// Copyright (c) 2013- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #include "Common/Common.h" #include "Common/CPUDetect.h" #include "Common/Profiler/Profiler.h" #include "GPU/Common/GPUStateUtils.h" #include "GPU/Common/SplineCommon.h" #include "GPU/Common/DrawEngineCommon.h" #include "GPU/ge_constants.h" #include "GPU/GPUState.h" // only needed for UVScale stuff class SimpleBufferManager { private: u8 *buf_; size_t totalSize, maxSize_; public: SimpleBufferManager(u8 *buf, size_t maxSize) : buf_(buf), totalSize(0), maxSize_(maxSize) {} u8 *Allocate(size_t size) { size = (size + 15) & ~15; // Align for 16 bytes if ((totalSize + size) > maxSize_) return nullptr; // No more memory size_t tmp = totalSize; totalSize += size; return buf_ + tmp; } }; namespace Spline { static void CopyQuadIndex(u16 *&indices, GEPatchPrimType type, const int idx0, const int idx1, const int idx2, const int idx3) { if (type == GE_PATCHPRIM_LINES) { *(indices++) = idx0; *(indices++) = idx2; *(indices++) = idx1; *(indices++) = idx3; *(indices++) = idx1; *(indices++) = idx2; } else { *(indices++) = idx0; *(indices++) = idx2; *(indices++) = idx1; *(indices++) = idx1; *(indices++) = idx2; *(indices++) = idx3; } } void BuildIndex(u16 *indices, int &count, int num_u, int num_v, GEPatchPrimType prim_type, int total) { for (int v = 0; v < num_v; ++v) { for (int u = 0; u < num_u; ++u) { int idx0 = v * (num_u + 1) + u + total; // Top left int idx2 = (v + 1) * (num_u + 1) + u + total; // Bottom left CopyQuadIndex(indices, prim_type, idx0, idx0 + 1, idx2, idx2 + 1); count += 6; } } } class Bezier3DWeight { private: void CalcWeights(float t, Weight &w) { // Bernstein 3D basis polynomial w.basis[0] = (1 - t) * (1 - t) * (1 - t); w.basis[1] = 3 * t * (1 - t) * (1 - t); w.basis[2] = 3 * t * t * (1 - t); w.basis[3] = t * t * t; // Derivative w.deriv[0] = -3 * (1 - t) * (1 - t); w.deriv[1] = 9 * t * t - 12 * t + 3; w.deriv[2] = 3 * (2 - 3 * t) * t; w.deriv[3] = 3 * t * t; } public: Weight *CalcWeightsAll(u32 key) { int tess = (int)key; Weight *weights = new Weight[tess + 1]; const float inv_tess = 1.0f / (float)tess; for (int i = 0; i < tess + 1; ++i) { const float t = (float)i * inv_tess; CalcWeights(t, weights[i]); } return weights; } static u32 ToKey(int tess, int count, int type) { return tess; } static int CalcSize(int tess, int count) { return tess + 1; } static WeightCache weightsCache; }; class Spline3DWeight { private: struct KnotDiv { float _3_0 = 1.0f / 3.0f; float _4_1 = 1.0f / 3.0f; float _5_2 = 1.0f / 3.0f; float _3_1 = 1.0f / 2.0f; float _4_2 = 1.0f / 2.0f; float _3_2 = 1.0f; // Always 1 }; // knot should be an array sized n + 5 (n + 1 + 1 + degree (cubic)) void CalcKnots(int n, int type, float *knots, KnotDiv *divs) { // Basic theory (-2 to +3), optimized with KnotDiv (-2 to +0) // for (int i = 0; i < n + 5; ++i) { for (int i = 0; i < n + 2; ++i) { knots[i] = (float)i - 2; } // The first edge is open if ((type & 1) != 0) { knots[0] = 0; knots[1] = 0; divs[0]._3_0 = 1.0f; divs[0]._4_1 = 1.0f / 2.0f; divs[0]._3_1 = 1.0f; if (n > 1) divs[1]._3_0 = 1.0f / 2.0f; } // The last edge is open if ((type & 2) != 0) { // knots[n + 2] = (float)n; // Got rid of this line optimized with KnotDiv // knots[n + 3] = (float)n; // Got rid of this line optimized with KnotDiv // knots[n + 4] = (float)n; // Got rid of this line optimized with KnotDiv divs[n - 1]._4_1 = 1.0f / 2.0f; divs[n - 1]._5_2 = 1.0f; divs[n - 1]._4_2 = 1.0f; if (n > 1) divs[n - 2]._5_2 = 1.0f / 2.0f; } } void CalcWeights(float t, const float *knots, const KnotDiv &div, Weight &w) { #ifdef _M_SSE const __m128 knot012 = _mm_loadu_ps(knots); const __m128 t012 = _mm_sub_ps(_mm_set_ps1(t), knot012); const __m128 f30_41_52 = _mm_mul_ps(t012, _mm_loadu_ps(&div._3_0)); const __m128 f52_31_42 = _mm_mul_ps(t012, _mm_loadu_ps(&div._5_2)); // Following comments are for explains order of the multiply. // float a = (1-f30)*(1-f31); // float c = (1-f41)*(1-f42); // float b = ( f31 * f41); // float d = ( f42 * f52); const __m128 f30_41_31_42 = _mm_shuffle_ps(f30_41_52, f52_31_42, _MM_SHUFFLE(2, 1, 1, 0)); const __m128 f31_42_41_52 = _mm_shuffle_ps(f52_31_42, f30_41_52, _MM_SHUFFLE(2, 1, 2, 1)); const __m128 c1_1_0_0 = { 1, 1, 0, 0 }; const __m128 acbd = _mm_mul_ps(_mm_sub_ps(c1_1_0_0, f30_41_31_42), _mm_sub_ps(c1_1_0_0, f31_42_41_52)); alignas(16) float f_t012[4]; alignas(16) float f_acbd[4]; alignas(16) float f_f30_41_31_42[4]; _mm_store_ps(f_t012, t012); _mm_store_ps(f_acbd, acbd); _mm_store_ps(f_f30_41_31_42, f30_41_31_42); const float &f32 = f_t012[2]; const float &a = f_acbd[0]; const float &b = f_acbd[2]; const float &c = f_acbd[1]; const float &d = f_acbd[3]; // For derivative const float &f31 = f_f30_41_31_42[2]; const float &f42 = f_f30_41_31_42[3]; #else // TODO: Maybe compilers could be coaxed into vectorizing this code without the above explicitly... float t0 = (t - knots[0]); float t1 = (t - knots[1]); float t2 = (t - knots[2]); float f30 = t0 * div._3_0; float f41 = t1 * div._4_1; float f52 = t2 * div._5_2; float f31 = t1 * div._3_1; float f42 = t2 * div._4_2; float f32 = t2 * div._3_2; float a = (1 - f30) * (1 - f31); float b = (f31 * f41); float c = (1 - f41) * (1 - f42); float d = (f42 * f52); #endif w.basis[0] = a * (1 - f32); // (1-f30)*(1-f31)*(1-f32) w.basis[1] = 1 - a - b + ((a + b + c - 1) * f32); w.basis[2] = b + ((1 - b - c - d) * f32); w.basis[3] = d * f32; // f32*f42*f52 // Derivative float i1 = (1 - f31) * (1 - f32); float i2 = f31 * (1 - f32) + (1 - f42) * f32; float i3 = f42 * f32; float f130 = i1 * div._3_0; float f241 = i2 * div._4_1; float f352 = i3 * div._5_2; w.deriv[0] = 3 * (0 - f130); w.deriv[1] = 3 * (f130 - f241); w.deriv[2] = 3 * (f241 - f352); w.deriv[3] = 3 * (f352 - 0); } public: Weight *CalcWeightsAll(u32 key) { int tess, count, type; FromKey(key, tess, count, type); const int num_patches = count - 3; Weight *weights = new Weight[tess * num_patches + 1]; // float *knots = new float[num_patches + 5]; float *knots = new float[num_patches + 2]; // Optimized with KnotDiv, must use +5 in theory KnotDiv *divs = new KnotDiv[num_patches]; CalcKnots(num_patches, type, knots, divs); const float inv_tess = 1.0f / (float)tess; for (int i = 0; i < num_patches; ++i) { const int start = (i == 0) ? 0 : 1; for (int j = start; j <= tess; ++j) { const int index = i * tess + j; const float t = (float)index * inv_tess; CalcWeights(t, knots + i, divs[i], weights[index]); } } delete[] knots; delete[] divs; return weights; } static u32 ToKey(int tess, int count, int type) { return tess | (count << 8) | (type << 16); } static void FromKey(u32 key, int &tess, int &count, int &type) { tess = key & 0xFF; count = (key >> 8) & 0xFF; type = (key >> 16) & 0xFF; } static int CalcSize(int tess, int count) { return (count - 3) * tess + 1; } static WeightCache weightsCache; }; WeightCache Bezier3DWeight::weightsCache; WeightCache Spline3DWeight::weightsCache; // Tessellate single patch (4x4 control points) template class Tessellator { private: const T *const p[4]; // T p[v][u]; 4x4 control points T u[4]; // Pre-tessellated U lines public: Tessellator(const T *p, const int idx[4]) : p{ p + idx[0], p + idx[1], p + idx[2], p + idx[3] } {} // Linear combination T Sample(const T p[4], const float