// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #if defined(_WIN32) && defined(SHADERLOG) #include "Common/CommonWindows.h" #endif #include #include #include #include "math/dataconv.h" #include "gfx/gl_debug_log.h" #include "gfx_es2/gpu_features.h" #include "i18n/i18n.h" #include "math/math_util.h" #include "math/lin/matrix4x4.h" #include "profiler/profiler.h" #include "thin3d/thin3d.h" #include "thin3d/GLRenderManager.h" #include "Common/Log.h" #include "Common/FileUtil.h" #include "Common/TimeUtil.h" #include "Core/Config.h" #include "Core/Host.h" #include "Core/Reporting.h" #include "Core/System.h" #include "GPU/Math3D.h" #include "GPU/GPUState.h" #include "GPU/ge_constants.h" #include "GPU/Common/ShaderUniforms.h" #include "GPU/GLES/ShaderManagerGLES.h" #include "GPU/GLES/DrawEngineGLES.h" #include "GPU/GLES/FramebufferManagerGLES.h" using namespace Lin; Shader::Shader(GLRenderManager *render, const char *code, const std::string &desc, uint32_t glShaderType, bool useHWTransform, uint32_t attrMask, uint64_t uniformMask) : render_(render), failed_(false), useHWTransform_(useHWTransform), attrMask_(attrMask), uniformMask_(uniformMask) { PROFILE_THIS_SCOPE("shadercomp"); isFragment_ = glShaderType == GL_FRAGMENT_SHADER; source_ = code; #ifdef SHADERLOG #ifdef _WIN32 OutputDebugStringUTF8(code); #else printf("%s\n", code); #endif #endif shader = render->CreateShader(glShaderType, source_, desc); } Shader::~Shader() { render_->DeleteShader(shader); } LinkedShader::LinkedShader(GLRenderManager *render, VShaderID VSID, Shader *vs, FShaderID FSID, Shader *fs, bool useHWTransform, bool preloading) : render_(render), useHWTransform_(useHWTransform) { PROFILE_THIS_SCOPE("shaderlink"); vs_ = vs; std::vector shaders; shaders.push_back(vs->shader); shaders.push_back(fs->shader); std::vector semantics; semantics.push_back({ ATTR_POSITION, "position" }); semantics.push_back({ ATTR_TEXCOORD, "texcoord" }); semantics.push_back({ ATTR_NORMAL, "normal" }); semantics.push_back({ ATTR_W1, "w1" }); semantics.push_back({ ATTR_W2, "w2" }); semantics.push_back({ ATTR_COLOR0, "color0" }); semantics.push_back({ ATTR_COLOR1, "color1" }); std::vector queries; queries.push_back({ &u_tex, "tex" }); queries.push_back({ &u_proj, "u_proj" }); queries.push_back({ &u_proj_through, "u_proj_through" }); queries.push_back({ &u_proj, "u_proj" }); queries.push_back({ &u_proj_through, "u_proj_through" }); queries.push_back({ &u_texenv, "u_texenv" }); queries.push_back({ &u_fogcolor, "u_fogcolor" }); queries.push_back({ &u_fogcoef, "u_fogcoef" }); queries.push_back({ &u_alphacolorref, "u_alphacolorref" }); queries.push_back({ &u_alphacolormask, "u_alphacolormask" }); queries.push_back({ &u_stencilReplaceValue, "u_stencilReplaceValue" }); queries.push_back({ &u_testtex, "testtex" }); queries.push_back({ &u_fbotex, "fbotex" }); queries.push_back({ &u_blendFixA, "u_blendFixA" }); queries.push_back({ &u_blendFixB, "u_blendFixB" }); queries.push_back({ &u_fbotexSize, "u_fbotexSize" }); queries.push_back({ &u_pal, "pal" }); // Transform queries.push_back({ &u_view, "u_view" }); queries.push_back({ &u_world, "u_world" }); queries.push_back({ &u_texmtx, "u_texmtx" }); if (VSID.Bit(VS_BIT_ENABLE_BONES)) numBones = TranslateNumBones(VSID.Bits(VS_BIT_BONES, 3) + 1); else numBones = 0; queries.push_back({ &u_depthRange, "u_depthRange" }); queries.push_back({ &u_cullRangeMin, "u_cullRangeMin" }); queries.push_back({ &u_cullRangeMax, "u_cullRangeMax" }); #ifdef USE_BONE_ARRAY queries.push_back({ &u_bone, "u_bone" }); #else static const char * const boneNames[8] = { "u_bone0", "u_bone1", "u_bone2", "u_bone3", "u_bone4", "u_bone5", "u_bone6", "u_bone7", }; for (int i = 0; i < 8; i++) { queries.push_back({ &u_bone[i], boneNames[i] }); } #endif // Lighting, texturing queries.push_back({ &u_ambient, "u_ambient" }); queries.push_back({ &u_matambientalpha, "u_matambientalpha" }); queries.push_back({ &u_matdiffuse, "u_matdiffuse" }); queries.push_back({ &u_matspecular, "u_matspecular" }); queries.push_back({ &u_matemissive, "u_matemissive" }); queries.push_back({ &u_uvscaleoffset, "u_uvscaleoffset" }); queries.push_back({ &u_texclamp, "u_texclamp" }); queries.push_back({ &u_texclampoff, "u_texclampoff" }); for (int i = 0; i < 4; i++) { static const char * const lightPosNames[4] = { "u_lightpos0", "u_lightpos1", "u_lightpos2", "u_lightpos3", }; queries.push_back({ &u_lightpos[i], lightPosNames[i] }); static const char * const lightdir_names[4] = { "u_lightdir0", "u_lightdir1", "u_lightdir2", "u_lightdir3", }; queries.push_back({ &u_lightdir[i], lightdir_names[i] }); static const char * const lightatt_names[4] = { "u_lightatt0", "u_lightatt1", "u_lightatt2", "u_lightatt3", }; queries.push_back({ &u_lightatt[i], lightatt_names[i] }); static const char * const lightangle_spotCoef_names[4] = { "u_lightangle_spotCoef0", "u_lightangle_spotCoef1", "u_lightangle_spotCoef2", "u_lightangle_spotCoef3", }; queries.push_back({ &u_lightangle_spotCoef[i], lightangle_spotCoef_names[i] }); static const char * const lightambient_names[4] = { "u_lightambient0", "u_lightambient1", "u_lightambient2", "u_lightambient3", }; queries.push_back({ &u_lightambient[i], lightambient_names[i] }); static const char * const lightdiffuse_names[4] = { "u_lightdiffuse0", "u_lightdiffuse1", "u_lightdiffuse2", "u_lightdiffuse3", }; queries.push_back({ &u_lightdiffuse[i], lightdiffuse_names[i] }); static const char * const lightspecular_names[4] = { "u_lightspecular0", "u_lightspecular1", "u_lightspecular2", "u_lightspecular3", }; queries.push_back({ &u_lightspecular[i], lightspecular_names[i] }); } // We need to fetch these unconditionally, gstate_c.spline or bezier will not be set if we // create this shader at load time from the shader cache. queries.push_back({ &u_tess_points, "u_tess_points" }); queries.push_back({ &u_tess_weights_u, "u_tess_weights_u" }); queries.push_back({ &u_tess_weights_v, "u_tess_weights_v" }); queries.push_back({ &u_spline_counts, "u_spline_counts" }); queries.push_back({ &u_depal, "u_depal" }); attrMask = vs->GetAttrMask(); availableUniforms = vs->GetUniformMask() | fs->GetUniformMask(); std::vector initialize; initialize.push_back({ &u_tex, 0, 0 }); initialize.push_back({ &u_fbotex, 0, 1 }); initialize.push_back({ &u_testtex, 0, 2 }); initialize.push_back({ &u_pal, 0, 3 }); // CLUT initialize.push_back({ &u_tess_points, 0, 4 }); // Control Points initialize.push_back({ &u_tess_weights_u, 0, 5 }); initialize.push_back({ &u_tess_weights_v, 0, 6 }); program = render->CreateProgram(shaders, semantics, queries, initialize, gstate_c.featureFlags & GPU_SUPPORTS_DUALSOURCE_BLEND); // The rest, use the "dirty" mechanism. dirtyUniforms = DIRTY_ALL_UNIFORMS; } LinkedShader::~LinkedShader() { render_->DeleteProgram(program); } // Utility static inline void