// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "base/basictypes.h" #include "base/logging.h" #include "Common/CPUDetect.h" #include "Core/Config.h" #include "Core/MemMap.h" #include "GPU/ge_constants.h" #include "GPU/Math3D.h" #include "VertexDecoder.h" #include "VertexShaderGenerator.h" static const u8 tcsize[4] = {0,2,4,8}, tcalign[4] = {0,1,2,4}; static const u8 colsize[8] = {0,0,0,0,2,2,2,4}, colalign[8] = {0,0,0,0,2,2,2,4}; static const u8 nrmsize[4] = {0,3,6,12}, nrmalign[4] = {0,1,2,4}; static const u8 possize[4] = {0,3,6,12}, posalign[4] = {0,1,2,4}; static const u8 wtsize[4] = {0,1,2,4}, wtalign[4] = {0,1,2,4}; // When software skinning. This array is only used when non-jitted - when jitted, the matrix // is kept in registers. static float MEMORY_ALIGNED16(skinMatrix[12]); inline int align(int n, int align) { return (n + (align - 1)) & ~(align - 1); } VertexDecoder::VertexDecoder() : coloff(0), nrmoff(0), posoff(0), jitted_(0) { memset(stats_, 0, sizeof(stats_)); } void VertexDecoder::Step_WeightsU8() const { u8 *wt = (u8 *)(decoded_ + decFmt.w0off); const u8 *wdata = (const u8*)(ptr_); int j; for (j = 0; j < nweights; j++) wt[j] = wdata[j]; while (j & 3) // Zero additional weights rounding up to 4. wt[j++] = 0; } void VertexDecoder::Step_WeightsU16() const { u16 *wt = (u16 *)(decoded_ + decFmt.w0off); const u16 *wdata = (const u16*)(ptr_); int j; for (j = 0; j < nweights; j++) wt[j] = wdata[j]; while (j & 3) // Zero additional weights rounding up to 4. wt[j++] = 0; } // Float weights should be uncommon, we can live with having to multiply these by 2.0 // to avoid special checks in the vertex shader generator. // (PSP uses 0.0-2.0 fixed point numbers for weights) void VertexDecoder::Step_WeightsFloat() const { float *wt = (float *)(decoded_ + decFmt.w0off); const float *wdata = (const float*)(ptr_); int j; for (j = 0; j < nweights; j++) { wt[j] = wdata[j]; } while (j & 3) // Zero additional weights rounding up to 4. wt[j++] = 0.0f; } void VertexDecoder::Step_WeightsU8Skin() const { memset(skinMatrix, 0, sizeof(skinMatrix)); u8 *wt = (u8 *)(decoded_ + decFmt.w0off); const u8 *wdata = (const u8*)(ptr_); for (int j = 0; j < nweights; j++) { const float *bone = &gstate.boneMatrix[j * 12]; if (wdata[j] != 0) { float weight = wdata[j] / 128.0f; for (int i = 0; i < 12; i++) { skinMatrix[i] += weight * bone[i]; } } } } void VertexDecoder::Step_WeightsU16Skin() const { memset(skinMatrix, 0, sizeof(skinMatrix)); u16 *wt = (u16 *)(decoded_ + decFmt.w0off); const u16 *wdata = (const u16*)(ptr_); for (int j = 0; j < nweights; j++) { const float *bone = &gstate.boneMatrix[j * 12]; if (wdata[j] != 0) { float weight = wdata[j] / 32768.0f; for (int i = 0; i < 12; i++) { skinMatrix[i] += weight * bone[i]; } } } } // Float weights should be uncommon, we can live with having to multiply these by 2.0 // to avoid special checks in the vertex