// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "ppsspp_config.h" #if PPSSPP_ARCH(ARM64) #include #include "Common/Arm64Emitter.h" #include "Common/CPUDetect.h" #include "Common/Data/Convert/SmallDataConvert.h" #include "Common/Math/math_util.h" #include "Core/Compatibility.h" #include "Core/Config.h" #include "Core/MemMap.h" #include "Core/Reporting.h" #include "Core/System.h" #include "Core/MIPS/MIPS.h" #include "Core/MIPS/MIPSTables.h" #include "Core/MIPS/MIPSAnalyst.h" #include "Core/MIPS/MIPSCodeUtils.h" #include "Core/MIPS/ARM64/Arm64Jit.h" #include "Core/MIPS/ARM64/Arm64RegCache.h" // All functions should have CONDITIONAL_DISABLE, so we can narrow things down to a file quickly. // Currently known non working ones should have DISABLE. // #define CONDITIONAL_DISABLE(flag) { fpr.ReleaseSpillLocksAndDiscardTemps(); Comp_Generic(op); return; } #define CONDITIONAL_DISABLE(flag) if (jo.Disabled(JitDisable::flag)) { Comp_Generic(op); return; } #define DISABLE { fpr.ReleaseSpillLocksAndDiscardTemps(); Comp_Generic(op); return; } #define _RS MIPS_GET_RS(op) #define _RT MIPS_GET_RT(op) #define _RD MIPS_GET_RD(op) #define _FS MIPS_GET_FS(op) #define _FT MIPS_GET_FT(op) #define _FD MIPS_GET_FD(op) #define _SA MIPS_GET_SA(op) #define _POS ((op>> 6) & 0x1F) #define _SIZE ((op>>11) & 0x1F) #define _IMM16 (signed short)(op & 0xFFFF) #define _IMM26 (op & 0x03FFFFFF) namespace MIPSComp { using namespace Arm64Gen; using namespace Arm64JitConstants; // Vector regs can overlap in all sorts of swizzled ways. // This does allow a single overlap in sregs[i]. static bool IsOverlapSafeAllowS(int dreg, int di, int sn, u8 sregs[], int tn = 0, u8 tregs[] = NULL) { for (int i = 0; i < sn; ++i) { if (sregs[i] == dreg && i != di) return false; } for (int i = 0; i < tn; ++i) { if (tregs[i] == dreg) return false; } // Hurray, no overlap, we can write directly. return true; } static bool IsOverlapSafe(int dreg, int di, int sn, u8 sregs[], int tn = 0, u8 tregs[] = NULL) { return IsOverlapSafeAllowS(dreg, di, sn, sregs, tn, tregs) && sregs[di] != dreg; } void Arm64Jit::Comp_VPFX(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_XFER); int data = op & 0xFFFFF; int regnum = (op >> 24) & 3; switch (regnum) { case 0: // S js.prefixS = data; js.prefixSFlag = JitState::PREFIX_KNOWN_DIRTY; break; case 1: // T js.prefixT = data; js.prefixTFlag = JitState::PREFIX_KNOWN_DIRTY; break; case 2: // D js.prefixD = data & 0x00000FFF; js.prefixDFlag = JitState::PREFIX_KNOWN_DIRTY; break; default: ERROR_LOG(CPU, "VPFX - bad regnum %i : data=%08x", regnum, data); break; } } void Arm64Jit::ApplyPrefixST(u8 *vregs, u32 prefix, VectorSize sz) { if (prefix == 0xE4) return; int n = GetNumVectorElements(sz); u8 origV[4]; static const float constantArray[8] = { 0.f, 1.f, 2.f, 0.5f, 3.f, 1.f / 3.f, 0.25f, 1.f / 6.f }; for (int i = 0; i < n; i++) origV[i] = vregs[i]; for (int i = 0; i < n; i++) { int regnum = (prefix >> (i * 2)) & 3; int abs = (prefix >> (8 + i)) & 1; int negate = (prefix >> (16 + i)) & 1; int constants = (prefix >> (12 + i)) & 1; // Unchanged, hurray. if (!constants && regnum == i && !abs && !negate) continue; // This puts the value into a temp reg, so we won't write the modified value back. vregs[i] = fpr.GetTempV(); if (!constants) { fpr.MapDirtyInV(vregs[i], origV[regnum]); fpr.SpillLockV(vregs[i]); // Prefix may say "z, z, z, z" but if this is a pair, we force to x. // TODO: But some ops seem to use const 0 instead? if (regnum >= n) { WARN_LOG(CPU, "JIT: Invalid VFPU swizzle: %08x : %d / %d at PC = %08x (%s)", prefix, regnum, n, GetCompilerPC(), MIPSDisasmAt(GetCompilerPC())); regnum = 0; } if (abs) { fp.FABS(fpr.V(vregs[i]), fpr.V(origV[regnum])); if (negate) fp.FNEG(fpr.V(vregs[i]), fpr.V(vregs[i])); } else { if (negate) fp.FNEG(fpr.V(vregs[i]), fpr.V(origV[regnum])); else fp.FMOV(fpr.V(vregs[i]), fpr.V(origV[regnum])); } } else { fpr.MapRegV(vregs[i], MAP_DIRTY | MAP_NOINIT); fpr.SpillLockV(vregs[i]); fp.MOVI2F(fpr.V(vregs[i]), constantArray[regnum + (abs << 2)], SCRATCH1, (bool)negate); } } } void Arm64Jit::GetVectorRegsPrefixD(u8 *regs, VectorSize sz, int vectorReg) { _assert_(js.prefixDFlag & JitState::PREFIX_KNOWN); GetVectorRegs(regs, sz, vectorReg); if (js.prefixD == 0) return; int n = GetNumVectorElements(sz); for (int i = 0; i < n; i++) { // Hopefully this is rare, we'll just write it into a reg we drop. if (js.VfpuWriteMask(i)) regs[i] = fpr.GetTempV(); } } void Arm64Jit::ApplyPrefixD(const u8 *vregs, VectorSize sz) { _assert_msg_(js.prefixDFlag & JitState::PREFIX_KNOWN, "Unexpected unknown prefix!"); if (!js.prefixD) return; int n = GetNumVectorElements(sz); for (int i = 0; i < n; i++) { if (js.VfpuWriteMask(i)) continue; int sat = (js.prefixD >> (i * 2)) & 3; if (sat == 1) { // clamped = x < 0 ? (x > 1 ? 1 : x) : x [0, 1] fpr.MapRegV(vregs[i], MAP_DIRTY); fp.MOVI2F(S0, 0.0f, SCRATCH1); fp.MOVI2F(S1, 1.0f, SCRATCH1); fp.FMIN(fpr.V(vregs[i]), fpr.V(vregs[i]), S1); fp.FMAX(fpr.V(vregs[i]), fpr.V(vregs[i]), S0); } else if (sat == 3) { // clamped = x < -1 ? (x > 1 ? 1 : x) : x [-1, 1] fpr.MapRegV(vregs[i], MAP_DIRTY); fp.MOVI2F(S0, -1.0f, SCRATCH1); fp.MOVI2F(S1, 1.0f, SCRATCH1); fp.FMIN(fpr.V(vregs[i]), fpr.V(vregs[i]), S1); fp.FMAX(fpr.V(vregs[i]), fpr.V(vregs[i]), S0); } } } void Arm64Jit::Comp_SV(MIPSOpcode op) { CONDITIONAL_DISABLE(LSU_VFPU); CheckMemoryBreakpoint(); s32 offset = (signed short)(op & 0xFFFC); int vt = ((op >> 16) & 0x1f) | ((op & 3) << 5); MIPSGPReg rs = _RS; std::vector skips; switch (op >> 26) { case 50: //lv.s // VI(vt) = Memory::Read_U32(addr); { if (!gpr.IsImm(rs) && jo.cachePointers && g_Config.bFastMemory && (offset & 3) == 0 && offset >= 0 && offset < 16384) { gpr.MapRegAsPointer(rs); fpr.MapRegV(vt, MAP_NOINIT | MAP_DIRTY); fp.LDR(32, INDEX_UNSIGNED, fpr.V(vt), gpr.RPtr(rs), offset); break; } // CC might be set by slow path below, so load regs first. fpr.MapRegV(vt, MAP_DIRTY | MAP_NOINIT); if (gpr.IsImm(rs)) { #ifdef MASKED_PSP_MEMORY u32 addr = (offset + gpr.GetImm(rs)) & 0x3FFFFFFF; #else u32 addr = offset + gpr.GetImm(rs); #endif gpr.SetRegImm(SCRATCH1, addr); } else { gpr.MapReg(rs); if (g_Config.bFastMemory) { SetScratch1ToEffectiveAddress(rs, offset); } else { skips = SetScratch1ForSafeAddress(rs, offset, SCRATCH2); } } fp.LDR(32, fpr.V(vt), SCRATCH1_64, ArithOption(MEMBASEREG)); for (auto skip : skips) { SetJumpTarget(skip); } } break; case 58: //sv.s // Memory::Write_U32(VI(vt), addr); { if (!gpr.IsImm(rs) && jo.cachePointers && g_Config.bFastMemory && (offset & 3) == 0 && offset >= 0 && offset < 16384) { gpr.MapRegAsPointer(rs); fpr.MapRegV(vt, 0); fp.STR(32, INDEX_UNSIGNED, fpr.V(vt), gpr.RPtr(rs), offset); break; } // CC might be set by slow path below, so load regs first. fpr.MapRegV(vt); if (gpr.IsImm(rs)) { #ifdef MASKED_PSP_MEMORY u32 addr = (offset + gpr.GetImm(rs)) & 0x3FFFFFFF; #else u32 addr = offset + gpr.GetImm(rs); #endif gpr.SetRegImm(SCRATCH1, addr); } else { gpr.MapReg(rs); if (g_Config.bFastMemory) { SetScratch1ToEffectiveAddress(rs, offset); } else { skips = SetScratch1ForSafeAddress(rs, offset, SCRATCH2); } } fp.STR(32, fpr.V(vt), SCRATCH1_64, ArithOption(MEMBASEREG)); for (auto skip : skips) { SetJumpTarget(skip); } } break; default: DISABLE; } } void Arm64Jit::Comp_SVQ(MIPSOpcode op) { CONDITIONAL_DISABLE(LSU_VFPU); CheckMemoryBreakpoint(); int imm = (signed short)(op&0xFFFC); int vt = (((op >> 16) & 0x1f)) | ((op&1) << 5); MIPSGPReg rs = _RS; std::vector skips; switch (op >> 26) { case 54: //lv.q { // CC might be set by slow path below, so load regs first. u8 vregs[4]; GetVectorRegs(vregs, V_Quad, vt); fpr.MapRegsAndSpillLockV(vregs, V_Quad, MAP_DIRTY | MAP_NOINIT); if (gpr.IsImm(rs)) { #ifdef MASKED_PSP_MEMORY u32 addr = (imm + gpr.GetImm(rs)) & 0x3FFFFFFF; #else u32 addr = imm + gpr.GetImm(rs); #endif gpr.SetRegImm(SCRATCH1_64, addr + (uintptr_t)Memory::base); } else { gpr.MapReg(rs); if (g_Config.bFastMemory) { SetScratch1ToEffectiveAddress(rs, imm); } else { skips = SetScratch1ForSafeAddress(rs, imm, SCRATCH2); } if (jo.enablePointerify) { MOVK(SCRATCH1_64, ((uint64_t)Memory::base) >> 32, SHIFT_32); } else { ADD(SCRATCH1_64, SCRATCH1_64, MEMBASEREG); } } fp.LDP(32, INDEX_SIGNED, fpr.V(vregs[0]), fpr.V(vregs[1]), SCRATCH1_64, 0); fp.LDP(32, INDEX_SIGNED, fpr.V(vregs[2]), fpr.V(vregs[3]), SCRATCH1_64, 8); for (auto skip : skips) { SetJumpTarget(skip); } } break; case 62: //sv.q { // CC might be set by slow path below, so load regs first. u8 vregs[4]; GetVectorRegs(vregs, V_Quad, vt); fpr.MapRegsAndSpillLockV(vregs, V_Quad, 0); if (gpr.IsImm(rs)) { #ifdef MASKED_PSP_MEMORY u32 addr = (imm + gpr.GetImm(rs)) & 0x3FFFFFFF; #else u32 addr = imm + gpr.GetImm(rs); #endif gpr.SetRegImm(SCRATCH1_64, addr + (uintptr_t)Memory::base); } else { gpr.MapReg(rs); if (g_Config.bFastMemory) { SetScratch1ToEffectiveAddress(rs, imm); } else { skips = SetScratch1ForSafeAddress(rs, imm, SCRATCH2); } if (jo.enablePointerify) { MOVK(SCRATCH1_64, ((uint64_t)Memory::base) >> 32, SHIFT_32); } else { ADD(SCRATCH1_64, SCRATCH1_64, MEMBASEREG); } } fp.STP(32, INDEX_SIGNED, fpr.V(vregs[0]), fpr.V(vregs[1]), SCRATCH1_64, 0); fp.STP(32, INDEX_SIGNED, fpr.V(vregs[2]), fpr.V(vregs[3]), SCRATCH1_64, 8); for (auto skip : skips) { SetJumpTarget(skip); } } break; default: DISABLE; break; } fpr.ReleaseSpillLocksAndDiscardTemps(); } void Arm64Jit::Comp_VVectorInit(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_XFER); // WARNING: No prefix support! if (js.HasUnknownPrefix()) { DISABLE; } switch ((op >> 16) & 0xF) { case 6: // v=zeros; break; //vzero fp.MOVI2F(S0, 0.0f, SCRATCH1); break; case 7: // v=ones; break; //vone fp.MOVI2F(S0, 1.0f, SCRATCH1); break; default: DISABLE; break; } VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); u8 dregs[4]; GetVectorRegsPrefixD(dregs, sz, _VD); fpr.MapRegsAndSpillLockV(dregs, sz, MAP_NOINIT | MAP_DIRTY); for (int i = 0; i < n; ++i) fp.FMOV(fpr.V(dregs[i]), S0); ApplyPrefixD(dregs, sz); fpr.ReleaseSpillLocksAndDiscardTemps(); } void Arm64Jit::Comp_VIdt(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_XFER); if (js.HasUnknownPrefix()) { DISABLE; } int vd = _VD; VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); fp.MOVI2F(S0, 0.0f, SCRATCH1); fp.MOVI2F(S1, 1.0f, SCRATCH1); u8 dregs[4]; GetVectorRegsPrefixD(dregs, sz, _VD); fpr.MapRegsAndSpillLockV(dregs, sz, MAP_NOINIT | MAP_DIRTY); switch (sz) { case V_Pair: fp.FMOV(fpr.V(dregs[0]), (vd & 1) == 0 ? S1 : S0); fp.FMOV(fpr.V(dregs[1]), (vd & 1) == 1 ? S1 : S0); break; case V_Quad: fp.FMOV(fpr.V(dregs[0]), (vd & 3) == 0 ? S1 : S0); fp.FMOV(fpr.V(dregs[1]), (vd & 3) == 1 ? S1 : S0); fp.FMOV(fpr.V(dregs[2]), (vd & 3) == 2 ? S1 : S0); fp.FMOV(fpr.V(dregs[3]), (vd & 3) == 3 ? S1 : S0); break; default: _dbg_assert_msg_( 0, "Trying to interpret instruction that can't be interpreted"); break; } ApplyPrefixD(dregs, sz); fpr.ReleaseSpillLocksAndDiscardTemps(); } void Arm64Jit::Comp_VMatrixInit(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_XFER); if (js.HasUnknownPrefix()) { // Don't think matrix init ops care about prefixes. // DISABLE; } MatrixSize sz = GetMtxSize(op); int n = GetMatrixSide(sz); u8 dregs[16]; GetMatrixRegs(dregs, sz, _VD); switch ((op >> 16) & 0xF) { case 3: // vmidt fp.MOVI2F(S0, 0.0f, SCRATCH1); fp.MOVI2F(S1, 1.0f, SCRATCH1); for (int a = 0; a < n; a++) { for (int b = 0; b < n; b++) { fpr.MapRegV(dregs[a * 4 + b], MAP_DIRTY | MAP_NOINIT); fp.FMOV(fpr.V(dregs[a * 4 + b]), a == b ? S1 : S0); } } break; case 6: // vmzero fp.MOVI2F(S0, 0.0f, SCRATCH1); for (int a = 0; a < n; a++) { for (int b = 0; b < n; b++) { fpr.MapRegV(dregs[a * 4 + b], MAP_DIRTY | MAP_NOINIT); fp.FMOV(fpr.V(dregs[a * 4 + b]), S0); } } break; case 7: // vmone fp.MOVI2F(S1, 1.0f, SCRATCH1); for (int a = 0; a < n; a++) { for (int b = 0; b < n; b++) { fpr.MapRegV(dregs[a * 4 + b], MAP_DIRTY | MAP_NOINIT); fp.FMOV(fpr.V(dregs[a * 4 + b]), S1); } } break; } fpr.ReleaseSpillLocksAndDiscardTemps(); } void Arm64Jit::Comp_VHdp(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_VEC); if (js.HasUnknownPrefix()) { DISABLE; } int vd = _VD; int vs = _VS; int vt = _VT; VectorSize sz = GetVecSize(op); // TODO: Force read one of them into regs? probably not. u8 sregs[4], tregs[4], dregs[1]; GetVectorRegsPrefixS(sregs, sz, vs); GetVectorRegsPrefixT(tregs, sz, vt); GetVectorRegsPrefixD(dregs, V_Single, vd); // TODO: applyprefixST here somehow (shuffle, etc...) fpr.MapRegsAndSpillLockV(sregs, sz, 0); fpr.MapRegsAndSpillLockV(tregs, sz, 0); fp.FMUL(S0, fpr.V(sregs[0]), fpr.V(tregs[0])); int n = GetNumVectorElements(sz); for (int i = 1; i < n; i++) { // sum += s[i]*t[i]; if (i == n - 1) { fp.FADD(S0, S0, fpr.V(tregs[i])); } else { fp.FMADD(S0, fpr.V(sregs[i]), fpr.V(tregs[i]), S0); } } fpr.ReleaseSpillLocksAndDiscardTemps(); fpr.MapRegV(dregs[0], MAP_NOINIT | MAP_DIRTY); fp.FMOV(fpr.V(dregs[0]), S0); ApplyPrefixD(dregs, V_Single); fpr.ReleaseSpillLocksAndDiscardTemps(); } alignas(16) static