight = step.readback_image.srcRect.extent.height;
vkCmdCopyImageToBuffer(cmd, step.readback_image.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, readbackBuffer_, 1, &region);
// Now transfer it back to a texture.
TransitionImageLayout2(cmd, step.readback_image.image, 0, 1,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_ACCESS_TRANSFER_READ_BIT, VK_ACCESS_SHADER_READ_BIT);
// NOTE: Can't read the buffer using the CPU here - need to sync first.
// Doing that will also act like a heavyweight barrier ensuring that device writes are visible on the host.
}
void VulkanQueueRunner::CopyReadbackBuffer(int width, int height, Draw::DataFormat srcFormat, Draw::DataFormat destFormat, int pixelStride, uint8_t *pixels) {
if (!readbackMemory_)
return; // Something has gone really wrong.
// Read back to the requested address in ram from buffer.
void *mappedData;
const size_t srcPixelSize = DataFormatSizeInBytes(srcFormat);
VkResult res = vkMapMemory(vulkan_->GetDevice(), readbackMemory_, 0, width * height * srcPixelSize, 0, &mappedData);
if (!readbackBufferIsCoherent_) {
VkMappedMemoryRange range{};
range.memory = readbackMemory_;
range.offset = 0;
range.size = width * height * srcPixelSize;
vkInvalidateMappedMemoryRanges(vulkan_->GetDevice(), 1, &range);
}
if (res != VK_SUCCESS) {
ERROR_LOG(G3D, "CopyReadbackBuffer: vkMapMemory failed! result=%d", (int)res);
return;
}
// TODO: Perform these conversions in a compute shader on the GPU.
if (srcFormat == Draw::DataFormat::R8G8B8A8_UNORM) {
ConvertFromRGBA8888(pixels, (const uint8_t *)mappedData, pixelStride, width, width, height, destFormat);
} else if (srcFormat == Draw::DataFormat::B8G8R8A8_UNORM) {
ConvertFromBGRA8888(pixels, (const uint8_t *)mappedData, pixelStride, width, width, height, destFormat);
} else if (srcFormat == destFormat) {
// Can just memcpy when it matches no matter the format!
uint8_t *dst = pixels;
const uint8_t *src = (const uint8_t *)mappedData;
for (int y = 0; y < height; ++y) {
memcpy(dst, src, width * srcPixelSize);
src += width * srcPixelSize;
dst += pixelStride * srcPixelSize;
}
} else if (destFormat == Draw::DataFormat::D32F) {
ConvertToD32F(pixels, (const uint8_t *)mappedData, pixelStride, width, width, height, srcFormat);
} else {
// TODO: Maybe a depth conversion or something?
ERROR_LOG(G3D, "CopyReadbackBuffer: Unknown format");
_assert_msg_(false, "CopyReadbackBuffer: Unknown src format %d", (int)srcFormat);
}
vkUnmapMemory(vulkan_->GetDevice(), readbackMemory_);
}