shader generator. // (PSP uses 0.0-2.0 fixed point numbers for weights) void VertexDecoder::Step_WeightsFloatSkin() const { memset(skinMatrix, 0, sizeof(skinMatrix)); float *wt = (float *)(decoded_ + decFmt.w0off); const float *wdata = (const float*)(ptr_); for (int j = 0; j < nweights; j++) { const float *bone = &gstate.boneMatrix[j * 12]; float weight = wdata[j]; if (weight > 0.0) { for (int i = 0; i < 12; i++) { skinMatrix[i] += weight * bone[i]; } } } } void VertexDecoder::Step_TcU8() const { // u32 to write two bytes of zeroes for free. u32 *uv = (u32*)(decoded_ + decFmt.uvoff); const u16 *uvdata = (const u16*)(ptr_ + tcoff); *uv = *uvdata; } void VertexDecoder::Step_TcU16() const { u32 *uv = (u32 *)(decoded_ + decFmt.uvoff); const u32 *uvdata = (const u32*)(ptr_ + tcoff); *uv = *uvdata; } void VertexDecoder::Step_TcU16Double() const { u16 *uv = (u16*)(decoded_ + decFmt.uvoff); const u16 *uvdata = (const u16*)(ptr_ + tcoff); *uv = *uvdata; uv[0] = uvdata[0] * 2; uv[1] = uvdata[1] * 2; } void VertexDecoder::Step_TcU16Through() const { u16 *uv = (u16 *)(decoded_ + decFmt.uvoff); const u16 *uvdata = (const u16*)(ptr_ + tcoff); uv[0] = uvdata[0]; uv[1] = uvdata[1]; } void VertexDecoder::Step_TcU16ThroughDouble() const { u16 *uv = (u16 *)(decoded_ + decFmt.uvoff); const u16 *uvdata = (const u16*)(ptr_ + tcoff); uv[0] = uvdata[0] * 2; uv[1] = uvdata[1] * 2; } void VertexDecoder::Step_TcFloat() const { float *uv = (float *)(decoded_ + decFmt.uvoff); const float *uvdata = (const float*)(ptr_ + tcoff); uv[0] = uvdata[0]; uv[1] = uvdata[1]; } void VertexDecoder::Step_TcFloatThrough() const { float *uv = (float *)(decoded_ + decFmt.uvoff); const float *uvdata = (const float*)(ptr_ + tcoff); uv[0] = uvdata[0]; uv[1] = uvdata[1]; } void VertexDecoder::Step_TcU8Prescale() const { float *uv = (float *)(decoded_ + decFmt.uvoff); const u8 *uvdata = (const u8 *)(ptr_ + tcoff); uv[0] = (float)uvdata[0] * (1.f / 128.f) * gstate_c.uv.uScale + gstate_c.uv.uOff; uv[1] = (float)uvdata[1] * (1.f / 128.f) * gstate_c.uv.vScale + gstate_c.uv.vOff; } void VertexDecoder::Step_TcU16Prescale() const { float *uv = (float *)(decoded_ + decFmt.uvoff); const u16 *uvdata = (const u16 *)(ptr_ + tcoff); uv[0] = (float)uvdata[0] * (1.f / 32768.f) * gstate_c.uv.uScale + gstate_c.uv.uOff; uv[1] = (float)uvdata[1] * (1.f / 32768.f) * gstate_c.uv.vScale + gstate_c.uv.vOff; } void VertexDecoder::Step_TcFloatPrescale() const { float *uv = (float *)(decoded_ + decFmt.uvoff); const float *uvdata = (const float*)(ptr_ + tcoff); uv[0] = uvdata[0] * gstate_c.uv.uScale + gstate_c.uv.uOff; uv[1] = uvdata[1] * gstate_c.uv.vScale + gstate_c.uv.vOff; } void VertexDecoder::Step_Color565() const { u8 *c = decoded_ + decFmt.c0off; u16 cdata = *(u16*)(ptr_ + coloff); c[0] = Convert5To8(cdata & 0x1f); c[1] = Convert6To8((cdata>>5) & 0x3f); c[2] = Convert5To8((cdata>>11) & 0x1f); c[3] = 255; } void VertexDecoder::Step_Color5551() const { u8 *c = decoded_ + decFmt.c0off; u16 cdata = *(u16*)(ptr_ + coloff); c[0] = Convert5To8(cdata & 0x1f); c[1] = Convert5To8((cdata>>5) & 0x1f); c[2] = Convert5To8((cdata>>10) & 0x1f); c[3] = (cdata >> 15) ? 