const float vavg_table[4] = { 1.0f, 1.0f / 2.0f, 1.0f / 3.0f, 1.0f / 4.0f }; void Arm64Jit::Comp_Vhoriz(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_VEC); if (js.HasUnknownPrefix()) { DISABLE; } int vd = _VD; int vs = _VS; int vt = _VT; VectorSize sz = GetVecSize(op); // TODO: Force read one of them into regs? probably not. u8 sregs[4], dregs[1]; GetVectorRegsPrefixS(sregs, sz, vs); GetVectorRegsPrefixD(dregs, V_Single, vd); // TODO: applyprefixST here somehow (shuffle, etc...) fpr.MapRegsAndSpillLockV(sregs, sz, 0); int n = GetNumVectorElements(sz); bool is_vavg = ((op >> 16) & 0x1f) == 7; if (is_vavg) { fp.MOVI2F(S1, vavg_table[n - 1], SCRATCH1); } // Have to start at +0.000 for the correct sign. fp.MOVI2F(S0, 0.0f, SCRATCH1); for (int i = 0; i < n; i++) { // sum += s[i]; fp.FADD(S0, S0, fpr.V(sregs[i])); } fpr.MapRegV(dregs[0], MAP_NOINIT | MAP_DIRTY); if (is_vavg) { fp.FMUL(fpr.V(dregs[0]), S0, S1); } else { fp.FMOV(fpr.V(dregs[0]), S0); } ApplyPrefixD(dregs, V_Single); fpr.ReleaseSpillLocksAndDiscardTemps(); } void Arm64Jit::Comp_VDot(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_VEC); if (js.HasUnknownPrefix()) { DISABLE; } int vd = _VD; int vs = _VS; int vt = _VT; VectorSize sz = GetVecSize(op); // TODO: Force read one of them into regs? probably not. u8 sregs[4], tregs[4], dregs[1]; GetVectorRegsPrefixS(sregs, sz, vs); GetVectorRegsPrefixT(tregs, sz, vt); GetVectorRegsPrefixD(dregs, V_Single, vd); // TODO: applyprefixST here somehow (shuffle, etc...) fpr.MapRegsAndSpillLockV(sregs, sz, 0); fpr.MapRegsAndSpillLockV(tregs, sz, 0); fp.FMUL(S0, fpr.V(sregs[0]), fpr.V(tregs[0])); int n = GetNumVectorElements(sz); for (int i = 1; i < n; i++) { // sum += s[i]*t[i]; fp.FMADD(S0, fpr.V(sregs[i]), fpr.V(tregs[i]), S0); } fpr.ReleaseSpillLocksAndDiscardTemps(); fpr.MapRegV(dregs[0], MAP_NOINIT | MAP_DIRTY); fp.FMOV(fpr.V(dregs[0]), S0); ApplyPrefixD(dregs, V_Single); fpr.ReleaseSpillLocksAndDiscardTemps(); } void Arm64Jit::Comp_VecDo3(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_VEC); if (js.HasUnknownPrefix()) { DISABLE; } int vd = _VD; int vs = _VS; int vt = _VT; VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); u8 sregs[4], tregs[4], dregs[4]; GetVectorRegsPrefixS(sregs, sz, _VS); GetVectorRegsPrefixT(tregs, sz, _VT); GetVectorRegsPrefixD(dregs, sz, _VD); MIPSReg tempregs[4]; for (int i = 0; i < n; i++) { if (!IsOverlapSafe(dregs[i], i, n, sregs, n, tregs)) { tempregs[i] = fpr.GetTempV(); } else { tempregs[i] = dregs[i]; } } // Map first, then work. This will allow us to use VLDMIA more often // (when we add the appropriate map function) and the instruction ordering // will improve. // Note that mapping like this (instead of first all sregs, first all tregs etc) // reduces the amount of continuous registers a lot :( for (int i = 0; i < n; i++) { fpr.MapDirtyInInV(tempregs[i], sregs[i], tregs[i]); fpr.SpillLockV(tempregs[i]); fpr.SpillLockV(sregs[i]); fpr.SpillLockV(tregs[i]); } for (int i = 0; i < n; i++) { switch (op >> 26) { case 24: //VFPU0 switch ((op >> 23) & 7) { case 0: // d[i] = s[i] + t[i]; break; //vadd fp.FADD(fpr.V(tempregs[i]), fpr.V(sregs[i]), fpr.V(tregs[i])); break; case 1: // d[i] = s[i] - t[i]; break; //vsub fp.FSUB(fpr.V(tempregs[i]), fpr.V(sregs[i]), fpr.V(tregs[i])); break; case 7: // d[i] = s[i] / t[i]; break; //vdiv fp.FDIV(fpr.V(tempregs[i]), fpr.V(sregs[i]), fpr.V(tregs[i])); break; default: DISABLE; } break; case 25: //VFPU1 switch ((op >> 23) & 7) { case 0: // d[i] = s[i] * t[i]; break; //vmul fp.FMUL(fpr.V(tempregs[i]), fpr.V(sregs[i]), fpr.V(tregs[i])); break; default: DISABLE; } break; // Fortunately there is FMIN/FMAX on ARM64! case 27: //VFPU3 switch ((op >> 23) & 7) { case 2: // vmin { fp.FCMP(fpr.V(sregs[i]), fpr.V(tregs[i])); FixupBranch unordered = B(CC_VS); fp.FMIN(fpr.V(tempregs[i]), fpr.V(sregs[i]), fpr.V(tregs[i])); FixupBranch skip = B(); SetJumpTarget(unordered); // Move to integer registers, it'll be easier. Or maybe there's a simd way? fp.FMOV(SCRATCH1, fpr.V(sregs[i])); fp.FMOV(SCRATCH2, fpr.V(tregs[i])); // And together to find if both have negative set. TST(SCRATCH1, SCRATCH2); FixupBranch cmpPositive = B(CC_PL); // If both are negative, "min" is the greater of the two, since it has the largest mantissa. CMP(SCRATCH1, SCRATCH2); CSEL(SCRATCH1, SCRATCH1, SCRATCH2, CC_GE); FixupBranch skipPositive = B(); // If either one is positive, we just want the lowest one. SetJumpTarget(cmpPositive); CMP(SCRATCH1, SCRATCH2); CSEL(SCRATCH1, SCRATCH1, SCRATCH2, CC_LE); SetJumpTarget(skipPositive); // Now, whether negative or positive, move to the result. fp.FMOV(fpr.V(tempregs[i]), SCRATCH1); SetJumpTarget(skip); break; } case 3: // vmax { fp.FCMP(fpr.V(sregs[i]), fpr.V(tregs[i])); FixupBranch unordered = B(CC_VS); fp.FMAX(fpr.V(tempregs[i]), fpr.V(sregs[i]), fpr.V(tregs[i])); FixupBranch skip = B(); SetJumpTarget(unordered); // Move to integer registers, it'll be easier. Or maybe there's a simd way? fp.FMOV(SCRATCH1, fpr.V(sregs[i])); fp.FMOV(SCRATCH2, fpr.V(tregs[i])); // And together to find if both have negative set. TST(SCRATCH1, SCRATCH2); FixupBranch cmpPositive = B(CC_PL); // If both are negative, "max" is the least of the two, since it has the lowest mantissa. CMP(SCRATCH1, SCRATCH2); CSEL(SCRATCH1, SCRATCH1, SCRATCH2, CC_LE); FixupBranch skipPositive = B(); // If either one is positive, we just want the highest one. SetJumpTarget(cmpPositive); CMP(SCRATCH1, SCRATCH2); CSEL(SCRATCH1, SCRATCH1, SCRATCH2, CC_GE); SetJumpTarget(skipPositive); // Now, whether negative or positive, move to the result. fp.FMOV(fpr.V(tempregs[i]), SCRATCH1); SetJumpTarget(skip); break; } case 6: // vsge DISABLE; // pending testing break; case 7: // vslt DISABLE; // pending testing break; } break; default: DISABLE; } } for (int i = 0; i < n; i++) { if (dregs[i] != tempregs[i]) { fpr.MapDirtyInV(dregs[i], tempregs[i]); fp.FMOV(fpr.V(dregs[i]), fpr.V(tempregs[i])); } } ApplyPrefixD(dregs, sz); fpr.ReleaseSpillLocksAndDiscardTemps(); } void Arm64Jit::Comp_VV2Op(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_VEC); if (js.HasUnknownPrefix()) { DISABLE; } // Pre-processing: Eliminate silly no-op VMOVs, common in Wipeout Pure if (((op >> 16) & 0x1f) == 0 && _VS == _VD && js.HasNoPrefix()) { return; } // Catch the disabled operations immediately so we don't map registers unnecessarily later. // Move