w[4]) { return p[0] * w[0] + p[1] * w[1] + p[2] * w[2] + p[3] * w[3]; } void SampleEdgeU(int idx) { u[0] = p[0][idx]; u[1] = p[1][idx]; u[2] = p[2][idx]; u[3] = p[3][idx]; } void SampleU(const float weights[4]) { if (weights[0] == 1.0f) { SampleEdgeU(0); return; } // weights = {1,0,0,0}, first edge is open. if (weights[3] == 1.0f) { SampleEdgeU(3); return; } // weights = {0,0,0,1}, last edge is open. u[0] = Sample(p[0], weights); u[1] = Sample(p[1], weights); u[2] = Sample(p[2], weights); u[3] = Sample(p[3], weights); } T SampleV(const float weights[4]) { if (weights[0] == 1.0f) return u[0]; // weights = {1,0,0,0}, first edge is open. if (weights[3] == 1.0f) return u[3]; // weights = {0,0,0,1}, last edge is open. return Sample(u, weights); } }; ControlPoints::ControlPoints(const SimpleVertex *const *points, int size, SimpleBufferManager &managedBuf) { pos = (Vec3f *)managedBuf.Allocate(sizeof(Vec3f) * size); tex = (Vec2f *)managedBuf.Allocate(sizeof(Vec2f) * size); col = (Vec4f *)managedBuf.Allocate(sizeof(Vec4f) * size); if (pos && tex && col) Convert(points, size); } void ControlPoints::Convert(const SimpleVertex *const *points, int size) { for (int i = 0; i < size; ++i) { pos[i] = Vec3f(points[i]->pos); tex[i] = Vec2f(points[i]->uv); col[i] = Vec4f::FromRGBA(points[i]->color_32); } defcolor = points[0]->color_32; } template class SubdivisionSurface { public: template static void Tessellate(OutputBuffers &output, const Surface &surface, const ControlPoints &points, const Weight2D &weights) { const float inv_u = 1.0f / (float)surface.tess_u; const float inv_v = 1.0f / (float)surface.tess_v; for (int patch_u = 0; patch_u < surface.num_patches_u; ++patch_u) { const int start_u = surface.GetTessStart(patch_u); for (int patch_v = 0; patch_v < surface.num_patches_v; ++patch_v) { const int start_v = surface.GetTessStart(patch_v); // Prepare 4x4 control points to tessellate const int idx = surface.GetPointIndex(patch_u, patch_v); const int idx_v[4] = { idx, idx + surface.num_points_u, idx + surface.num_points_u * 2, idx + surface.num_points_u * 3 }; Tessellator tess_pos(points.pos, idx_v); Tessellator tess_col(points.col, idx_v); Tessellator tess_tex(points.tex, idx_v); Tessellator tess_nrm(points.pos, idx_v); for (int tile_u = start_u; tile_u <= surface.tess_u; ++tile_u) { const int index_u = surface.GetIndexU(patch_u, tile_u); const Weight &wu = weights.u[index_u]; // Pre-tessellate U lines tess_pos.SampleU(wu.basis); if (sampleCol) tess_col.SampleU(wu.basis); if (sampleTex) tess_tex.SampleU(wu.basis); if (sampleNrm) tess_nrm.SampleU(wu.deriv); for (int tile_v = start_v; tile_v <= surface.tess_v; ++tile_v) { const int index_v = surface.GetIndexV(patch_v, tile_v); const Weight &wv = weights.v[index_v]; SimpleVertex &vert = output.vertices[surface.GetIndex(index_u, index_v, patch_u, patch_v)]; // Tessellate vert.pos = tess_pos.SampleV(wv.basis); if (sampleCol) { vert.color_32 = tess_col.SampleV(wv.basis).ToRGBA(); } else { vert.color_32 = points.defcolor; } if (sampleTex) { tess_tex.SampleV(wv.basis).Write(vert.uv); } else { // Generate texcoord vert.uv[0] = patch_u + tile_u * inv_u; vert.uv[1] = patch_v + tile_v * inv_v; } if (sampleNrm) { const Vec3f derivU = tess_nrm.SampleV(wv.basis); const Vec3f derivV = tess_pos.SampleV(wv.deriv); vert.nrm = Cross(derivU, derivV).Normalized(useSSE4); if (patchFacing) vert.nrm *= -1.0f; } else { vert.nrm.SetZero(); vert.nrm.z = 1.0f; } } } } } surface.BuildIndex(output.indices, output.count); } using TessFunc = void(*)(OutputBuffers &, const Surface &, const ControlPoints &, const Weight2D &); TEMPLATE_PARAMETER_DISPATCHER_FUNCTION(Tess, SubdivisionSurface::Tessellate, TessFunc); static void Tessellate(OutputBuffers &output, const Surface &surface, const ControlPoints &points, const Weight2D &weights, u32 origVertType) { const bool params[] = { (origVertType & GE_VTYPE_NRM_MASK) != 0 || gstate.isLightingEnabled(), (origVertType & GE_VTYPE_COL_MASK) != 0, (origVertType & GE_VTYPE_TC_MASK) != 0, cpu_info.bSSE4_1, surface.patchFacing, }; static TemplateParameterDispatcher dispatcher; // Initialize only once TessFunc func = dispatcher.GetFunc(params); func(output, surface, points, weights); } }; template void SoftwareTessellation(OutputBuffers &output, const Surface &surface, u32 origVertType, const ControlPoints &points) { using WeightType = typename Surface::WeightType; u32 key_u = WeightType::ToKey(surface.tess_u, surface.num_points_u, surface.type_u); u32 key_v = WeightType::ToKey(surface.tess_v, surface.num_points_v, surface.type_v); Weight2D weights(WeightType::weightsCache, key_u, key_v); SubdivisionSurface::Tessellate(output, surface, points, weights, origVertType); } template void SoftwareTessellation(OutputBuffers &output, const BezierSurface &surface, u32 origVertType, const ControlPoints &points); template void SoftwareTessellation(OutputBuffers &output, const SplineSurface &surface, u32 origVertType, const ControlPoints &points); template static void HardwareTessellation(OutputBuffers &output, const Surface &surface, u32 origVertType, const SimpleVertex *const *points, TessellationDataTransfer *tessDataTransfer) { using WeightType = typename Surface::WeightType; u32 key_u = WeightType::ToKey(surface.tess_u, surface.num_points_u, surface.type_u); u32 key_v = WeightType::ToKey(surface.tess_v, surface.num_points_v, surface.type_v); Weight2D weights(WeightType::weightsCache, key_u, key_v); weights.size_u = WeightType::CalcSize(surface.tess_u, surface.num_points_u); weights.size_v = WeightType::CalcSize(surface.tess_v, surface.num_points_v); tessDataTransfer->SendDataToShader(points, surface.num_points_u, surface.num_points_v, origVertType, weights); // Generating simple input vertices for the spline-computing vertex shader. float inv_u = 1.0f / (float)surface.tess_u; float inv_v = 1.0f / (float)surface.tess_v; for (int patch_u = 0; patch_u < surface.num_patches_u; ++patch_u) { const int start_u = surface.GetTessStart(patch_u); for (int patch_v = 0; patch_v < surface.num_patches_v; ++patch_v) { const int start_v = surface.GetTessStart(patch_v); for (int tile_u = start_u; tile_u <= surface.tess_u; ++tile_u) { const int index_u = surface.GetIndexU(patch_u, tile_u); for (int tile_v = start_v; tile_v <= surface.tess_v; ++tile_v) { const int index_v = surface.GetIndexV(patch_v, tile_v); SimpleVertex &vert = output.vertices[surface.GetIndex(index_u, index_v, patch_u, patch_v)]; // Index for the weights vert.pos.x = index_u; vert.pos.y = index_v; // For texcoord generation vert.nrm.x = patch_u + (float)tile_u * inv_u; vert.nrm.y = patch_v + (float)tile_v * inv_v; // Patch position vert.pos.z = patch_u; vert.nrm.z = patch_v; } } } } surface.BuildIndex(output.indices, output.count); } } // namespace Spline using namespace Spline; void DrawEngineCommon::ClearSplineBezierWeights() { Bezier3DWeight::weightsCache.Clear(); Spline3DWeight::weightsCache.Clear(); } // Specialize to make instance (to avoid link error). template void DrawEngineCommon::SubmitCurve(const void *control_points, const void *indices, BezierSurface &surface, u32 vertType, int *bytesRead, const char *scope); template void DrawEngineCommon::SubmitCurve(const void *control_points, const void *indices, SplineSurface &surface, u32 vertType, int *bytesRead, const char *scope); template void DrawEngineCommon::SubmitCurve(const void *control_points, const void *indices, Surface &surface, u32 vertType, int *bytesRead, const char *scope) { PROFILE_THIS_SCOPE(scope); // Real hardware seems to draw nothing when given < 4 either U or V. // This would result in num_patches_u / num_patches_v being 0. if (surface.num_points_u < 4 || surface.num_points_v < 4) return; SimpleBufferManager managedBuf(decoded, DECODED_VERTEX_BUFFER_SIZE / 2); int num_points = surface.num_points_u * surface.num_points_v; u16 index_lower_bound = 0; u16 index_upper_bound = num_points - 1; IndexConverter ConvertIndex(vertType, indices); if (indices) GetIndexBounds(indices, num_points, vertType, &index_lower_bound, &index_upper_bound); VertexDecoder *origVDecoder = GetVertexDecoder((vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24)); *bytesRead = num_points * origVDecoder->VertexSize(); // Simplify away bones and morph before proceeding // There are normally not a lot of control points so just splitting decoded should be reasonably safe, although not great. SimpleVertex *simplified_control_points = (SimpleVertex *)managedBuf.Allocate(sizeof(SimpleVertex) * (index_upper_bound + 1)); if (!simplified_control_points) { ERROR_LOG(G3D, "Failed to allocate space for simplified control points, skipping curve draw"); return; } u8 *temp_buffer = managedBuf.Allocate(sizeof(SimpleVertex) * num_points); if (!temp_buffer) { ERROR_LOG(G3D, "Failed to allocate space for temp buffer, skipping curve draw"); return; } u32 origVertType = vertType; vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType); VertexDecoder *vdecoder = GetVertexDecoder(vertType); int vertexSize = vdecoder->VertexSize(); if (vertexSize != sizeof(SimpleVertex)) { ERROR_LOG(G3D, "Something went really wrong, vertex size: %d vs %d", vertexSize, (int)sizeof(SimpleVertex)); } // Make an array of pointers to the control points, to get rid of indices. const SimpleVertex **points = (const SimpleVertex **)managedBuf.Allocate(sizeof(SimpleVertex *) * num_points); if (!points) { ERROR_LOG(G3D, "Failed to allocate space for control point pointers, skipping curve draw"); return; } for (int idx = 0; idx < num_points; idx++) points[idx] = simplified_control_points + (indices ? ConvertIndex(idx) : idx); OutputBuffers output; output.vertices = (SimpleVertex *)(decoded + DECODED_VERTEX_BUFFER_SIZE / 2); output.indices = decIndex; output.count = 0; surface.Init(DECODED_VERTEX_BUFFER_SIZE / 2 / vertexSize); if (CanUseHardwareTessellation(surface.primType)) { HardwareTessellation(output, surface, origVertType, points, tessDataTransfer); } else { ControlPoints cpoints(points, num_points, managedBuf); if (cpoints.IsValid()) SoftwareTessellation(output, surface, origVertType, cpoints); else ERROR_LOG(G3D, "Failed to allocate space for control point values, skipping curve draw"); } u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT; UVScale prevUVScale; if (origVertType & GE_VTYPE_TC_MASK) { // We scaled during Normalize already so let's turn it off when drawing. prevUVScale = gstate_c.uv; gstate_c.uv.uScale = 1.0f; gstate_c.uv.vScale = 1.0f; gstate_c.uv.uOff = 0; gstate_c.uv.vOff = 0; } uint32_t vertTypeID = GetVertTypeID(vertTypeWithIndex16, gstate.getUVGenMode()); int generatedBytesRead; if (output.count) DispatchSubmitPrim(output.vertices, output.indices, PatchPrimToPrim(surface.primType), output.count, vertTypeID, gstate.getCullMode(), &generatedBytesRead); if (flushOnParams_) DispatchFlush(); if (origVertType & GE_VTYPE_TC_MASK) { gstate_c.uv = prevUVScale; } }