255 : 0; } void VertexDecoder::Step_Color4444() const { u8 *c = decoded_ + decFmt.c0off; u16 cdata = *(u16*)(ptr_ + coloff); for (int j = 0; j < 4; j++) c[j] = Convert4To8((cdata >> (j * 4)) & 0xF); } void VertexDecoder::Step_Color8888() const { u8 *c = decoded_ + decFmt.c0off; const u8 *cdata = (const u8*)(ptr_ + coloff); memcpy(c, cdata, sizeof(u8) * 4); } void VertexDecoder::Step_Color565Morph() const { float col[3] = {0}; for (int n = 0; n < morphcount; n++) { float w = gstate_c.morphWeights[n]; u16 cdata = *(u16*)(ptr_ + onesize_*n + coloff); col[0] += w * (cdata & 0x1f) * (255.0f / 31.0f); col[1] += w * ((cdata>>5) & 0x3f) * (255.0f / 63.0f); col[2] += w * ((cdata>>11) & 0x1f) * (255.0f / 31.0f); } u8 *c = decoded_ + decFmt.c0off; for (int i = 0; i < 3; i++) { c[i] = (u8)col[i]; } c[3] = 255; } void VertexDecoder::Step_Color5551Morph() const { float col[4] = {0}; for (int n = 0; n < morphcount; n++) { float w = gstate_c.morphWeights[n]; u16 cdata = *(u16*)(ptr_ + onesize_*n + coloff); col[0] += w * (cdata & 0x1f) * (255.0f / 31.0f); col[1] += w * ((cdata>>5) & 0x1f) * (255.0f / 31.0f); col[2] += w * ((cdata>>10) & 0x1f) * (255.0f / 31.0f); col[3] += w * ((cdata>>15) ? 255.0f : 0.0f); } u8 *c = decoded_ + decFmt.c0off; for (int i = 0; i < 4; i++) { c[i] = (u8)col[i]; } } void VertexDecoder::Step_Color4444Morph() const { float col[4] = {0}; for (int n = 0; n < morphcount; n++) { float w = gstate_c.morphWeights[n]; u16 cdata = *(u16*)(ptr_ + onesize_*n + coloff); for (int j = 0; j < 4; j++) col[j] += w * ((cdata >> (j * 4)) & 0xF) * (255.0f / 15.0f); } u8 *c = decoded_ + decFmt.c0off; for (int i = 0; i < 4; i++) { c[i] = (u8)col[i]; } } void VertexDecoder::Step_Color8888Morph() const { float col[4] = {0}; for (int n = 0; n < morphcount; n++) { float w = gstate_c.morphWeights[n]; const u8 *cdata = (const u8*)(ptr_ + onesize_*n + coloff); for (int j = 0; j < 4; j++) col[j] += w * cdata[j]; } u8 *c = decoded_ + decFmt.c0off; for (int i = 0; i < 4; i++) { c[i] = (u8)(col[i]); } } void VertexDecoder::Step_NormalS8() const { s8 *normal = (s8 *)(decoded_ + decFmt.nrmoff); const s8 *sv = (const s8*)(ptr_ + nrmoff); for (int j = 0; j < 3; j++) normal[j] = sv[j]; normal[3] = 0; } void VertexDecoder::Step_NormalS16() const { s16 *normal = (s16 *)(decoded_ + decFmt.nrmoff); const s16 *sv = (const s16*)(ptr_ + nrmoff); for (int j = 0; j < 3; j++) normal[j] = sv[j]; normal[3] = 0; } void VertexDecoder::Step_NormalFloat() const { u32 *normal = (u32 *)(decoded_ + decFmt.nrmoff); const u32 *fv = (const u32*)(ptr_ + nrmoff); for (int j = 0; j < 3; j++) normal[j] = fv[j]; } void VertexDecoder::Step_NormalS8Skin() const { float *normal = (float *)(decoded_ + decFmt.nrmoff); const s8 *sv = (const s8*)(ptr_ + nrmoff); const float fn[3] = { sv[0] / 128.0f, sv[1] / 128.0f, sv[2] / 128.0f }; Norm3ByMatrix43(normal, fn, skinMatrix); } void VertexDecoder::Step_NormalS16Skin() const { float *normal = (float *)(decoded_ + decFmt.nrmoff); const s16 *sv = (const s16*)(ptr_ + nrmoff); const float fn[3] = { sv[0] / 32768.0f, sv[1] / 32768.0f, sv[2] / 32768.0f }; Norm3ByMatrix43(normal, fn, skinMatrix); } void VertexDecoder::Step_NormalFloatSkin() const { float *normal = (float *)(decoded_ + decFmt.nrmoff); const float *fn = (const float *)(ptr_ + nrmoff); Norm3ByMatrix43(normal, fn, skinMatrix); } void VertexDecoder::Step_NormalS8Morph() const { float *normal = (float *)(decoded_ + decFmt.nrmoff); memset(normal, 0, sizeof(float)*3); for (int n = 0; n < morphcount; n++) { const s8 *bv = (const s8*)(ptr_ + onesize_*n + nrmoff); float multiplier = gstate_c.morphWeights[n] * (1.0f/127.0f); for (int j = 0; j < 3; j++) normal[j] += bv[j] * multiplier; } } void VertexDecoder::Step_NormalS16Morph() const { float *normal = (float *)(decoded_ + decFmt.nrmoff); memset(normal, 0, sizeof(float)*3); for (int n = 0; n < morphcount; n++) { float multiplier = gstate_c.morphWeights[n] * (1.0f/32767.0f); const s16 *sv = (const s16 *)(ptr_ + onesize_*n + nrmoff); for (int j = 0; j < 3; j++) normal[j] += sv[j] * multiplier; } } void VertexDecoder::Step_NormalFloatMorph() const { float *normal = (float *)(decoded_ + decFmt.nrmoff); memset(normal, 0, sizeof(float)*3); for (int n = 0; n < morphcount; n++) { float multiplier = gstate_c.morphWeights[n]; const float *fv = (const float*)(ptr_ + onesize_*n + nrmoff); for (int j = 0; j < 3; j++) normal[j] += fv[j] * multiplier; } } void VertexDecoder::Step_PosS8() const { s8 *v = (s8 *)(decoded_ + decFmt.posoff); const s8 *sv = (const s8*)(ptr_ + posoff); for (int j = 0; j < 3; j++) v[j] = sv[j]; v[3] = 0; } void VertexDecoder::Step_PosS16() const { s16 *v = (s16 *)(decoded_ + decFmt.posoff); const s16 *sv = (const s16*)(ptr_ + posoff); for (int j = 0; j < 3; j++) v[j] = sv[j]; v[3] = 0; } void VertexDecoder::Step_PosFloat() const { u8 *v = (u8 *)(decoded_ + decFmt.posoff); const u8 *fv = (const u8*)(ptr_ + posoff); memcpy(v, fv, 12); } void VertexDecoder::Step_PosS8Skin() const { float *pos = (float *)(decoded_ + decFmt.posoff); const s8 *sv = (const s8*)(ptr_ + posoff); const float fn[3] = { sv[0] / 128.0f, sv[1] / 128.0f, sv[2] / 128.0f }; Vec3ByMatrix43(pos, fn, skinMatrix); } void VertexDecoder::Step_PosS16Skin() const { float *pos = (float *)(decoded_ + decFmt.posoff); const s16 *sv = (const s16*)(ptr_ + posoff); const float fn[3] = { sv[0] / 32768.0f, sv[1] / 32768.0f, sv[2] / 32768.0f }; Vec3ByMatrix43(pos, fn, skinMatrix); } void VertexDecoder::Step_PosFloatSkin() const { float *pos = (float *)(decoded_ + decFmt.posoff); const float *fn = (const float *)(ptr_ + posoff); Vec3ByMatrix43(pos, fn, skinMatrix); } void VertexDecoder::Step_PosS8Through() const { float *v = (float *)(decoded_ + decFmt.posoff); const s8 *sv = (const s8*)(ptr_ + posoff); v[0] = sv[0]; v[1] = sv[1]; v[2] = sv[2]; } void VertexDecoder::Step_PosS16Through() const { float *v = (float *)(decoded_ + decFmt.posoff); const s16 *sv = (const s16*)(ptr_ + posoff); v[0] = sv[0]; v[1] = sv[1]; v[2] = sv[2]; } void VertexDecoder::Step_PosFloatThrough() const { u8 *v = (u8 *)(decoded_ + decFmt.posoff); const u8 *fv = (const u8*)(ptr_ + posoff); memcpy(v, fv, 12); } void VertexDecoder::Step_PosS8Morph() const { float *v = (float *)(decoded_ + decFmt.posoff); memset(v, 0, sizeof(float) * 3); for (int n = 0; n < morphcount; n++) { float multiplier = 1.0f / 127.0f; const s8 *sv = (const s8*)(ptr_ + onesize_*n + posoff); for (int j = 0; j < 3; j++) v[j] += (float)sv[j] * (multiplier * gstate_c.morphWeights[n]); } } void VertexDecoder::Step_PosS16Morph() const { float *v = (float *)(decoded_ + decFmt.posoff); memset(v, 0, sizeof(float) * 3); for (int n = 0; n < morphcount; n++) { float multiplier = 1.0f / 32767.0f; const s16 *sv = (const s16*)(ptr_ + onesize_*n + posoff); for (int j = 0; j < 3; j++) v[j] += (float)sv[j] * (multiplier * gstate_c.morphWeights[n]); } } void VertexDecoder::Step_PosFloatMorph() const { float *v = (float *)(decoded_ + decFmt.posoff); memset(v, 0, sizeof(float) * 3); for (int n = 0; n < morphcount; n++) { const float *fv = (const float*)(ptr_ + onesize_*n + posoff); for (int j = 0; j < 3; j++) v[j] += fv[j] * gstate_c.morphWeights[n]; } } static const StepFunction wtstep[4] = { 0, &VertexDecoder::Step_WeightsU8, &VertexDecoder::Step_WeightsU16, &VertexDecoder::Step_WeightsFloat, }; static const StepFunction wtstep_skin[4] = { 0, &VertexDecoder::Step_WeightsU8Skin, &VertexDecoder::Step_WeightsU16Skin, &VertexDecoder::Step_WeightsFloatSkin, }; static const StepFunction tcstep[4] = { 0, &VertexDecoder::Step_TcU8, &VertexDecoder::Step_TcU16, &VertexDecoder::Step_TcFloat, }; static const StepFunction tcstep_prescale[4] = { 0, &VertexDecoder::Step_TcU8Prescale, &VertexDecoder::Step_TcU16Prescale, &VertexDecoder::Step_TcFloatPrescale, }; static const StepFunction tcstep_through[4] = { 0, &VertexDecoder::Step_TcU8, &VertexDecoder::Step_TcU16Through, &VertexDecoder::Step_TcFloatThrough, }; // Some HD Remaster games double the u16 texture coordinates. static const StepFunction tcstep_Remaster[4] = { 0, &VertexDecoder::Step_TcU8, &VertexDecoder::Step_TcU16Double, &VertexDecoder::Step_TcFloat, }; static const StepFunction tcstep_through_Remaster[4] = { 0, &VertexDecoder::Step_TcU8, &VertexDecoder::Step_TcU16ThroughDouble, &VertexDecoder::Step_TcFloatThrough, }; // TODO: Tc Morph static const StepFunction colstep[8] = { 0, 0, 0, 