// Copyright (c) 2013- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include "Common/CPUDetect.h" #include "Common/Math/math_util.h" #include "Common/GPU/OpenGL/GLFeatures.h" #include "Core/Config.h" #include "Core/System.h" #include "GPU/GPUState.h" #include "GPU/Math3D.h" #include "GPU/Common/FramebufferManagerCommon.h" #include "GPU/Common/GPUStateUtils.h" #include "GPU/Common/SoftwareTransformCommon.h" #include "GPU/Common/TransformCommon.h" #include "GPU/Common/VertexDecoderCommon.h" #include "GPU/Common/DrawEngineCommon.h" // This is the software transform pipeline, which is necessary for supporting RECT // primitives correctly without geometry shaders, and may be easier to use for // debugging than the hardware transform pipeline. // There's code here that simply expands transformed RECTANGLES into plain triangles. // We're gonna have to keep software transforming RECTANGLES, unless we use a geom shader which we can't on OpenGL ES 2.0 or DX9. // Usually, though, these primitives don't use lighting etc so it's no biggie performance wise, but it would be nice to get rid of // this code. // Actually, if we find the camera-relative right and down vectors, it might even be possible to add the extra points in pre-transformed // space and thus make decent use of hardware transform. // Actually again, single quads could be drawn more efficiently using GL_TRIANGLE_STRIP, no need to duplicate verts as for // GL_TRIANGLES. Still need to sw transform to compute the extra two corners though. // // The verts are in the order: BR BL TL TR static void SwapUVs(TransformedVertex &a, TransformedVertex &b) { float tempu = a.u; float tempv = a.v; a.u = b.u; a.v = b.v; b.u = tempu; b.v = tempv; } // 2 3 3 2 0 3 2 1 // to to or // 1 0 0 1 1 2 3 0 // Note: 0 is BR and 2 is TL. static void RotateUV(TransformedVertex v[4], bool flippedY) { // We use the transformed tl/br coordinates to figure out whether they're flipped or not. float ySign = flippedY ? -1.0 : 1.0; const float x1 = v[2].x; const float x2 = v[0].x; const float y1 = v[2].y * ySign; const float y2 = v[0].y * ySign; if ((x1 < x2 && y1 < y2) || (x1 > x2 && y1 > y2)) SwapUVs(v[1], v[3]); } static void RotateUVThrough(TransformedVertex v[4]) { float x1 = v[2].x; float x2 = v[0].x; float y1 = v[2].y; float y2 = v[0].y; if ((x1 < x2 && y1 > y2) || (x1 > x2 && y1 < y2)) SwapUVs(v[1], v[3]); } // Clears on the PSP are best done by drawing a series of vertical strips // in clear mode. This tries to detect that. static bool IsReallyAClear(const TransformedVertex *transformed, int numVerts, float x2, float y2) { if (transformed[0].x < 0.0f || transformed[0].y < 0.0f || transformed[0].x > 0.5f || transformed[0].y > 0.5f) return false; const float originY = transformed[0].y; // Color and Z are decided by the second vertex, so only need to check those for matching color. const u32 matchcolor = transformed[1].color0_32; const float matchz = transformed[1].z; for (int i = 1; i < numVerts; i++) { if ((i & 1) == 0) { // Top left of a rectangle if (transformed[i].y != originY) return false; float gap = fabsf(transformed[i].x - transformed[i - 1].x); // Should probably do some smarter check. if (i > 0 && gap > 0.0625) return false; } else { if (transformed[i].color0_32 != matchcolor || transformed[i].z != matchz) return false; // Bottom right if (transformed[i].y < y2) return false; if (transformed[i].x <= transformed[i - 1].x) return false; } } // The last vertical strip often extends outside the drawing area. if (transformed[numVerts - 1].x < x2) return false; return true; } void SoftwareTransform::SetProjMatrix(const float mtx[14], bool invertedX, bool invertedY, const Lin::Vec3 &trans, const Lin::Vec3 &scale) { memcpy(&projMatrix_.m, mtx, 16 * sizeof(float)); if (invertedY) { projMatrix_.xy = -projMatrix_.xy; projMatrix_.yy = -projMatrix_.yy; projMatrix_.zy = -projMatrix_.zy; projMatrix_.wy = -projMatrix_.wy; } if (invertedX) { projMatrix_.xx = -projMatrix_.xx; projMatrix_.yx = -projMatrix_.yx; projMatrix_.zx = -projMatrix_.zx; projMatrix_.wx = -projMatrix_.wx; } projMatrix_.translateAndScale(trans, scale); } void SoftwareTransform::Transform(int prim, u32 vertType, const DecVtxFormat &decVtxFormat, int numDecodedVerts, SoftwareTransformResult *result) { u8 *decoded = params_.decoded; TransformedVertex *transformed = params_.transformed; bool throughmode = (vertType & GE_VTYPE_THROUGH_MASK) != 0; bool lmode = gstate.isUsingSecondaryColor() && gstate.isLightingEnabled(); float uscale = 1.0f; float vscale = 1.0f; if (throughmode && prim != GE_PRIM_RECTANGLES) { // For through rectangles, we do this scaling in Expand. uscale /= gstate_c.curTextureWidth; vscale /= gstate_c.curTextureHeight; } const int w = gstate.getTextureWidth(0); const int h = gstate.getTextureHeight(0); float widthFactor = (float) w / (float) gstate_c.curTextureWidth; float heightFactor = (float) h / (float) gstate_c.curTextureHeight; Lighter lighter(vertType); float fog_end = getFloat24(gstate.fog1); float fog_slope = getFloat24(gstate.fog2); // Same fixup as in ShaderManagerGLES.cpp if (my_isnanorinf(fog_end)) { // Not really sure what a sensible value might be, but let's try 64k. fog_end = std::signbit(fog_end) ? -65535.0f : 65535.0f; } if (my_isnanorinf(fog_slope)) { fog_slope = std::signbit(fog_slope) ? -65535.0f : 65535.0f; } VertexReader reader(decoded, decVtxFormat, vertType); if (throughmode) { const u32 materialAmbientRGBA = gstate.getMaterialAmbientRGBA(); const bool hasColor = reader.hasColor0(); const bool hasUV = reader.hasUV(); for (int index = 0; index < numDecodedVerts; index++) { // Do not touch the coordinates or the colors. No lighting. reader.Goto(index); // TODO: Write to a flexible buffer, we don't always need all four components. TransformedVertex &vert = transformed[index]; reader.ReadPos(vert.pos); vert.pos_w = 1.0f; if (hasColor) { vert.color0_32 = reader.ReadColor0_8888(); } else { vert.color0_32 = materialAmbientRGBA; } if (hasUV) { reader.ReadUV(vert.uv); vert.u *= uscale; vert.v *= vscale; } else { vert.u = 0.0f; vert.v = 0.0f; } vert.uv_w = 1.0f; // Ignore color1 and fog, never used in throughmode anyway. // The w of uv is also never used (hardcoded to 1.0.) } } else { const Vec4f materialAmbientRGBA = Vec4f::FromRGBA(gstate.getMaterialAmbientRGBA()); // Okay, need to actually perform the full transform. for (int index = 0; index < numDecodedVerts; index++) { reader.Goto(index); float v[3] = {0, 0, 0}; Vec4f c0 = Vec4f(1, 1, 1, 1); Vec4f c1 = Vec4f(0, 0, 0, 0); float uv[3] = {0, 0, 1}; float fogCoef = 1.0f; float out[3]; float pos[3]; Vec3f normal(0, 0, 1); Vec3f worldnormal(0, 0, 1); reader.ReadPos(pos); float ruv[2] = { 0.0f, 0.0f }; if (reader.hasUV()) reader.ReadUV(ruv); Vec4f unlitColor; if (reader.hasColor0()) reader.ReadColor0(unlitColor.AsArray()); else unlitColor = materialAmbientRGBA; if (reader.hasNormal()) reader.ReadNrm(normal.AsArray()); Vec3ByMatrix43(out, pos, gstate.worldMatrix); if (reader.hasNormal()) { if (gstate.areNormalsReversed()) { normal = -normal; } Norm3ByMatrix43(worldnormal.AsArray(), normal.AsArray(), gstate.worldMatrix); worldnormal = worldnormal.NormalizedOr001(cpu_info.bSSE4_1); } // Perform lighting here if enabled. if (gstate.isLightingEnabled()) { float litColor0[4]; float litColor1[4]; lighter.Light(litColor0, litColor1, unlitColor.AsArray(), out, worldnormal); // Don't ignore gstate.lmode - we should send two colors in that case for (int j = 0; j < 4; j++) { c0[j] = litColor0[j]; } if (lmode) { // Separate colors for (int j = 0; j < 4; j++) { c1[j] = litColor1[j]; } } else { // Summed color into c0 (will clamp in ToRGBA().) for (int j = 0; j < 4; j++) { c0[j] += litColor1[j]; } } } else { for (int j = 0; j < 4; j++) { c0[j] = unlitColor[j]; } if (lmode) { // c1 is already 0. } } // Perform texture coordinate generation after the transform and lighting - one style of UV depends on lights. switch (gstate.getUVGenMode()) { case GE_TEXMAP_TEXTURE_COORDS: // UV mapping case GE_TEXMAP_UNKNOWN: // Seen in Riviera. Unsure of meaning, but this works. // We always prescale in the vertex decoder now. uv[0] = ruv[0]; uv[1] = ruv[1]; uv[2] = 1.0f; break; case GE_TEXMAP_TEXTURE_MATRIX: { // Projection mapping Vec3f source(0.0f, 0.0f, 1.0f); switch (gstate.getUVProjMode()) { case GE_PROJMAP_POSITION: // Use model space XYZ as source source = pos; break; case GE_PROJMAP_UV: // Use unscaled UV as source source = Vec3f(ruv[0], ruv[1], 0.0f); break; case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized normal as source source = normal.Normalized(cpu_info.bSSE4_1); if (!reader.hasNormal()) { ERROR_LOG_REPORT(Log::G3D, "Normal projection mapping without normal?"); } break; case GE_PROJMAP_NORMAL: // Use non-normalized normal as source! source = normal; if (!reader.hasNormal()) { ERROR_LOG_REPORT(Log::G3D, "Normal projection mapping without normal?"); } break; } float uvw[3]; Vec3ByMatrix43(uvw, &source.x, gstate.tgenMatrix); uv[0] = uvw[0]; uv[1] = uvw[1]; uv[2] = uvw[2]; } break; case GE_TEXMAP_ENVIRONMENT_MAP: // Shade mapping - use two light sources to generate U and V. { auto getLPosFloat = [&](int l, int i) { return getFloat24(gstate.lpos[l * 3 + i]); }; auto getLPos = [&](int l) { return Vec3f(getLPosFloat(l, 0), getLPosFloat(l, 1), getLPosFloat(l, 2)); }; auto