these down to the big switch below as they are implemented. switch ((op >> 16) & 0x1f) { case 18: // d[i] = sinf((float)M_PI_2 * s[i]); break; //vsin DISABLE; break; case 19: // d[i] = cosf((float)M_PI_2 * s[i]); break; //vcos DISABLE; break; case 20: // d[i] = powf(2.0f, s[i]); break; //vexp2 DISABLE; break; case 21: // d[i] = logf(s[i])/log(2.0f); break; //vlog2 DISABLE; break; case 26: // d[i] = -sinf((float)M_PI_2 * s[i]); break; // vnsin DISABLE; break; case 28: // d[i] = 1.0f / expf(s[i] * (float)M_LOG2E); break; // vrexp2 DISABLE; break; default: ; } VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); u8 sregs[4], dregs[4]; GetVectorRegsPrefixS(sregs, sz, _VS); GetVectorRegsPrefixD(dregs, sz, _VD); MIPSReg tempregs[4]; for (int i = 0; i < n; ++i) { if (!IsOverlapSafe(dregs[i], i, n, sregs)) { tempregs[i] = fpr.GetTempV(); } else { tempregs[i] = dregs[i]; } } // Pre map the registers to get better instruction ordering. // Note that mapping like this (instead of first all sregs, first all tempregs etc) // reduces the amount of continuous registers a lot :( for (int i = 0; i < n; i++) { fpr.MapDirtyInV(tempregs[i], sregs[i]); fpr.SpillLockV(tempregs[i]); fpr.SpillLockV(sregs[i]); } // Warning: sregs[i] and tempxregs[i] may be the same reg. // Helps for vmov, hurts for vrcp, etc. for (int i = 0; i < n; i++) { switch ((op >> 16) & 0x1f) { case 0: // d[i] = s[i]; break; //vmov // Probably for swizzle. fp.FMOV(fpr.V(tempregs[i]), fpr.V(sregs[i])); break; case 1: // d[i] = fabsf(s[i]); break; //vabs fp.FABS(fpr.V(tempregs[i]), fpr.V(sregs[i])); break; case 2: // d[i] = -s[i]; break; //vneg fp.FNEG(fpr.V(tempregs[i]), fpr.V(sregs[i])); break; case 4: // if (s[i] < 0) d[i] = 0; else {if(s[i] > 1.0f) d[i] = 1.0f; else d[i] = s[i];} break; // vsat0 if (i == 0) { fp.MOVI2F(S0, 0.0f, SCRATCH1); fp.MOVI2F(S1, 1.0f, SCRATCH1); } fp.FCMP(fpr.V(sregs[i]), S0); fp.FMOV(fpr.V(tempregs[i]), fpr.V(sregs[i])); fp.FMAX(fpr.V(tempregs[i]), fpr.V(tempregs[i]), S0); fp.FMIN(fpr.V(tempregs[i]), fpr.V(tempregs[i]), S1); break; case 5: // if (s[i] < -1.0f) d[i] = -1.0f; else {if(s[i] > 1.0f) d[i] = 1.0f; else d[i] = s[i];} break; // vsat1 if (i == 0) { fp.MOVI2F(S0, -1.0f, SCRATCH1); fp.MOVI2F(S1, 1.0f, SCRATCH1); } fp.FCMP(fpr.V(sregs[i]), S0); fp.FMOV(fpr.V(tempregs[i]), fpr.V(sregs[i])); fp.FMAX(fpr.V(tempregs[i]), fpr.V(tempregs[i]), S0); fp.FMIN(fpr.V(tempregs[i]), fpr.V(tempregs[i]), S1); break; case 16: // d[i] = 1.0f / s[i]; break; //vrcp if (i == 0) { fp.MOVI2F(S0, 1.0f, SCRATCH1); } fp.FDIV(fpr.V(tempregs[i]), S0, fpr.V(sregs[i])); break; case 17: // d[i] = 1.0f / sqrtf(s[i]); break; //vrsq if (i == 0) { fp.MOVI2F(S0, 1.0f, SCRATCH1); } fp.FSQRT(S1, fpr.V(sregs[i])); fp.FDIV(fpr.V(tempregs[i]), S0, S1); break; case 22: // d[i] = sqrtf(s[i]); break; //vsqrt fp.FSQRT(fpr.V(tempregs[i]), fpr.V(sregs[i])); fp.FABS(fpr.V(tempregs[i]), fpr.V(tempregs[i])); break; case 23: // d[i] = asinf(s[i] * (float)M_2_PI); break; //vasin DISABLE; break; case 24: // d[i] = -1.0f / s[i]; break; // vnrcp if (i == 0) { fp.MOVI2F(S0, -1.0f, SCRATCH1); } fp.FDIV(fpr.V(tempregs[i]), S0, fpr.V(sregs[i])); break; default: ERROR_LOG(JIT, "case missing in vfpu vv2op"); DISABLE; break; } } for (int i = 0; i < n; ++i) { if (dregs[i] != tempregs[i]) { fpr.MapDirtyInV(dregs[i], tempregs[i]); fp.FMOV(fpr.V(dregs[i]), fpr.V(tempregs[i])); } } ApplyPrefixD(dregs, sz); fpr.ReleaseSpillLocksAndDiscardTemps(); } void Arm64Jit::Comp_Vi2f(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_VEC); if (js.HasUnknownPrefix()) { DISABLE; } VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); int imm = (op >> 16) & 0x1f; const float mult = 1.0f / (float)(1UL << imm); u8 sregs[4], dregs[4]; GetVectorRegsPrefixS(sregs, sz, _VS); GetVectorRegsPrefixD(dregs, sz, _VD); MIPSReg tempregs[4]; for (int i = 0; i < n; ++i) { if (!IsOverlapSafe(dregs[i], i, n, sregs)) { tempregs[i] = fpr.GetTempV(); } else { tempregs[i] = dregs[i]; } } if (mult != 1.0f) fp.MOVI2F(S0, mult, SCRATCH1); // TODO: Use the SCVTF with builtin scaling where possible. for (int i = 0; i < n; i++) { fpr.MapDirtyInV(tempregs[i], sregs[i]); fp.SCVTF(fpr.V(tempregs[i]), fpr.V(sregs[i])); if (mult != 1.0f) fp.FMUL(fpr.V(tempregs[i]), fpr.V(tempregs[i]), S0); } for (int i = 0; i < n; ++i) { if (dregs[i] != tempregs[i]) { fpr.MapDirtyInV(dregs[i], tempregs[i]); fp.FMOV(fpr.V(dregs[i]), fpr.V(tempregs[i])); } } ApplyPrefixD(dregs, sz); fpr.ReleaseSpillLocksAndDiscardTemps(); } void Arm64Jit::Comp_Vh2f(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_VEC); if (js.HasUnknownPrefix()) { DISABLE; } u8 sregs[4], dregs[4]; VectorSize sz = GetVecSize(op); VectorSize outSz; switch (sz) { case V_Single: outSz = V_Pair; break; case V_Pair: outSz = V_Quad; break; default: DISABLE; } int n = GetNumVectorElements(sz); int nOut = n * 2; GetVectorRegsPrefixS(sregs, sz, _VS); GetVectorRegsPrefixD(dregs, outSz, _VD); // Take the single registers and combine them to a D register. for (int i = 0; i < n; i++) { fpr.MapRegV(sregs[i], sz); fp.INS(32, Q0, i, fpr.V(sregs[i]), 0); } // Convert four 16-bit floats in D0 to four 32-bit floats in Q0 (even if we only have two...) fp.FCVTL(32, Q0, D0); // Split apart again. for (int i = 0; i < nOut; i++) { fpr.MapRegV(dregs[i], MAP_DIRTY | MAP_NOINIT); fp.INS(32, fpr.V(dregs[i]), 0, Q0, i); } ApplyPrefixD(dregs, sz); fpr.ReleaseSpillLocksAndDiscardTemps(); } void Arm64Jit::Comp_Vf2i(MIPSOpcode op) { DISABLE; } void Arm64Jit::Comp_Mftv(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_XFER); int imm = op & 0xFF; MIPSGPReg rt = _RT; switch ((op >> 21) & 0x1f) { case 3: //mfv / mfvc // rt = 0, imm = 255 appears to be used as a CPU interlock by some games. if (rt != 0) { if (imm < 128) { //R(rt) = VI(imm); if (!fpr.IsInRAMV(imm)) { fpr.MapRegV(imm, 0); gpr.MapReg(rt, MAP_NOINIT | MAP_DIRTY); fp.FMOV(gpr.R(rt), fpr.V(imm)); } else { gpr.MapReg(rt, MAP_NOINIT | MAP_DIRTY); LDR(INDEX_UNSIGNED, gpr.R(rt), CTXREG, fpr.GetMipsRegOffsetV(imm)); } } else if (imm < 128 + VFPU_CTRL_MAX) { //mtvc if (imm - 128 == VFPU_CTRL_CC) { if (gpr.IsImm(MIPS_REG_VFPUCC)) { gpr.SetImm(rt, gpr.GetImm(MIPS_REG_VFPUCC)); } else { gpr.MapDirtyIn(rt, MIPS_REG_VFPUCC); MOV(gpr.R(rt), gpr.R(MIPS_REG_VFPUCC)); } } else { // In case we have a saved prefix. FlushPrefixV(); gpr.MapReg(rt, MAP_NOINIT | MAP_DIRTY); LDR(INDEX_UNSIGNED, gpr.R(rt), CTXREG, offsetof(MIPSState, vfpuCtrl) + 4 * (imm - 128)); } } else { //ERROR - maybe need to make this value too an "interlock" value? ERROR_LOG(CPU, "mfv - invalid register %i", imm); } } break; case 7: // mtv if (imm < 128) { if (rt == MIPS_REG_ZERO) { fpr.MapRegV(imm, MAP_DIRTY | MAP_NOINIT); fp.MOVI2F(fpr.V(imm), 0.0f, SCRATCH1); } else if (!gpr.IsInRAM(rt)) { gpr.MapReg(rt); fpr.MapRegV(imm, MAP_DIRTY | MAP_NOINIT); fp.FMOV(fpr.V(imm), gpr.R(rt)); } else { fpr.MapRegV(imm, MAP_DIRTY | MAP_NOINIT); fp.LDR(32, INDEX_UNSIGNED, fpr.V(imm), CTXREG, gpr.GetMipsRegOffset(rt)); } } else if (imm < 128 + VFPU_CTRL_MAX) { //mtvc //currentMIPS->vfpuCtrl[imm - 128] = R(rt); if (imm - 128 == VFPU_CTRL_CC) { if (gpr.IsImm(rt)) { gpr.SetImm(MIPS_REG_VFPUCC, gpr.GetImm(rt)); } else { gpr.MapDirtyIn(MIPS_REG_VFPUCC, rt); MOV(gpr.R(MIPS_REG_VFPUCC), gpr.R(rt)); } } else { gpr.MapReg(rt); STR(INDEX_UNSIGNED, gpr.R(rt), CTXREG, offsetof(MIPSState, vfpuCtrl) + 4 * (imm - 128)); } // TODO: Optimization if rt is Imm? // Set these BEFORE disable! if (imm - 128 == VFPU_CTRL_SPREFIX) { js.prefixSFlag = JitState::PREFIX_UNKNOWN; } else if (imm - 128 == VFPU_CTRL_TPREFIX) { js.prefixTFlag = JitState::PREFIX_UNKNOWN; } else if (imm - 128 == VFPU_CTRL_DPREFIX) { js.prefixDFlag = JitState::PREFIX_UNKNOWN; } } else { //ERROR _dbg_assert_msg_( 0, "mtv - invalid register"); } break; default: DISABLE; } fpr.ReleaseSpillLocksAndDiscardTemps(); } void Arm64Jit::Comp_Vmfvc(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_XFER); int vd = _VD; int imm = (op >> 8) & 0x7F; if (imm < VFPU_CTRL_MAX) { fpr.MapRegV(vd); if (imm == VFPU_CTRL_CC) { gpr.MapReg(MIPS_REG_VFPUCC, 0); fp.FMOV(fpr.V(vd), gpr.R(MIPS_REG_VFPUCC)); } else { ADDI2R(SCRATCH1_64, CTXREG, offsetof(MIPSState, vfpuCtrl[0]) + imm * 4, SCRATCH2); fp.LDR(32, INDEX_UNSIGNED, fpr.V(vd), SCRATCH1_64, 0); } fpr.ReleaseSpillLocksAndDiscardTemps(); } else { fpr.MapRegV(vd); fp.MOVI2F(fpr.V(vd), 0.0f, SCRATCH1); } } void Arm64Jit::Comp_Vmtvc(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_XFER); int vs = _VS; int imm = op & 0x7F; if (imm < VFPU_CTRL_MAX) { fpr.MapRegV(vs); if (imm == VFPU_CTRL_CC) { gpr.MapReg(MIPS_REG_VFPUCC, MAP_DIRTY | MAP_NOINIT); fp.FMOV(gpr.R(MIPS_REG_VFPUCC), fpr.V(vs)); } else { ADDI2R(SCRATCH1_64, CTXREG, offsetof(MIPSState, vfpuCtrl[0]) + imm * 4, SCRATCH2); fp.STR(32, INDEX_UNSIGNED, fpr.V(vs), SCRATCH1_64, 0); } fpr.ReleaseSpillLocksAndDiscardTemps(); if (imm == VFPU_CTRL_SPREFIX) { js.prefixSFlag = JitState::PREFIX_UNKNOWN; } else if (imm == VFPU_CTRL_TPREFIX) { js.prefixTFlag = JitState::PREFIX_UNKNOWN; } else if (imm == VFPU_CTRL_DPREFIX) { js.prefixDFlag = JitState::PREFIX_UNKNOWN; } } } void Arm64Jit::Comp_Vmmov(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_MTX_VMMOV); if (!js.HasNoPrefix()) { DISABLE; } if (_VS == _VD) { // A lot of these no-op matrix moves in Wipeout... Just drop the instruction entirely. return; } MatrixSize sz = GetMtxSize(op); int n = GetMatrixSide(sz); u8 sregs[16], dregs[16]; GetMatrixRegs(sregs, sz, _VS); GetMatrixRegs(dregs, sz, _VD); switch (GetMatrixOverlap(_VS, _VD, sz)) { case OVERLAP_EQUAL: // In-place transpose DISABLE; case OVERLAP_PARTIAL: DISABLE; case OVERLAP_NONE: default: break; } for (int a = 0; a < n; a++) { for (int b = 0; b < n; b++) { fpr.MapDirtyInV(dregs[a * 4 + b], sregs[a * 4 + b]); fp.FMOV(fpr.V(dregs[a * 4 + b]), fpr.V(sregs[a * 4 + b])); } } fpr.ReleaseSpillLocksAndDiscardTemps(); } void Arm64Jit::Comp_VScl(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_VEC); if (js.HasUnknownPrefix()) { DISABLE; } VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); u8 sregs[4], dregs[4], treg; GetVectorRegsPrefixS(sregs, sz, _VS); // TODO: Prefixes seem strange... GetVectorRegsPrefixT(&treg, V_Single, _VT); GetVectorRegsPrefixD(dregs, sz, _VD); // Move to S0 early, so we don't have to worry about overlap with scale. fpr.LoadToRegV(S0, treg); // For prefixes to work, we just have to ensure that none of the output registers spill // and that there's no overlap. MIPSReg tempregs[4]; for (int i = 0; i < n; ++i) { if (!IsOverlapSafe(dregs[i], i, n, sregs)) { // Need to use temp regs tempregs[i] = fpr.GetTempV(); } else { tempregs[i] = dregs[i]; } } // The meat of the function! for (int i = 0; i < n; i++) { fpr.MapDirtyInV(tempregs[i], sregs[i]); fp.FMUL(fpr.V(tempregs[i]), fpr.V(sregs[i]), S0); } for (int i = 0; i < n; i++) { // All must be mapped for prefixes to work. if (dregs[i] != tempregs[i]) { fpr.MapDirtyInV(dregs[i], tempregs[i]); fp.FMOV(fpr.V(dregs[i]), fpr.V(tempregs[i])); } } ApplyPrefixD(dregs, sz); fpr.ReleaseSpillLocksAndDiscardTemps(); } void Arm64Jit::Comp_Vmmul(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_MTX_VMMUL); if (!js.HasNoPrefix()) { DISABLE; } if (PSP_CoreParameter().compat.flags().MoreAccurateVMMUL) { // Fall back to interpreter, which has the accurate implementation. // Later we might do something more optimized here. DISABLE; } MatrixSize sz = GetMtxSize(op); int n = GetMatrixSide(sz); u8 sregs[16], tregs[16], dregs[16]; GetMatrixRegs(sregs, sz, _VS); GetMatrixRegs(tregs, sz, _VT); GetMatrixRegs(dregs, sz, _VD); MatrixOverlapType soverlap = GetMatrixOverlap(_VS, _VD, sz); MatrixOverlapType toverlap = GetMatrixOverlap(_VT, _VD, sz); if (soverlap || toverlap) { DISABLE; } else { for (int a = 0; a < n; a++) { for (int b = 0; b < n; b++) { fpr.MapDirtyInInV(dregs[a * 4 + b], sregs[b * 4], tregs[a * 4], true); fp.FMUL(fpr.V(dregs[a * 4 + b]), fpr.V(sregs[b * 4]), fpr.V(tregs[a * 4])); for (int c = 1; c < n; c++) { fpr.MapDirtyInInV(dregs[a * 4 + b], sregs[b * 4 + c], tregs[a * 4 + c], false); fp.FMUL(S0, fpr.V(sregs[b * 4 + c]), fpr.V(tregs[a * 4 + c])); fp.FADD(fpr.V(dregs[a * 4 + b]), fpr.V(dregs[a * 4 + b]), S0); } } } fpr.ReleaseSpillLocksAndDiscardTemps(); } } void Arm64Jit::Comp_Vmscl(MIPSOpcode op) { DISABLE; } void Arm64Jit::Comp_Vtfm(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_MTX_VTFM); if (!js.HasNoPrefix()) { DISABLE; } VectorSize sz = GetVecSize(op); MatrixSize msz = GetMtxSize(op); int n = GetNumVectorElements(sz); int ins = (op >> 23) & 7; bool homogenous = false; if (n == ins) { n++; sz = (VectorSize)((int)(sz)+1); msz = (MatrixSize)((int)(msz)+1); homogenous = true; } // Otherwise, n should already be ins + 1. else if (n != ins + 1) { DISABLE; } u8 sregs[16], dregs[4], tregs[4]; GetMatrixRegs(sregs, msz, _VS); GetVectorRegs(tregs, sz, _VT); GetVectorRegs(dregs, sz, _VD); MatrixOverlapType soverlap = GetMatrixOverlap(_VS, _VD, msz); MatrixOverlapType toverlap = GetMatrixOverlap(_VT, _VD, msz); int tempregs[4]; for (int i = 0; i < n; i++) { if (soverlap || toverlap) { tempregs[i] = fpr.GetTempV(); } else { tempregs[i] = dregs[i]; } fpr.SpillLockV(tempregs[i]); } for (int i = 0; i < n; i++) { fpr.MapRegV(tempregs[i], MAP_NOINIT); fpr.MapInInV(sregs[i * 4], tregs[0]); fp.FMUL(fpr.V(tempregs[i]), fpr.V(sregs[i * 4]), fpr.V(tregs[0])); for (int k = 1; k < n; k++) { if (!homogenous || k != n - 1) { fpr.MapInInV(sregs[i * 4 + k], tregs[k]); fp.FMADD(fpr.V(tempregs[i]), fpr.V(sregs[i * 4 + k]), fpr.V(tregs[k]), fpr.V(tempregs[i])); } else { fpr.MapRegV(sregs[i * 4 + k]); fp.FADD(fpr.V(tempregs[i]), fpr.V(tempregs[i]), fpr.V(sregs[i * 4 + k])); } } } for (int i = 0; i < n; i++) { u8 temp = tempregs[i]; if (temp != dregs[i]) { fpr.MapDirtyInV(dregs[i], temp, true); fp.FMOV(fpr.V(dregs[i]), fpr.V(temp)); } } fpr.ReleaseSpillLocksAndDiscardTemps(); } void Arm64Jit::Comp_VCrs(MIPSOpcode op) { DISABLE; } void Arm64Jit::Comp_VDet(MIPSOpcode op) { DISABLE; } void Arm64Jit::Comp_Vi2x(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_VEC); if (js.HasUnknownPrefix()) DISABLE; int bits = ((op >> 16) & 2) == 0 ? 8 : 16; // vi2uc/vi2c (0/1), vi2us/vi2s (2/3) bool unsignedOp = ((op >> 16) & 1) == 0; // vi2uc (0), vi2us (2) // These instructions pack pairs or quads of integers into 32 bits. // The unsigned (u) versions skip the sign bit when packing. VectorSize sz = GetVecSize(op); VectorSize outsize; if (bits == 8) { outsize = V_Single; if (sz != V_Quad) { DISABLE; } } else { switch (sz) { case V_Pair: outsize = V_Single; break; case V_Quad: outsize = V_Pair; break; default: DISABLE; } } u8 sregs[4], dregs[4]; GetVectorRegsPrefixS(sregs, sz, _VS); GetVectorRegsPrefixD(dregs, outsize, _VD); int n = GetNumVectorElements(sz); int nOut = GetNumVectorElements(outsize); // Take the single registers and combine them to a D or Q register. for (int i = 0; i < n; i++) { fpr.MapRegV(sregs[i], sz); fp.INS(32, Q0, i, fpr.V(sregs[i]), 0); } if (unsignedOp) { // What's the best way to zero a Q reg? fp.EOR(Q1, Q1, Q1); fp.SMAX(32, Q0, Q0, Q1); } // At this point, we simply need to collect the high bits of each 32-bit lane into one register. if (bits == 8) { // Really want to do a SHRN(..., 23/24) but that can't be encoded. So we synthesize it. fp.USHR(32, Q0, Q0, 16); fp.SHRN(16, D0, Q0, unsignedOp ? 7 : 8); fp.XTN(8, D0, Q0); } else { fp.SHRN(16, D0, Q0, unsignedOp ? 15 : 16); } // Split apart again. for (int i = 0; i < nOut; i++) { fpr.MapRegV(dregs[i], MAP_DIRTY | MAP_NOINIT); fp.INS(32, fpr.V(dregs[i]), 0, Q0, i); } ApplyPrefixD(dregs, outsize); fpr.ReleaseSpillLocksAndDiscardTemps(); } void Arm64Jit::Comp_Vx2i(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_VEC); if (js.HasUnknownPrefix()) DISABLE; int bits = ((op >> 16) & 2) == 0 ? 8 : 16; // vuc2i/vc2i (0/1), vus2i/vs2i (2/3) bool unsignedOp = ((op >> 16) & 1) == 0; // vuc2i (0), vus2i (2) // vs2i or vus2i unpack pairs of 16-bit integers into 32-bit integers, with the values // at the top. vus2i shifts it an extra bit right afterward. // vc2i and vuc2i unpack quads of 8-bit integers into 32-bit integers, with the values // at the top too. vuc2i is a bit special (see below.) // Let's do this similarly as h2f - we do a solution that works for both singles and pairs // then use it for both. VectorSize sz = GetVecSize(op); VectorSize outsize; if (bits == 8) { outsize = V_Quad; } else { switch (sz) { case V_Single: outsize = V_Pair; break; case V_Pair: outsize = V_Quad; break; default: DISABLE; } } u8 sregs[4], dregs[4]; GetVectorRegsPrefixS(sregs, sz, _VS); GetVectorRegsPrefixD(dregs, outsize, _VD); fpr.MapRegsAndSpillLockV(sregs, sz, 0); int n = 1; if (sz == V_Single) { n = 1; } else if (sz == V_Pair) { n = 2; } else if (bits == 8) { n = 1; } // Take the single registers and combine them to a D or Q register. for (int i = 0; i < n; i++) { fpr.MapRegV(sregs[i], sz); fp.INS(32, Q0, i, fpr.V(sregs[i]), 0); } if (bits == 16) { // Simply expand, to upper bits. // Hm, can't find a USHLL equivalent that works with shift == size? fp.UXTL(16, Q0, D0); fp.SHL(32, Q0, Q0, 16); } else if (bits == 8) { fp.UXTL(8, Q0, D0); fp.UXTL(16, Q0, D0); fp.SHL(32, Q0, D0, 24); if (unsignedOp) { // vuc2i is a bit special. It spreads out the bits like this: // s[0] = 0xDDCCBBAA -> d[0] = (0xAAAAAAAA >> 1), d[1] = (0xBBBBBBBB >> 1), etc. fp.USHR(32, Q1, Q0, 8); fp.ORR(Q0, Q0, Q1); fp.USHR(32, Q1, Q0, 16); fp.ORR(Q0, Q0, Q1); } } // At this point we have the regs in the 4 lanes. // In the "u" mode, we need to shift it out of the sign bit. if (unsignedOp) { Arm64Gen::ARM64Reg reg = (outsize == V_Quad) ? Q0 : D0; fp.USHR(32, reg, reg, 1); } fpr.MapRegsAndSpillLockV(dregs, outsize, MAP_NOINIT); int nOut = 2; if (outsize == V_Quad) nOut = 4; // Split apart again. for (int i = 0; i < nOut; i++) { fpr.MapRegV(dregs[i], MAP_DIRTY | MAP_NOINIT); fp.INS(32, fpr.V(dregs[i]), 0, Q0, i); } ApplyPrefixD(dregs, outsize); fpr.ReleaseSpillLocksAndDiscardTemps(); } void Arm64Jit::Comp_VCrossQuat(MIPSOpcode op) { // This op does not support prefixes anyway. CONDITIONAL_DISABLE(VFPU_VEC); if (js.HasUnknownPrefix()) DISABLE; VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); u8 sregs[4], tregs[4], dregs[4]; GetVectorRegs(sregs, sz, _VS); GetVectorRegs(tregs, sz, _VT); GetVectorRegs(dregs, sz, _VD); // Map everything into registers. fpr.MapRegsAndSpillLockV(sregs, sz, 0); fpr.MapRegsAndSpillLockV(tregs, sz, 0); if (sz == V_Triple) { MIPSReg temp3 = fpr.GetTempV(); fpr.MapRegV(temp3, MAP_DIRTY | MAP_NOINIT); // Cross product vcrsp.t // Compute X fp.FMUL(S0, fpr.V(sregs[1]), fpr.V(tregs[2])); fp.FMSUB(S0, fpr.V(sregs[2]), fpr.V(tregs[1]), S0); // Compute Y fp.FMUL(S1, fpr.V(sregs[2]), fpr.V(tregs[0])); fp.FMSUB(S1, fpr.V(sregs[0]), fpr.V(tregs[2]), S1); // Compute Z fp.FMUL(fpr.V(temp3), fpr.V(sregs[0]), fpr.V(tregs[1])); fp.FMSUB(fpr.V(temp3), fpr.V(sregs[1]), fpr.V(tregs[0]), fpr.V(temp3)); fpr.MapRegsAndSpillLockV(dregs, sz, MAP_NOINIT); fp.FMOV(fpr.V(dregs[0]), S0); fp.FMOV(fpr.V(dregs[1]), S1); fp.FMOV(fpr.V(dregs[2]), fpr.V(temp3)); } else if (sz == V_Quad) { MIPSReg temp3 = fpr.GetTempV(); MIPSReg temp4 = fpr.GetTempV(); fpr.MapRegV(temp3, MAP_DIRTY | MAP_NOINIT); fpr.MapRegV(temp4, MAP_DIRTY | MAP_NOINIT); // Quaternion product vqmul.q untested // d[0] = s[0] * t[3] + s[1] * t[2] - s[2] * t[1] + s[3] * t[0]; fp.FMUL(S0, fpr.V(sregs[0]), fpr.V(tregs[3])); fp.FMADD(S0, fpr.V(sregs[1]), fpr.V(tregs[2]), S0); fp.FMSUB(S0, fpr.V(sregs[2]), fpr.V(tregs[1]), S0); fp.FMADD(S0, fpr.V(sregs[3]), fpr.V(tregs[0]), S0); //d[1] = -s[0] * t[2] + s[1] * t[3] + s[2] * t[0] + s[3] * t[1]; fp.FNMUL(S1, fpr.V(sregs[0]), fpr.V(tregs[2])); fp.FMADD(S1, fpr.V(sregs[1]), fpr.V(tregs[3]), S1); fp.FMADD(S1, fpr.V(sregs[2]), fpr.V(tregs[0]), S1); fp.FMADD(S1, fpr.V(sregs[3]), fpr.V(tregs[1]), S1); //d[2] = s[0] * t[1] - s[1] * t[0] + s[2] * t[3] + s[3] * t[2]; fp.FMUL(fpr.V(temp3), fpr.V(sregs[0]), fpr.V(tregs[1])); fp.FMSUB(fpr.V(temp3), fpr.V(sregs[1]), fpr.V(tregs[0]), fpr.V(temp3)); fp.FMADD(fpr.V(temp3), fpr.V(sregs[2]), fpr.V(tregs[3]), fpr.V(temp3)); fp.FMADD(fpr.V(temp3), fpr.V(sregs[3]), fpr.V(tregs[2]), fpr.V(temp3)); //d[3] = -s[0] * t[0] - s[1] * t[1] - s[2] * t[2] + s[3] * t[3]; fp.FNMUL(fpr.V(temp4), fpr.V(sregs[0]), fpr.V(tregs[0])); fp.FMSUB(fpr.V(temp4), fpr.V(sregs[1]), fpr.V(tregs[1]), fpr.V(temp4)); fp.FMSUB(fpr.V(temp4), fpr.V(sregs[2]), fpr.V(tregs[2]), fpr.V(temp4)); fp.FMADD(fpr.V(temp4), fpr.V(sregs[3]), fpr.V(tregs[3]), fpr.V(temp4)); fpr.MapRegsAndSpillLockV(dregs, sz, MAP_NOINIT); fp.FMOV(fpr.V(dregs[0]), S0); fp.FMOV(fpr.V(dregs[1]), S1); fp.FMOV(fpr.V(dregs[2]), fpr.V(temp3)); fp.FMOV(fpr.V(dregs[3]), fpr.V(temp4)); } fpr.ReleaseSpillLocksAndDiscardTemps(); } void Arm64Jit::Comp_Vcmp(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_COMP); if (js.HasUnknownPrefix()) DISABLE; VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); VCondition cond = (VCondition)(op & 0xF); u8 sregs[4], tregs[4]; GetVectorRegsPrefixS(sregs, sz, _VS); GetVectorRegsPrefixT(tregs, sz, _VT); // Some, we just fall back to the interpreter. // ES is just really equivalent to (value & 0x7F800000) == 0x7F800000. switch (cond) { case VC_EI: // c = my_isinf(s[i]); break; case VC_NI: // c = !my_isinf(s[i]); break; DISABLE; case VC_ES: // c = my_isnan(s[i]) || my_isinf(s[i]); break; // Tekken Dark Resurrection case VC_NS: // c = !my_isnan(s[i]) && !my_isinf(s[i]); break; case VC_EN: // c = my_isnan(s[i]); break; case VC_NN: // c = !my_isnan(s[i]); break; if (_VS != _VT) DISABLE; break; case VC_EZ: case VC_NZ: break; default: ; } // First, let's get the trivial ones. int affected_bits = (1 << 4) | (1 << 5); // 4 and 5 MOVI2R(SCRATCH1, 0); for (int i = 0; i < n; ++i) { // Let's only handle the easy ones, and fall back on the interpreter for the rest. CCFlags flag = CC_AL; switch (cond) { case VC_FL: // c = 0; break; case VC_TR: // c = 1 if (i == 0) { if (n == 1) { MOVI2R(SCRATCH1, 0x31); } else { MOVI2R(SCRATCH1, 1ULL << i); } } else { ORRI2R(SCRATCH1, SCRATCH1, 1ULL << i); } break; case VC_ES: // c = my_isnan(s[i]) || my_isinf(s[i]); break; // Tekken Dark Resurrection case VC_NS: // c = !(my_isnan(s[i]) || my_isinf(s[i])); break; // For these, we use the integer ALU as there is no support on ARM for testing for INF. // Testing for nan or inf is the same as testing for &= 0x7F800000 == 0x7F800000. // We need an extra temporary register so we store away SCRATCH1. STR(INDEX_UNSIGNED, SCRATCH1, CTXREG, offsetof(MIPSState, temp)); fpr.MapRegV(sregs[i], 0); MOVI2R(SCRATCH1, 0x7F800000); fp.FMOV(SCRATCH2, fpr.V(sregs[i])); AND(SCRATCH2, SCRATCH2, SCRATCH1); CMP(SCRATCH2, SCRATCH1); // (SCRATCH2 & 0x7F800000) == 0x7F800000 flag = cond == VC_ES ? CC_EQ : CC_NEQ; LDR(INDEX_UNSIGNED, SCRATCH1, CTXREG, offsetof(MIPSState, temp)); break; case VC_EN: // c = my_isnan(s[i]); break; // Tekken 6 // Should we involve T? Where I found this used, it compared a register with itself so should be fine. fpr.MapInInV(sregs[i], tregs[i]); fp.FCMP(fpr.V(sregs[i]), fpr.V(tregs[i])); flag = CC_VS; // overflow = unordered : http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204j/Chdhcfbc.html break; case VC_NN: // c = !my_isnan(s[i]); break; // Should we involve T? Where I found this used, it compared a register with itself so should be fine. fpr.MapInInV(sregs[i], tregs[i]); fp.FCMP(fpr.V(sregs[i]), fpr.V(tregs[i])); flag = CC_VC; // !overflow = !unordered : http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204j/Chdhcfbc.html break; case VC_EQ: // c = s[i] == t[i] fpr.MapInInV(sregs[i], tregs[i]); fp.FCMP(fpr.V(sregs[i]), fpr.V(tregs[i])); flag = CC_EQ; break; case VC_LT: // c = s[i] < t[i] fpr.MapInInV(sregs[i], tregs[i]); fp.FCMP(fpr.V(sregs[i]), fpr.V(tregs[i])); flag = CC_LO; break; case VC_LE: // c = s[i] <= t[i]; fpr.MapInInV(sregs[i], tregs[i]); fp.FCMP(fpr.V(sregs[i]), fpr.V(tregs[i])); flag = CC_LS; break; case VC_NE: // c = s[i] != t[i] fpr.MapInInV(sregs[i], tregs[i]); fp.FCMP(fpr.V(sregs[i]), fpr.V(tregs[i])); flag = CC_NEQ; break; case VC_GE: // c = s[i] >= t[i] fpr.MapInInV(sregs[i], tregs[i]); fp.FCMP(fpr.V(sregs[i]), fpr.V(tregs[i])); flag = CC_GE; break; case VC_GT: // c = s[i] > t[i] fpr.MapInInV(sregs[i], tregs[i]); fp.FCMP(fpr.V(sregs[i]), fpr.V(tregs[i])); flag = CC_GT; break; case VC_EZ: // c = s[i] == 0.0f || s[i] == -0.0f fpr.MapRegV(sregs[i]); fp.FCMP(fpr.V(sregs[i])); // vcmp(sregs[i], #0.0) flag = CC_EQ; break; case VC_NZ: // c = s[i] != 0 fpr.MapRegV(sregs[i]); fp.FCMP(fpr.V(sregs[i])); // vcmp(sregs[i], #0.0) flag = CC_NEQ; break; default: DISABLE; } if (flag != CC_AL) { FixupBranch b = B(InvertCond(flag)); if (i == 0) { if (n == 1) { MOVI2R(SCRATCH1, 0x31); } else { MOVI2R(SCRATCH1, 1); // 1 << i, but i == 0 } } else { ORRI2R(SCRATCH1, SCRATCH1, 1ULL << i); } SetJumpTarget(b); } affected_bits |= 1 << i; } // Aggregate the bits. Urgh, expensive. Can optimize for the case of one comparison, which is the most common // after all. if (n > 1) { CMP(SCRATCH1, affected_bits & 0xF); FixupBranch skip1 = B(CC_NEQ); ORRI2R(SCRATCH1, SCRATCH1, 1 << 5); SetJumpTarget(skip1); CMP(SCRATCH1, 0); FixupBranch skip2 = B(CC_EQ); ORRI2R(SCRATCH1, SCRATCH1, 1 << 4); SetJumpTarget(skip2); } gpr.MapReg(MIPS_REG_VFPUCC, MAP_DIRTY); ANDI2R(gpr.R(MIPS_REG_VFPUCC), gpr.R(MIPS_REG_VFPUCC), ~affected_bits, SCRATCH2); ORR(gpr.R(MIPS_REG_VFPUCC), gpr.R(MIPS_REG_VFPUCC), SCRATCH1); fpr.ReleaseSpillLocksAndDiscardTemps(); } void Arm64Jit::Comp_Vcmov(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_COMP); if (js.HasUnknownPrefix()) { DISABLE; } VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); u8 sregs[4], dregs[4]; GetVectorRegsPrefixS(sregs, sz, _VS); GetVectorRegsPrefixD(dregs, sz, _VD); int tf = (op >> 19) & 1; int imm3 = (op >> 16) & 7; for (int i = 0; i < n; ++i) { // Simplification: Disable if overlap unsafe if (!IsOverlapSafeAllowS(dregs[i], i, n, sregs)) { DISABLE; } } if (imm3 < 6) { // Test one bit of CC. This bit decides whether none or all subregisters are copied. fpr.MapRegsAndSpillLockV(dregs, sz, MAP_DIRTY); fpr.MapRegsAndSpillLockV(sregs, sz, 0); gpr.MapReg(MIPS_REG_VFPUCC); TSTI2R(gpr.R(MIPS_REG_VFPUCC), 1ULL << imm3); // TODO: Use fsel? FixupBranch b = B(tf ? CC_NEQ : CC_EQ); for (int i = 0; i < n; i++) { fp.FMOV(fpr.V(dregs[i]), fpr.V(sregs[i])); } SetJumpTarget(b); } else { // Look at the bottom four bits of CC to individually decide if the subregisters should be copied. fpr.MapRegsAndSpillLockV(dregs, sz, MAP_DIRTY); fpr.MapRegsAndSpillLockV(sregs, sz, 0); gpr.MapReg(MIPS_REG_VFPUCC); for (int i = 0; i < n; i++) { TSTI2R(gpr.R(MIPS_REG_VFPUCC), 1 << i); FixupBranch b = B(tf ? CC_NEQ : CC_EQ); fp.FMOV(fpr.V(dregs[i]), fpr.V(sregs[i])); SetJumpTarget(b); } } ApplyPrefixD(dregs, sz); fpr.ReleaseSpillLocksAndDiscardTemps(); } void Arm64Jit::Comp_Viim(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_XFER); if (js.HasUnknownPrefix()) { DISABLE; } u8 dreg; GetVectorRegs(&dreg, V_Single, _VT); s32 imm = SignExtend16ToS32(op); fpr.MapRegV(dreg, MAP_DIRTY | MAP_NOINIT); fp.MOVI2F(fpr.V(dreg), (float)imm, SCRATCH1); ApplyPrefixD(&dreg, V_Single); fpr.ReleaseSpillLocksAndDiscardTemps(); } void Arm64Jit::Comp_Vfim(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_XFER); if (js.HasUnknownPrefix()) { DISABLE; } u8 dreg; GetVectorRegs(&dreg, V_Single, _VT); FP16 half; half.u = op & 0xFFFF; FP32 fval = half_to_float_fast5(half); fpr.MapRegV(dreg, MAP_DIRTY | MAP_NOINIT); fp.MOVI2F(fpr.V(dreg), fval.f, SCRATCH1); ApplyPrefixD(&dreg, V_Single); fpr.ReleaseSpillLocksAndDiscardTemps(); } void Arm64Jit::Comp_Vcst(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_XFER); if (js.HasUnknownPrefix()) { DISABLE; } int conNum = (op >> 16) & 0x1f; int vd = _VD; VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); u8 dregs[4]; GetVectorRegsPrefixD(dregs, sz, _VD); fpr.MapRegsAndSpillLockV(dregs, sz, MAP_NOINIT | MAP_DIRTY); MOVP2R(SCRATCH1_64, (void *)&cst_constants[conNum]); fp.LDR(32, INDEX_UNSIGNED, S0, SCRATCH1_64, 0); for (int i = 0; i < n; ++i) fp.FMOV(fpr.V(dregs[i]), S0); ApplyPrefixD(dregs, sz); fpr.ReleaseSpillLocksAndDiscardTemps(); } static double SinCos(float angle) { union { struct { float sin; float cos; }; double out; } sincos; vfpu_sincos(angle, sincos.sin, sincos.cos); return sincos.out; } static double SinCosNegSin(float angle) { union { struct { float sin; float cos; }; double out; } sincos; vfpu_sincos(angle, sincos.sin, sincos.cos); sincos.sin = -sincos.sin; return sincos.out; } void Arm64Jit::CompVrotShuffle(u8 *dregs, int imm, VectorSize sz, bool negSin) { int n = GetNumVectorElements(sz); char what[4] = { '0', '0', '0', '0' }; if (((imm >> 2) & 3) == (imm & 3)) { for (int i = 0; i < 4; i++) what[i] = 'S'; } what[(imm >> 2) & 3] = 'S'; what[imm & 3] = 'C'; fpr.MapRegsAndSpillLockV(dregs, sz, MAP_DIRTY | MAP_NOINIT); for (int i = 0; i < n; i++) { switch (what[i]) { case 'C': fp.FMOV(fpr.V(dregs[i]), S1); break; case 'S': if (negSin) fp.FNEG(fpr.V(dregs[i]), S0); else fp.FMOV(fpr.V(dregs[i]), S0); break; case '0': { fp.MOVI2F(fpr.V(dregs[i]), 0.0f); break; } default: ERROR_LOG(JIT, "Bad what in vrot"); break; } } } // Very heavily used by FF:CC. Should be replaced by a fast approximation instead of // calling the math library. void Arm64Jit::Comp_VRot(MIPSOpcode op) { // VRot probably doesn't accept prefixes anyway. CONDITIONAL_DISABLE(VFPU_VEC); if (js.HasUnknownPrefix()) { DISABLE; } int vd = _VD; int vs = _VS; VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); u8 dregs[4]; u8 dregs2[4]; MIPSOpcode nextOp = GetOffsetInstruction(1); int vd2 = -1; int imm2 = -1; if ((nextOp >> 26) == 60 && ((nextOp >> 21) & 0x1F) == 29 && _VS == MIPS_GET_VS(nextOp)) { // Pair of vrot. Let's join them. vd2 = MIPS_GET_VD(nextOp); imm2 = (nextOp >> 16) & 0x1f; // NOTICE_LOG(JIT, "Joint VFPU at %08x", js.blockStart); } u8 sreg; GetVectorRegs(dregs, sz, vd); if (vd2 >= 0) GetVectorRegs(dregs2, sz, vd2); GetVectorRegs(&sreg, V_Single, vs); int imm = (op >> 16) & 0x1f; gpr.FlushBeforeCall(); fpr.FlushAll(); // Don't need to SaveStaticRegs here as long as they are all in callee-save regs - this callee won't read them. bool negSin1 = (imm & 0x10) ? true : false; fpr.MapRegV(sreg); fp.FMOV(S0, fpr.V(sreg)); QuickCallFunction(SCRATCH2_64, negSin1 ? (void *)&SinCosNegSin : (void *)&SinCos); // Here, sin and cos are stored together in Q0.d. On ARM32 we could use it directly // but with ARM64's register organization, we need to split it up. fp.INS(32, Q1, 0, Q0, 1); CompVrotShuffle(dregs, imm, sz, false); if (vd2 != -1) { // If the negsin setting differs between the two joint invocations, we need to flip the second one. bool negSin2 = (imm2 & 0x10) ? true : false; CompVrotShuffle(dregs2, imm2, sz, negSin1 != negSin2); EatInstruction(nextOp); } fpr.ReleaseSpillLocksAndDiscardTemps(); } void Arm64Jit::Comp_Vsgn(MIPSOpcode op) { DISABLE; } void Arm64Jit::Comp_Vocp(MIPSOpcode op) { CONDITIONAL_DISABLE(VFPU_VEC); if (js.HasUnknownPrefix()) { DISABLE; } VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); // This is a hack that modifies prefixes. We eat them later, so just overwrite. // S prefix forces the negate flags. js.prefixS |= 0x000F0000; // T prefix forces constants on and regnum to 1. // That means negate still works, and abs activates a different constant. js.prefixT = (js.prefixT & ~0x000000FF) | 0x00000055 | 0x0000F000; u8 sregs[4], tregs[4], dregs[4]; GetVectorRegsPrefixS(sregs, sz, _VS); GetVectorRegsPrefixT(tregs, sz, _VS); GetVectorRegsPrefixD(dregs, sz, _VD); MIPSReg tempregs[4]; for (int i = 0; i < n; ++i) { if (!IsOverlapSafe(dregs[i], i, n, sregs)) { tempregs[i] = fpr.GetTempV(); } else { tempregs[i] = dregs[i]; } } fp.MOVI2F(S0, 1.0f, SCRATCH1); for (int i = 0; i < n; ++i) { fpr.MapDirtyInInV(tempregs[i], sregs[i], tregs[i]); fp.FADD(fpr.V(tempregs[i]), fpr.V(tregs[i]), fpr.V(sregs[i])); } for (int i = 0; i < n; ++i) { if (dregs[i] != tempregs[i]) { fpr.MapDirtyInV(dregs[i], tempregs[i]); fp.FMOV(fpr.V(dregs[i]), fpr.V(tempregs[i])); } } ApplyPrefixD(dregs, sz); fpr.ReleaseSpillLocksAndDiscardTemps(); } void Arm64Jit::Comp_ColorConv(MIPSOpcode op) { DISABLE; } void Arm64Jit::Comp_Vbfy(MIPSOpcode op) { DISABLE; } } #endif // PPSSPP_ARCH(ARM64)