SetFloatUniform(GLRenderManager *render, GLint *uniform, float value) { render->SetUniformF(uniform, 1, &value); } static inline void SetFloatUniform2(GLRenderManager *render, GLint *uniform, float value[2]) { render->SetUniformF(uniform, 2, value); } static inline void SetColorUniform3(GLRenderManager *render, GLint *uniform, u32 color) { float f[4]; Uint8x4ToFloat4(f, color); render->SetUniformF(uniform, 3, f); } static void SetColorUniform3Alpha(GLRenderManager *render, GLint *uniform, u32 color, u8 alpha) { float f[4]; Uint8x3ToFloat4_AlphaUint8(f, color, alpha); render->SetUniformF(uniform, 4, f); } // This passes colors unscaled (e.g. 0 - 255 not 0 - 1.) static void SetColorUniform3Alpha255(GLRenderManager *render, GLint *uniform, u32 color, u8 alpha) { if (gl_extensions.gpuVendor == GPU_VENDOR_IMGTEC) { const float col[4] = { (float)((color & 0xFF) >> 0) * (1.0f / 255.0f), (float)((color & 0xFF00) >> 8) * (1.0f / 255.0f), (float)((color & 0xFF0000) >> 16) * (1.0f / 255.0f), (float)alpha * (1.0f / 255.0f) }; render->SetUniformF(uniform, 4, col); } else { const float col[4] = { (float)((color & 0xFF) >> 0), (float)((color & 0xFF00) >> 8), (float)((color & 0xFF0000) >> 16), (float)alpha }; render->SetUniformF(uniform, 4, col); } } static void SetColorUniform3iAlpha(GLRenderManager *render, GLint *uniform, u32 color, u8 alpha) { const int col[4] = { (int)((color & 0xFF) >> 0), (int)((color & 0xFF00) >> 8), (int)((color & 0xFF0000) >> 16), (int)alpha, }; render->SetUniformI(uniform, 4, col); } static void SetColorUniform3ExtraFloat(GLRenderManager *render, GLint *uniform, u32 color, float extra) { const float col[4] = { ((color & 0xFF)) / 255.0f, ((color & 0xFF00) >> 8) / 255.0f, ((color & 0xFF0000) >> 16) / 255.0f, extra }; render->SetUniformF(uniform, 4, col); } static void SetFloat24Uniform3(GLRenderManager *render, GLint *uniform, const uint32_t data[3]) { float f[4]; ExpandFloat24x3ToFloat4(f, data); render->SetUniformF(uniform, 3, f); } static void SetFloatUniform4(GLRenderManager *render, GLint *uniform, float data[4]) { render->SetUniformF(uniform, 4, data); } static void SetMatrix4x3(GLRenderManager *render, GLint *uniform, const float *m4x3) { float m4x4[16]; ConvertMatrix4x3To4x4(m4x4, m4x3); render->SetUniformM4x4(uniform, m4x4); } static inline void ScaleProjMatrix(Matrix4x4 &in, bool useBufferedRendering) { float yOffset = gstate_c.vpYOffset; if (!useBufferedRendering) { // GL upside down is a pain as usual. yOffset = -yOffset; } const Vec3 trans(gstate_c.vpXOffset, yOffset, gstate_c.vpZOffset); const Vec3 scale(gstate_c.vpWidthScale, gstate_c.vpHeightScale, gstate_c.vpDepthScale); in.translateAndScale(trans, scale); } void LinkedShader::use(const ShaderID &VSID) { render_->BindProgram(program); // Note that we no longer track attr masks here - we do it for the input layouts instead. } void LinkedShader::UpdateUniforms(u32 vertType, const ShaderID &vsid, bool useBufferedRendering) { u64 dirty = dirtyUniforms & availableUniforms; dirtyUniforms = 0; if (!dirty) return; if (dirty & DIRTY_DEPAL) { int indexMask = gstate.getClutIndexMask(); int indexShift = gstate.getClutIndexShift(); int indexOffset = gstate.getClutIndexStartPos() >> 4; int format = gstate_c.depalFramebufferFormat; uint32_t val = BytesToUint32(indexMask, indexShift, indexOffset, format); // Poke in a bilinear filter flag in the top bit. val |= gstate.isMagnifyFilteringEnabled() << 