calcShadingLPos = [&](int l) { Vec3f pos = getLPos(l); return pos.NormalizedOr001(cpu_info.bSSE4_1); }; // Might not have lighting enabled, so don't use lighter. Vec3f lightpos0 = calcShadingLPos(gstate.getUVLS0()); Vec3f lightpos1 = calcShadingLPos(gstate.getUVLS1()); uv[0] = (1.0f + Dot(lightpos0, worldnormal))/2.0f; uv[1] = (1.0f + Dot(lightpos1, worldnormal))/2.0f; uv[2] = 1.0f; } break; default: // Illegal ERROR_LOG_REPORT(Log::G3D, "Impossible UV gen mode? %d", gstate.getUVGenMode()); break; } uv[0] = uv[0] * widthFactor; uv[1] = uv[1] * heightFactor; // Transform the coord by the view matrix. Vec3ByMatrix43(v, out, gstate.viewMatrix); fogCoef = (v[2] + fog_end) * fog_slope; // TODO: Write to a flexible buffer, we don't always need all four components. Vec3ByMatrix44(transformed[index].pos, v, projMatrix_.m); transformed[index].fog = fogCoef; memcpy(&transformed[index].uv, uv, 3 * sizeof(float)); transformed[index].color0_32 = c0.ToRGBA(); transformed[index].color1_32 = c1.ToRGBA(); // Vertex depth rounding is done in the shader, to simulate the 16-bit depth buffer. } } // Here's the best opportunity to try to detect rectangles used to clear the screen, and // replace them with real clears. This can provide a speedup on certain mobile chips. // // An alternative option is to simply ditch all the verts except the first and last to create a single // rectangle out of many. Quite a small optimization though. // TODO: This bleeds outside the play area in non-buffered mode. Big deal? Probably not. // TODO: Allow creating a depth clear and a color draw. bool reallyAClear = false; if (numDecodedVerts > 1 && prim == GE_PRIM_RECTANGLES && gstate.isModeClear() && throughmode) { int scissorX2 = gstate.getScissorX2() + 1; int scissorY2 = gstate.getScissorY2() + 1; reallyAClear = IsReallyAClear(transformed, numDecodedVerts, scissorX2, scissorY2); if (reallyAClear && gstate.getColorMask() != 0xFFFFFFFF && (gstate.isClearModeColorMask() || gstate.isClearModeAlphaMask())) { result->setSafeSize = true; result->safeWidth = scissorX2; result->safeHeight = scissorY2; } } if (params_.allowClear && reallyAClear && gl_extensions.gpuVendor != GPU_VENDOR_IMGTEC) { // If alpha is not allowed to be separate, it must match for both depth/stencil and color. Vulkan requires this. bool alphaMatchesColor = gstate.isClearModeColorMask() == gstate.isClearModeAlphaMask(); bool depthMatchesStencil = gstate.isClearModeAlphaMask() == gstate.isClearModeDepthMask(); bool matchingComponents = params_.allowSeparateAlphaClear || (alphaMatchesColor && depthMatchesStencil); bool stencilNotMasked = !gstate.isClearModeAlphaMask() || gstate.getStencilWriteMask() == 0x00; if (matchingComponents && stencilNotMasked) { DepthScaleFactors depthScale = GetDepthScaleFactors(gstate_c.UseFlags()); result->color = transformed[1].color0_32; // Need to rescale from a [0, 1] float. This is the final transformed value. result->depth = depthScale.EncodeFromU16((float)(int)(transformed[1].z * 65535.0f)); result->action = SW_CLEAR; gpuStats.numClears++; return; } } // Detect full screen "clears" that might not be so obvious, to set the safe size if possible. if (!result->setSafeSize && prim == GE_PRIM_RECTANGLES && numDecodedVerts == 2 && throughmode) { bool clearingColor = gstate.isModeClear() && (gstate.isClearModeColorMask() || gstate.isClearModeAlphaMask()); bool writingColor = gstate.getColorMask() != 0xFFFFFFFF; bool startsZeroX = transformed[0].x <= 0.0f && transformed[1].x > 0.0f && transformed[1].x > transformed[0].x; bool startsZeroY = transformed[0].y <= 0.0f && transformed[1].y > 0.0f && transformed[1].y > transformed[0].y; if (startsZeroX && startsZeroY && (clearingColor || writingColor)) { int scissorX2 = gstate.getScissorX2() + 1; int scissorY2 = gstate.getScissorY2() + 1; result->setSafeSize = true; result->safeWidth = std::min(scissorX2, (int)transformed[1].x); result->safeHeight = std::min(scissorY2, (int)transformed[1].y); } } } void SoftwareTransform::BuildDrawingParams(int prim, int vertexCount, u32 vertType, u16 *&inds, int indsSize, int &numDecodedVerts, int vertsSize, SoftwareTransformResult *result) { TransformedVertex *transformed = params_.transformed; TransformedVertex *transformedExpanded = params_.transformedExpanded; bool throughmode = (vertType & GE_VTYPE_THROUGH_MASK) != 0; // Step 2: expand and process primitives. result->drawBuffer = transformed; int numTrans = 0; FramebufferManagerCommon *fbman = params_.fbman; bool useBufferedRendering = fbman->UseBufferedRendering(); if (prim == GE_PRIM_RECTANGLES) { if (!ExpandRectangles(vertexCount, numDecodedVerts, vertsSize, inds, indsSize, transformed, transformedExpanded, numTrans, throughmode, &result->pixelMapped)) { result->drawNumTrans = 0; result->pixelMapped = false; return; } result->drawBuffer = transformedExpanded; // We don't know the color until here, so we have to do it now, instead of in StateMapping. // Might want to reconsider the order of things later... if (gstate.isModeClear() && gstate.isClearModeAlphaMask()) { result->setStencil = true; if (vertexCount > 1) { // Take the bottom right alpha value of the first rect as the stencil value. // Technically, each rect could individually fill its stencil, but most of the // time they use the same one. result->stencilValue = transformed[inds[1]].color0[3]; } else { result->stencilValue = 0; } } } else if (prim == GE_PRIM_POINTS) { result->pixelMapped = false; if (!ExpandPoints(vertexCount, numDecodedVerts, vertsSize, inds, indsSize, transformed, transformedExpanded, numTrans, throughmode)) { result->drawNumTrans = 0; return; } result->drawBuffer = transformedExpanded; } else if (prim == GE_PRIM_LINES) { result->pixelMapped = false; if (!ExpandLines(vertexCount, numDecodedVerts, vertsSize, inds, indsSize, transformed, transformedExpanded, numTrans, throughmode)) { result->drawNumTrans = 0; return; } result->drawBuffer = transformedExpanded; } else { // We can simply draw the unexpanded buffer. numTrans = vertexCount; result->pixelMapped = false; // If we don't support custom cull in the shader, process it here. if (!gstate_c.Use(GPU_USE_CULL_DISTANCE) && vertexCount > 0 && !throughmode) { const u16 *indsIn = (const u16 *)inds; u16 *newInds = inds + vertexCount; u16 *indsOut = newInds; float minZValue, maxZValue; CalcCullParams(minZValue, maxZValue); std::vector outsideZ; outsideZ.resize(vertexCount); // First, check inside/outside directions for each index. for (int i = 0; i < vertexCount; ++i) { float z = transformed[indsIn[i]].z / transformed[indsIn[i]].pos_w; if (z > maxZValue) outsideZ[i] = 1; else if (z < minZValue) outsideZ[i] = -1; else outsideZ[i] = 0; } // Now, for each primitive type, throw away the indices if: // - Depth clamp on, and ALL verts are outside *in the same direction*. // - Depth clamp off, and ANY vert is outside. if (prim == GE_PRIM_TRIANGLES && gstate.isDepthClampEnabled()) { numTrans = 0; for (int i = 0; i < vertexCount - 2; i += 3) { if (outsideZ[i + 0] != 0 && outsideZ[i + 0] == outsideZ[i + 1] && outsideZ[i + 0] == outsideZ[i + 2]) { // All outside, and all the same direction. Nuke this triangle. continue; } memcpy(indsOut, indsIn + i, 3 * sizeof(uint16_t)); indsOut += 3; numTrans += 3; } inds = newInds; } else if (prim == GE_PRIM_TRIANGLES) { numTrans = 0; for (int i = 0; i < vertexCount - 2; i += 3) { if (outsideZ[i + 0] != 0 || outsideZ[i + 1] != 0 || outsideZ[i + 2] != 0) { // Even one outside, and we cull. continue; } memcpy(indsOut, indsIn + i, 3 * sizeof(uint16_t)); indsOut += 3; numTrans += 3; } inds = newInds; } } else if (throughmode && g_Config.bSmart2DTexFiltering && !gstate_c.textureIsVideo) { // We check some common cases for pixel mapping. // TODO: It's not really optimal that some previous step has removed the triangle strip. if (vertexCount <= 6 && prim == GE_PRIM_TRIANGLES) { // It's enough to check UV deltas vs pos deltas between vertex pairs: // 0-1 1-3 3-2 2-0. Maybe can even skip the last one. Probably some simple math can get us that sequence. // Unfortunately we need to reverse the previous UV scaling operation. Fortunately these are powers of two // so the operations are exact. bool pixelMapped = true; const u16 *indsIn = (const u16 *)inds; const float uscale = gstate_c.curTextureWidth; const float vscale = gstate_c.curTextureHeight; for (int t = 0; t < vertexCount; t += 3) { struct { int a; int b; } pairs[] = { {0, 1}, {1, 2}, {2, 0} }; for (int i = 0; i < ARRAY_SIZE(pairs); i++) { int a = indsIn[t + pairs[i].a]; int b = indsIn[t + pairs[i].b]; float du = fabsf((transformed[a].u - transformed[b].u) * uscale); float dv = fabsf((transformed[a].v - transformed[b].v) * vscale); float dx = fabsf(transformed[a].x - transformed[b].x); float dy = fabsf(transformed[a].y - transformed[b].y); if (du != dx || dv != dy) { pixelMapped = false; } } if (!pixelMapped) { break; } } result->pixelMapped = pixelMapped; } } } if (gstate.isModeClear()) { gpuStats.numClears++; } result->action = SW_DRAW_INDEXED; result->drawNumTrans = numTrans; } void SoftwareTransform::CalcCullParams(float &minZValue, float &maxZValue) const { // The projected Z can be up to 0x3F8000FF, which is where this constant is from. // It seems like it may only maintain 15 mantissa bits (excluding implied.) maxZValue = 1.000030517578125f * gstate_c.vpDepthScale; minZValue = -maxZValue; // Scale and offset the Z appropriately, since we baked that into a projection transform. if (params_.usesHalfZ) { maxZValue = maxZValue * 0.5f + 0.5f + gstate_c.vpZOffset * 0.5f; minZValue = minZValue * 0.5f + 0.5f + gstate_c.vpZOffset * 0.5f; } else { maxZValue += gstate_c.vpZOffset; minZValue += gstate_c.vpZOffset; } // In case scale was negative, flip. if (minZValue > maxZValue) std::swap(minZValue, maxZValue); } bool SoftwareTransform::ExpandRectangles(int vertexCount, int &numDecodedVerts, int vertsSize, u16 *&inds, int indsSize, const TransformedVertex *transformed, TransformedVertex *transformedExpanded, int &numTrans, bool throughmode, bool *pixelMappedExactly) const { // Before we start, do a sanity check - does the output fit? if ((vertexCount / 2) * 6 > indsSize) { // Won't fit, kill the draw. return false; } if ((vertexCount / 2) * 4 > vertsSize) { // Won't fit, kill the draw. return false; } // Rectangles always need 2 vertices, disregard the last one if there's an odd number. vertexCount = vertexCount & ~1; numTrans = 0; TransformedVertex *trans = &transformedExpanded[0]; const u16 *indsIn = (const u16 *)inds; u16 *newInds = inds + vertexCount; u16 *indsOut = newInds; numDecodedVerts = 4 * (vertexCount / 2); float uscale = 1.0f; float vscale = 1.0f; if (throughmode) { uscale /= gstate_c.curTextureWidth; vscale /= gstate_c.curTextureHeight; } bool pixelMapped = g_Config.bSmart2DTexFiltering && !gstate_c.textureIsVideo; for (int i = 0; i < vertexCount; i += 2) { const TransformedVertex &transVtxTL = transformed[indsIn[i + 0]]; const TransformedVertex &transVtxBR = transformed[indsIn[i + 1]]; if (pixelMapped) { float dx = transVtxBR.x - transVtxTL.x; float dy = transVtxBR.y - transVtxTL.y; float du = transVtxBR.u - transVtxTL.u; float dv = transVtxBR.v - transVtxTL.v; // NOTE: We will accept it as pixel mapped if only one dimension is stretched. This fixes dialog frames in FFI. // Though, there could be false positives in other games due to this. Let's see if it is a problem... if (dx <= 0 || dy <= 0 || (dx != du && dy != dv)) { pixelMapped = false; } } // We have to turn the rectangle into two triangles, so 6 points. // This is 4 verts + 6 indices. // bottom right trans[0] = transVtxBR; trans[0].u = transVtxBR.u * uscale; trans[0].v = transVtxBR.v * vscale; // top right trans[1] = transVtxBR; trans[1].y = transVtxTL.y; trans[1].u = transVtxBR.u * uscale; trans[1].v = transVtxTL.v * vscale; // top left trans[2] = transVtxBR; trans[2].x = transVtxTL.x; trans[2].y = transVtxTL.y; trans[2].u = transVtxTL.u * uscale; trans[2].v = transVtxTL.v * vscale; // bottom left trans[3] = transVtxBR; trans[3].x = transVtxTL.x; trans[3].u = transVtxTL.u * uscale; trans[3].v = transVtxBR.v * vscale; // That's the four corners. Now process UV rotation. if (throughmode) { RotateUVThrough(trans); } else { RotateUV(trans, params_.flippedY); } // Triangle: BR-TR-TL indsOut[0] = i * 2 + 0; indsOut[1] = i * 2 + 1; indsOut[2] = i * 2 + 2; // Triangle: BL-BR-TL indsOut[3] = i * 2 + 3; indsOut[4] = i * 2 + 0; indsOut[5] = i * 2 + 2; trans += 4; indsOut += 6; numTrans += 6; } inds = newInds; *pixelMappedExactly = pixelMapped; return true; } // In-place. So, better not be doing this on GPU memory! void IndexBufferProvokingLastToFirst(int prim, u16 *inds, int indsSize) { switch (prim) { case GE_PRIM_LINES: // Swap every two indices. for (int i = 0; i < indsSize - 1; i += 2) { u16 temp = inds[i]; inds[i] = inds[i + 1]; inds[i + 1] = temp; } break; case GE_PRIM_TRIANGLES: // Rotate the triangle so the last becomes the first, without changing the winding order. // This could be done with a series of pshufb. for (int i = 0; i < indsSize - 2; i += 3) { u16 temp = inds[i + 2]; inds[i + 2] = inds[i + 1]; inds[i + 1] = inds[i]; inds[i] = temp; } break; case GE_PRIM_POINTS: // Nothing to do, break; case GE_PRIM_RECTANGLES: // Nothing to do, already using the 2nd vertex. break; default: _dbg_assert_msg_(false, "IndexBufferProvokingFirstToLast: Only works with plain indexed primitives, no strips or fans") } } bool SoftwareTransform::ExpandLines(int vertexCount, int &numDecodedVerts, int vertsSize, u16 *&inds, int indsSize, const TransformedVertex *transformed, TransformedVertex *transformedExpanded, int &numTrans, bool throughmode) { // Before we start, do a sanity check - does the output fit? if ((vertexCount / 2) * 6 > indsSize) { // Won't fit, kill the draw. return false; } if ((vertexCount / 2) * 4 > vertsSize) { return false; } // Lines always need 2 vertices, disregard the last one if there's an odd number. vertexCount = vertexCount & ~1; numTrans = 0; TransformedVertex *trans = &transformedExpanded[0]; const u16 *indsIn = (const u16 *)inds; u16 *newInds = inds + vertexCount; u16 *indsOut = newInds; float dx = 1.0f * gstate_c.vpWidthScale * (1.0f / fabsf(gstate.getViewportXScale())); float dy = 1.0f * gstate_c.vpHeightScale * (1.0f / fabsf(gstate.getViewportYScale())); float du = 1.0f / gstate_c.curTextureWidth; float dv = 1.0f / gstate_c.curTextureHeight; if (throughmode) { dx = 1.0f; dy = 1.0f; } numDecodedVerts = 4 * (vertexCount / 2); if (PSP_CoreParameter().compat.flags().CenteredLines) { // Lines meant to be pretty in 3D like in Echochrome. // We expand them in both directions for symmetry, so we need to halve the expansion. dx *= 0.5f; dy *= 0.5f; for (int i = 0; i < vertexCount; i += 2) { const TransformedVertex &transVtx1 = transformed[indsIn[i + 0]]; const TransformedVertex &transVtx2 = transformed[indsIn[i + 1]]; // Okay, let's calculate the perpendicular. float horizontal = transVtx2.x * transVtx2.pos_w - transVtx1.x * transVtx1.pos_w; float vertical = transVtx2.y * transVtx2.pos_w - transVtx1.y * transVtx1.pos_w; Vec2f addWidth = Vec2f(-vertical, horizontal).Normalized(); float xoff = addWidth.x * dx; float yoff = addWidth.y * dy; // bottom right trans[0].CopyFromWithOffset(transVtx2, xoff * transVtx2.pos_w, yoff * transVtx2.pos_w); // top right trans[1].CopyFromWithOffset(transVtx1, xoff * transVtx1.pos_w, yoff * transVtx1.pos_w); // top left trans[2].CopyFromWithOffset(transVtx1, -xoff * transVtx1.pos_w, -yoff * transVtx1.pos_w); // bottom left trans[3].CopyFromWithOffset(transVtx2, -xoff * transVtx2.pos_w, -yoff * transVtx2.pos_w); // Triangle: BR-TR-TL indsOut[0] = i * 2 + 0; indsOut[1] = i * 2 + 1; indsOut[2] = i * 2 + 2; // Triangle: BL-BR-TL indsOut[3] = i * 2 + 3; indsOut[4] = i * 2 + 0; indsOut[5] = i * 2 + 2; trans += 4; indsOut += 6; numTrans += 6; } } else { // Lines meant to be as closely compatible with upscaled 2D drawing as possible. // We use this as default. for (int i = 0; i < vertexCount; i += 2) { const TransformedVertex &transVtx1 = transformed[indsIn[i + 0]]; const TransformedVertex &transVtx2 = transformed[indsIn[i + 1]]; const TransformedVertex &transVtxT = transVtx1.y <= transVtx2.y ? transVtx1 : transVtx2; const TransformedVertex &transVtxB = transVtx1.y <= transVtx2.y ? transVtx2 : transVtx1; const TransformedVertex &transVtxL = transVtx1.x <= transVtx2.x ? transVtx1 : transVtx2; const TransformedVertex &transVtxR = transVtx1.x <= transVtx2.x ? transVtx2 : transVtx1; // Sort the points so our perpendicular will bias the right direction. const TransformedVertex &transVtxTL = (transVtxT.y != transVtxB.y || transVtxT.x > transVtxB.x) ? transVtxT : transVtxB; const TransformedVertex &transVtxBL = (transVtxT.y != transVtxB.y || transVtxT.x > transVtxB.x) ? transVtxB : transVtxT; // Okay, let's calculate the perpendicular. float horizontal = transVtxTL.x * transVtxTL.pos_w - transVtxBL.x * transVtxBL.pos_w; float vertical = transVtxTL.y * transVtxTL.pos_w - transVtxBL.y * transVtxBL.pos_w; Vec2f addWidth = Vec2f(-vertical, horizontal).Normalized(); // bottom right trans[0] = transVtxBL; trans[0].x += addWidth.x * dx * trans[0].pos_w; trans[0].y += addWidth.y * dy * trans[0].pos_w; trans[0].u += addWidth.x * du * trans[0].uv_w; trans[0].v += addWidth.y * dv * trans[0].uv_w; // top right trans[1] = transVtxTL; trans[1].x += addWidth.x * dx * trans[1].pos_w; trans[1].y += addWidth.y * dy * trans[1].pos_w; trans[1].u += addWidth.x * du * trans[1].uv_w; trans[1].v += addWidth.y * dv * trans[1].uv_w; // top left trans[2] = transVtxTL; // bottom left trans[3] = transVtxBL; // Triangle: BR-TR-TL indsOut[0] = i * 2 + 0; indsOut[1] = i * 2 + 1; indsOut[2] = i * 2 + 2; // Triangle: BL-BR-TL indsOut[3] = i * 2 + 3; indsOut[4] = i * 2 + 0; indsOut[5] = i * 2 + 2; trans += 4; indsOut += 6; numTrans += 6; } } inds = newInds; return true; } bool SoftwareTransform::ExpandPoints(int vertexCount, int &maxIndex, int vertsSize, u16 *&inds, int indsSize, const TransformedVertex *transformed, TransformedVertex *transformedExpanded, int &numTrans, bool throughmode) { // Before we start, do a sanity check - does the output fit? if (vertexCount * 6 > indsSize) { // Won't fit, kill the draw. return false; } if (vertexCount * 4 > vertsSize) { // Won't fit, kill the draw. return false; } numTrans = 0; TransformedVertex *trans = &transformedExpanded[0]; const u16 *indsIn = (const u16 *)inds; u16 *newInds = inds + vertexCount; u16 *indsOut = newInds; float dx = 1.0f * gstate_c.vpWidthScale * (1.0f / gstate.getViewportXScale()); float dy = 1.0f * gstate_c.vpHeightScale * (1.0f / gstate.getViewportYScale()); float