0, &VertexDecoder::Step_Color565, &VertexDecoder::Step_Color5551, &VertexDecoder::Step_Color4444, &VertexDecoder::Step_Color8888, }; static const StepFunction colstep_morph[8] = { 0, 0, 0, 0, &VertexDecoder::Step_Color565Morph, &VertexDecoder::Step_Color5551Morph, &VertexDecoder::Step_Color4444Morph, &VertexDecoder::Step_Color8888Morph, }; static const StepFunction nrmstep[4] = { 0, &VertexDecoder::Step_NormalS8, &VertexDecoder::Step_NormalS16, &VertexDecoder::Step_NormalFloat, }; static const StepFunction nrmstep_skin[4] = { 0, &VertexDecoder::Step_NormalS8Skin, &VertexDecoder::Step_NormalS16Skin, &VertexDecoder::Step_NormalFloatSkin, }; static const StepFunction nrmstep_morph[4] = { 0, &VertexDecoder::Step_NormalS8Morph, &VertexDecoder::Step_NormalS16Morph, &VertexDecoder::Step_NormalFloatMorph, }; static const StepFunction posstep[4] = { 0, &VertexDecoder::Step_PosS8, &VertexDecoder::Step_PosS16, &VertexDecoder::Step_PosFloat, }; static const StepFunction posstep_skin[4] = { 0, &VertexDecoder::Step_PosS8Skin, &VertexDecoder::Step_PosS16Skin, &VertexDecoder::Step_PosFloatSkin, }; static const StepFunction posstep_morph[4] = { 0, &VertexDecoder::Step_PosS8Morph, &VertexDecoder::Step_PosS16Morph, &VertexDecoder::Step_PosFloatMorph, }; static const StepFunction posstep_through[4] = { 0, &VertexDecoder::Step_PosS8Through, &VertexDecoder::Step_PosS16Through, &VertexDecoder::Step_PosFloatThrough, }; void VertexDecoder::SetVertexType(u32 fmt, VertexDecoderJitCache *jitCache) { fmt_ = fmt; throughmode = (fmt & GE_VTYPE_THROUGH) != 0; numSteps_ = 0; int biggest = 0; size = 0; tc = fmt & 0x3; col = (fmt >> 2) & 0x7; nrm = (fmt >> 5) & 0x3; pos = (fmt >> 7) & 0x3; weighttype = (fmt >> 9) & 0x3; idx = (fmt >> 11) & 0x3; morphcount = ((fmt >> 18) & 0x7)+1; nweights = ((fmt >> 14) & 0x7)+1; int decOff = 0; memset(&decFmt, 0, sizeof(decFmt)); if (morphcount > 1) { DEBUG_LOG_REPORT_ONCE(m, G3D,"VTYPE with morph used: THRU=%i TC=%i COL=%i POS=%i NRM=%i WT=%i NW=%i IDX=%i MC=%i", (int)throughmode, tc,col,pos,nrm,weighttype,nweights,idx,morphcount); } else { DEBUG_LOG(G3D,"VTYPE: THRU=%i TC=%i COL=%i POS=%i NRM=%i WT=%i NW=%i IDX=%i MC=%i", (int)throughmode, tc,col,pos,nrm,weighttype,nweights,idx,morphcount); } bool skinInDecode = weighttype != 0 && g_Config.bSoftwareSkinning && morphcount == 1; if (weighttype) { // && nweights? weightoff = size; //size = align(size, wtalign[weighttype]); unnecessary size += wtsize[weighttype] * nweights; if (wtalign[weighttype] > biggest) biggest = wtalign[weighttype]; if (skinInDecode) { steps_[numSteps_++] = wtstep_skin[weighttype]; // No visible output } else { steps_[numSteps_++] = wtstep[weighttype]; int fmtBase = DEC_FLOAT_1; if (weighttype == GE_VTYPE_WEIGHT_8BIT >> GE_VTYPE_WEIGHT_SHIFT) { fmtBase = DEC_U8_1; } else if (weighttype == GE_VTYPE_WEIGHT_16BIT >> GE_VTYPE_WEIGHT_SHIFT) { fmtBase = DEC_U16_1; } else if (weighttype == GE_VTYPE_WEIGHT_FLOAT >> GE_VTYPE_WEIGHT_SHIFT) { fmtBase = DEC_FLOAT_1; } int numWeights = TranslateNumBones(nweights); if (numWeights <= 4) { decFmt.w0off = decOff; decFmt.w0fmt = fmtBase + numWeights - 1; decOff += DecFmtSize(decFmt.w0fmt); } else { decFmt.w0off = decOff; decFmt.w0fmt = fmtBase + 3; decOff += DecFmtSize(decFmt.w0fmt); decFmt.w1off = decOff; decFmt.w1fmt = fmtBase + numWeights - 5; decOff += DecFmtSize(decFmt.w1fmt); } } } if (tc) { size = align(size, tcalign[tc]); tcoff = size; size += tcsize[tc]; if (tcalign[tc] > biggest) biggest = tcalign[tc]; // NOTE: That we check getUVGenMode here means that we must include it in the decoder ID! if (g_Config.bPrescaleUV && !throughmode && (gstate.getUVGenMode() == 0 || gstate.getUVGenMode() == 3)) { steps_[numSteps_++] = tcstep_prescale[tc]; decFmt.uvfmt = DEC_FLOAT_2; } else { if (g_DoubleTextureCoordinates) steps_[numSteps_++] = throughmode ? tcstep_through_Remaster[tc] : tcstep_Remaster[tc]; else steps_[numSteps_++] = throughmode ? tcstep_through[tc] : tcstep[tc]; switch (tc) { case GE_VTYPE_TC_8BIT >> GE_VTYPE_TC_SHIFT: decFmt.uvfmt = throughmode ? DEC_U8A_2 : DEC_U8_2; break; case GE_VTYPE_TC_16BIT >> GE_VTYPE_TC_SHIFT: decFmt.uvfmt = throughmode ? DEC_U16A_2 : DEC_U16_2; break; case GE_VTYPE_TC_FLOAT >> GE_VTYPE_TC_SHIFT: decFmt.uvfmt = DEC_FLOAT_2; break; } } decFmt.uvoff = decOff; decOff += DecFmtSize(decFmt.uvfmt); } if (col) { size = align(size, colalign[col]); coloff = size; size += colsize[col]; if (colalign[col] > biggest) biggest = colalign[col]; steps_[numSteps_++] = morphcount == 1 ? colstep[col] : colstep_morph[col]; // All color formats decode to DEC_U8_4 currently. // They can become floats later during transform though. decFmt.c0fmt = DEC_U8_4; decFmt.c0off = decOff; decOff += DecFmtSize(decFmt.c0fmt); } else { coloff = 0; } if (nrm) { size = align(size, nrmalign[nrm]); nrmoff = size; size += nrmsize[nrm]; if (nrmalign[nrm] > biggest) biggest = nrmalign[nrm]; if (skinInDecode) { steps_[numSteps_++] = nrmstep_skin[nrm]; // After skinning, we always have three floats. decFmt.nrmfmt = DEC_FLOAT_3; } else { steps_[numSteps_++] = morphcount == 1 ? nrmstep[nrm] : nrmstep_morph[nrm]; if (morphcount == 1) { // The normal formats match the gl formats perfectly, let's use 'em. switch (nrm) { case GE_VTYPE_NRM_8BIT >> GE_VTYPE_NRM_SHIFT: decFmt.nrmfmt = DEC_S8_3; break; case GE_VTYPE_NRM_16BIT >> GE_VTYPE_NRM_SHIFT: decFmt.nrmfmt = DEC_S16_3; break; case GE_VTYPE_NRM_FLOAT >> GE_VTYPE_NRM_SHIFT: decFmt.nrmfmt = DEC_FLOAT_3; break; } } else { decFmt.nrmfmt = DEC_FLOAT_3; } } decFmt.nrmoff = decOff; decOff += DecFmtSize(decFmt.nrmfmt); } if (pos) { // there's always a position size = align(size, posalign[pos]); posoff = size; size += possize[pos]; if (posalign[pos] > biggest) biggest = posalign[pos]; if (throughmode) { steps_[numSteps_++] = posstep_through[pos]; decFmt.posfmt = DEC_FLOAT_3; } else { if (skinInDecode) { steps_[numSteps_++] = posstep_skin[pos]; decFmt.posfmt = DEC_FLOAT_3; } else { steps_[numSteps_++] = morphcount == 1 ? posstep[pos] : posstep_morph[pos]; if (morphcount == 1) { // The non-through-mode position formats match the gl formats perfectly, let's use 'em. switch (pos) { case GE_VTYPE_POS_8BIT >> GE_VTYPE_POS_SHIFT: decFmt.posfmt = DEC_S8_3; break; case GE_VTYPE_POS_16BIT >> GE_VTYPE_POS_SHIFT: decFmt.posfmt = DEC_S16_3; break; case GE_VTYPE_POS_FLOAT >> GE_VTYPE_POS_SHIFT: decFmt.posfmt = DEC_FLOAT_3; break; } } else { // Actually, temporarily let's not. decFmt.posfmt = DEC_FLOAT_3; } } } decFmt.posoff = decOff; decOff += DecFmtSize(decFmt.posfmt); } else { ERROR_LOG_REPORT(G3D, "Vertices without position found"); } decFmt.stride = decOff; size = align(size, biggest); onesize_ = size; size *= morphcount; DEBUG_LOG(G3D,"SVT : size = %i, aligned to biggest %i", size, biggest); // Attempt to JIT as well if (jitCache && g_Config.bVertexDecoderJit) { jitted_ = jitCache->Compile(*this); if (!jitted_) { WARN_LOG(G3D, "Vertex decoder JIT failed! fmt = %08x", fmt_);; } } } void VertexDecoder::DecodeVerts(u8 *decodedptr, const void *verts, int indexLowerBound, int indexUpperBound) const { // Decode the vertices within the found bounds, once each // decoded_ and ptr_ are used in the steps, so can't be turned into locals for speed. decoded_ = decodedptr; ptr_ = (const u8*)verts + indexLowerBound * size; int count = indexUpperBound - indexLowerBound + 1; int stride = decFmt.stride; if (jitted_) { // We've compiled the steps into optimized machine code, so just jump! jitted_(ptr_, decoded_, count); } else { // Interpret the decode steps for (; count; count--) { for (int i = 0; i < numSteps_; i++) { ((*this).*steps_[i])(); } ptr_ += size; decoded_ += stride; } } } int VertexDecoder::ToString(char *output) const { char * start = output; output += sprintf(output, "P: %i ", pos); if (nrm) output += sprintf(output, "N: %i ", nrm); if (col) output += sprintf(output, "C: %i ", col); if (tc) output += sprintf(output, "T: %i ", tc); if (weighttype) output += sprintf(output, "W: %i ", weighttype); if (idx) output += sprintf(output, "I: %i ", idx); if (morphcount > 1) output += sprintf(output, "Morph: %i ", morphcount); output += sprintf(output, "Verts: %i ", stats_[STAT_VERTSSUBMITTED]); if (throughmode) output += sprintf(output, " (through)"); output += sprintf(output, " (size: %i)", VertexSize()); return output - start; } VertexDecoderJitCache::VertexDecoderJitCache() { // 256k should be enough. AllocCodeSpace(1024 * 64 * 4); // Add some random code to "help" MSVC's buggy disassembler :( #if defined(_WIN32) using namespace Gen; for (int i = 0; i < 100; i++) { MOV(32, R(EAX), R(EBX)); RET(); } #else #ifdef ARM BKPT(0); BKPT(0); #endif #endif } #if defined(PPC) #error This should not be built for PowerPC, at least not yet. #endif