du = 1.0f / gstate_c.curTextureWidth; float dv = 1.0f / gstate_c.curTextureHeight; if (throughmode) { dx = 1.0f; dy = 1.0f; } maxIndex = 4 * vertexCount; for (int i = 0; i < vertexCount; ++i) { const TransformedVertex &transVtxTL = transformed[indsIn[i]]; // Create the bottom right version. TransformedVertex transVtxBR = transVtxTL; transVtxBR.x += dx * transVtxTL.pos_w; transVtxBR.y += dy * transVtxTL.pos_w; transVtxBR.u += du * transVtxTL.uv_w; transVtxBR.v += dv * transVtxTL.uv_w; // We have to turn the rectangle into two triangles, so 6 points. // This is 4 verts + 6 indices. // bottom right trans[0] = transVtxBR; // top right trans[1] = transVtxBR; trans[1].y = transVtxTL.y; trans[1].v = transVtxTL.v; // top left trans[2] = transVtxBR; trans[2].x = transVtxTL.x; trans[2].y = transVtxTL.y; trans[2].u = transVtxTL.u; trans[2].v = transVtxTL.v; // bottom left trans[3] = transVtxBR; trans[3].x = transVtxTL.x; trans[3].u = transVtxTL.u; // Triangle: BR-TR-TL indsOut[0] = i * 4 + 0; indsOut[1] = i * 4 + 1; indsOut[2] = i * 4 + 2; // Triangle: BL-BR-TL indsOut[3] = i * 4 + 3; indsOut[4] = i * 4 + 0; indsOut[5] = i * 4 + 2; trans += 4; indsOut += 6; numTrans += 6; } inds = newInds; return true; } // This normalizes a set of vertices in any format to SimpleVertex format, by processing away morphing AND skinning. // The rest of the transform pipeline like lighting will go as normal, either hardware or software. // The implementation is initially a bit inefficient but shouldn't be a big deal. // An intermediate buffer of not-easy-to-predict size is stored at bufPtr. u32 NormalizeVertices(SimpleVertex *sverts, u8 *bufPtr, const u8 *inPtr, int lowerBound, int upperBound, VertexDecoder *dec, u32 vertType) { // First, decode the vertices into a GPU compatible format. This step can be eliminated but will need a separate // implementation of the vertex decoder. dec->DecodeVerts(bufPtr, inPtr, &gstate_c.uv, lowerBound, upperBound); // OK, morphing eliminated but bones still remain to be taken care of. // Let's do a partial software transform where we only do skinning. VertexReader reader(bufPtr, dec->GetDecVtxFmt(), vertType); const u8 defaultColor[4] = { (u8)gstate.getMaterialAmbientR(), (u8)gstate.getMaterialAmbientG(), (u8)gstate.getMaterialAmbientB(), (u8)gstate.getMaterialAmbientA(), }; // Let's have two separate loops, one for non skinning and one for skinning. if (!dec->skinInDecode && (vertType & GE_VTYPE_WEIGHT_MASK) != GE_VTYPE_WEIGHT_NONE) { int numBoneWeights = vertTypeGetNumBoneWeights(vertType); for (int i = lowerBound; i <= upperBound; i++) { reader.Goto(i - lowerBound); SimpleVertex &sv = sverts[i]; if (vertType & GE_VTYPE_TC_MASK) { reader.ReadUV(sv.uv); } if (vertType & GE_VTYPE_COL_MASK) { sv.color_32 = reader.ReadColor0_8888(); } else { memcpy(sv.color, defaultColor, 4); } float nrm[3], pos[3]; float bnrm[3], bpos[3]; if (vertType & GE_VTYPE_NRM_MASK) { // Normals are generated during tessellation anyway, not sure if any need to supply reader.ReadNrm(nrm); } else { nrm[0] = 0; nrm[1] = 0; nrm[2] = 1.0f; } reader.ReadPos(pos); // Apply skinning transform directly float weights[8]; reader.ReadWeights(weights); // Skinning Vec3Packedf psum(0, 0, 0); Vec3Packedf nsum(0, 0, 0); for (int w = 0; w < numBoneWeights; w++) { if (weights[w] != 0.0f) { Vec3ByMatrix43(bpos, pos, gstate.boneMatrix + w * 12); Vec3Packedf tpos(bpos); psum += tpos * weights[w]; Norm3ByMatrix43(bnrm, nrm, gstate.boneMatrix + w * 12); Vec3Packedf tnorm(bnrm); nsum += tnorm * weights[w]; } } sv.pos = psum; sv.nrm = nsum; } } else { for (int i = lowerBound; i <= upperBound; i++) { reader.Goto(i - lowerBound); SimpleVertex &sv = sverts[i]; if (vertType & GE_VTYPE_TC_MASK) { reader.ReadUV(sv.uv); } else { sv.uv[0] = 0.0f; // This will get filled in during tessellation sv.uv[1] = 0.0f; } if (vertType & GE_VTYPE_COL_MASK) { sv.color_32 = reader.ReadColor0_8888(); } else { memcpy(sv.color, defaultColor, 4); } if (vertType & GE_VTYPE_NRM_MASK) { // Normals are generated during tessellation anyway, not sure if any need to supply reader.ReadNrm((float *)&sv.nrm); } else { sv.nrm.x = 0.0f; sv.nrm.y = 0.0f; sv.nrm.z = 1.0f; } reader.ReadPos((float *)&sv.pos); } } // Okay, there we are! Return the new type (but keep the index bits) return GE_VTYPE_TC_FLOAT | GE_VTYPE_COL_8888 | GE_VTYPE_NRM_FLOAT | GE_VTYPE_POS_FLOAT | (vertType & (GE_VTYPE_IDX_MASK | GE_VTYPE_THROUGH)); } // clip space to screen space Vec3f ClipToScreen(const Vec4f& coords) { float xScale = gstate.getViewportXScale(); float xCenter = gstate.getViewportXCenter(); float yScale = gstate.getViewportYScale(); float yCenter = gstate.getViewportYCenter(); float zScale = gstate.getViewportZScale(); float zCenter = gstate.getViewportZCenter(); float x = coords.x * xScale / coords.w + xCenter; float y = coords.y * yScale / coords.w + yCenter; float z = coords.z * zScale / coords.w + zCenter; // 16 = 0xFFFF / 4095.9375 return Vec3f(x * 16 - gstate.getOffsetX16(), y * 16 - gstate.getOffsetY16(), z); } static Vec3f ScreenToDrawing(const Vec3f& coords) { Vec3f ret; ret.x = coords.x * (1.0f / 16.0f); ret.y = coords.y * (1.0f / 16.0f); ret.z = coords.z; return ret; } // TODO: This probably is not the best interface. // drawEngine is just for the vertex decoder lookup. // This is really just for vertex preview in the debugger, not for actual rendering! bool GetCurrentDrawAsDebugVertices(DrawEngineCommon *drawEngine, int count, std::vector &vertices, std::vector &indices) { // This is always for the current vertices. u16 indexLowerBound = 0; u16 indexUpperBound = count - 1; if (!Memory::IsValidAddress(gstate_c.vertexAddr) || count == 0) return false; bool savedVertexFullAlpha = gstate_c.vertexFullAlpha; if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) { const u8 *inds = Memory::GetPointer(gstate_c.indexAddr); const u16_le *inds16 = (const u16_le *)inds; const u32_le *inds32 = (const u32_le *)inds; if (inds) { GetIndexBounds(inds, count, gstate.vertType, &indexLowerBound, &indexUpperBound); indices.resize(count); switch (gstate.vertType & GE_VTYPE_IDX_MASK) { case GE_VTYPE_IDX_8BIT: for (int i = 0; i < count; ++i) { indices[i] = inds[i]; } break; case GE_VTYPE_IDX_16BIT: for (int i = 0; i < count; ++i) { indices[i] = inds16[i]; } break; case GE_VTYPE_IDX_32BIT: WARN_LOG_REPORT_ONCE(simpleIndexes32, Log::G3D, "SimpleVertices: Decoding 32-bit indexes"); for (int i = 0; i < count; ++i) { // These aren't documented and should be rare. Let's bounds check each one. if (inds32[i] != (u16)inds32[i]) { ERROR_LOG_REPORT_ONCE(simpleIndexes32Bounds, Log::G3D, "SimpleVertices: Index outside 16-bit range"); } indices[i] = (u16)inds32[i]; } break; } } else { indices.clear(); } } else { indices.clear(); } static std::vector temp_buffer; static std::vector simpleVertices; temp_buffer.resize(std::max((int)indexUpperBound, 8192) * 128 / sizeof(u32)); simpleVertices.resize(indexUpperBound + 1); // We always want "applyskinindecode" here, faster than letting NormalizeVertices handle it. const u32 vertTypeID = GetVertTypeID(gstate.vertType, gstate.getUVGenMode(), true); VertexDecoder *dec = drawEngine->GetVertexDecoder(vertTypeID); NormalizeVertices(&simpleVertices[0], (u8 *)(&temp_buffer[0]), Memory::GetPointerUnchecked(gstate_c.vertexAddr), indexLowerBound, indexUpperBound, dec, gstate.vertType); float world[16]; float view[16]; float worldview[16]; float worldviewproj[16]; ConvertMatrix4x3To4x4(world, gstate.worldMatrix); ConvertMatrix4x3To4x4(view, gstate.viewMatrix); Matrix4ByMatrix4(worldview, world, view); Matrix4ByMatrix4(worldviewproj, worldview, gstate.projMatrix); // This transforms the vertices. // NOTE: We really should just run the full software transform? vertices.resize(indexUpperBound + 1); uint32_t vertType = gstate.vertType; for (int i = indexLowerBound; i <= indexUpperBound; ++i) { const SimpleVertex &vert = simpleVertices[i]; if ((vertType & GE_VTYPE_THROUGH) != 0) { if (vertType & GE_VTYPE_TC_MASK) { vertices[i].u = vert.uv[0]; vertices[i].v = vert.uv[1]; } else { vertices[i].u = 0.0f; vertices[i].v = 0.0f; } vertices[i].x = vert.pos.x; vertices[i].y = vert.pos.y; vertices[i].z = vert.pos.z; if (vertType & GE_VTYPE_COL_MASK) { memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c)); } else { memset(vertices[i].c, 0, sizeof(vertices[i].c)); } vertices[i].nx = 0.0f; // No meaningful normals in through mode vertices[i].ny = 0.0f; vertices[i].nz = 1.0f; } else { float clipPos[4]; Vec3ByMatrix44(clipPos, vert.pos.AsArray(), worldviewproj); Vec3f screenPos = ClipToScreen(clipPos); Vec3f drawPos = ScreenToDrawing(screenPos); if (vertType & GE_VTYPE_TC_MASK) { vertices[i].u = vert.uv[0] * (float)gstate.getTextureWidth(0); vertices[i].v = vert.uv[1] * (float)gstate.getTextureHeight(0); } else { vertices[i].u = 0.0f; vertices[i].v = 0.0f; } // Should really have separate coordinates for before and after transform. vertices[i].x = drawPos.x; vertices[i].y = drawPos.y; vertices[i].z = drawPos.z; if (vertType & GE_VTYPE_COL_MASK) { memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c)); } else { memset(vertices[i].c, 0, sizeof(vertices[i].c)); } vertices[i].nx = vert.nrm.x; vertices[i].ny = vert.nrm.y; vertices[i].nz = vert.nrm.z; } } gstate_c.vertexFullAlpha = savedVertexFullAlpha; return true; }