31; render_->SetUniformI1(&u_depal, val); } // Update any dirty uniforms before we draw if (dirty & DIRTY_PROJMATRIX) { Matrix4x4 flippedMatrix; memcpy(&flippedMatrix, gstate.projMatrix, 16 * sizeof(float)); const bool invertedY = useBufferedRendering ? (gstate_c.vpHeight < 0) : (gstate_c.vpHeight > 0); if (invertedY) { flippedMatrix[1] = -flippedMatrix[1]; flippedMatrix[5] = -flippedMatrix[5]; flippedMatrix[9] = -flippedMatrix[9]; flippedMatrix[13] = -flippedMatrix[13]; } const bool invertedX = gstate_c.vpWidth < 0; if (invertedX) { flippedMatrix[0] = -flippedMatrix[0]; flippedMatrix[4] = -flippedMatrix[4]; flippedMatrix[8] = -flippedMatrix[8]; flippedMatrix[12] = -flippedMatrix[12]; } // In Phantasy Star Portable 2, depth range sometimes goes negative and is clamped by glDepthRange to 0, // causing graphics clipping glitch (issue #1788). This hack modifies the projection matrix to work around it. if (gstate_c.Supports(GPU_USE_DEPTH_RANGE_HACK)) { float zScale = gstate.getViewportZScale() / 65535.0f; float zCenter = gstate.getViewportZCenter() / 65535.0f; // if far depth range < 0 if (zCenter + zScale < 0.0f) { // if perspective projection if (flippedMatrix[11] < 0.0f) { float depthMax = gstate.getDepthRangeMax() / 65535.0f; float depthMin = gstate.getDepthRangeMin() / 65535.0f; float a = flippedMatrix[10]; float b = flippedMatrix[14]; float n = b / (a - 1.0f); float f = b / (a + 1.0f); f = (n * f) / (n + ((zCenter + zScale) * (n - f) / (depthMax - depthMin))); a = (n + f) / (n - f); b = (2.0f * n * f) / (n - f); if (!my_isnan(a) && !my_isnan(b)) { flippedMatrix[10] = a; flippedMatrix[14] = b; } } } } ScaleProjMatrix(flippedMatrix, useBufferedRendering); render_->SetUniformM4x4(&u_proj, flippedMatrix.m); } if (dirty & DIRTY_PROJTHROUGHMATRIX) { Matrix4x4 proj_through; if (useBufferedRendering) { proj_through.setOrtho(0.0f, gstate_c.curRTWidth, 0.0f, gstate_c.curRTHeight, 0.0f, 1.0f); } else { proj_through.setOrtho(0.0f, gstate_c.curRTWidth, gstate_c.curRTHeight, 0.0f, 0.0f, 1.0f); } render_->SetUniformM4x4(&u_proj_through, proj_through.getReadPtr()); } if (dirty & DIRTY_TEXENV) { SetColorUniform3(render_, &u_texenv, gstate.texenvcolor); } if (dirty & DIRTY_ALPHACOLORREF) { SetColorUniform3Alpha255(render_, &u_alphacolorref, gstate.getColorTestRef(), gstate.getAlphaTestRef() & gstate.getAlphaTestMask()); } if (dirty & DIRTY_ALPHACOLORMASK) { SetColorUniform3iAlpha(render_, &u_alphacolormask, gstate.colortestmask, gstate.getAlphaTestMask()); } if (dirty & DIRTY_FOGCOLOR) { SetColorUniform3(render_, &u_fogcolor, gstate.fogcolor); } if (dirty & DIRTY_FOGCOEF) { float fogcoef[2] = { getFloat24(gstate.fog1), getFloat24(gstate.fog2), }; // The PSP just ignores infnan here (ignoring IEEE), so take it down to a valid float. // Workaround for https://github.com/hrydgard/ppsspp/issues/5384#issuecomment-38365988 if (my_isnanorinf(fogcoef[0])) { // Not really sure what a sensible value might be, but let's try 64k. fogcoef[0] = std::signbit(fogcoef[0]) ? -65535.0f : 65535.0f; } if (my_isnanorinf(fogcoef[1])) { fogcoef[1] = std::signbit(fogcoef[1]) ? -65535.0f : 65535.0f; } render_->SetUniformF(&u_fogcoef, 2, fogcoef); } if (dirty & DIRTY_UVSCALEOFFSET) { const float invW = 1.0f / (float)gstate_c.curTextureWidth; const float invH = 1.0f / (float)gstate_c.curTextureHeight; const int w = gstate.getTextureWidth(0); const int h = gstate.getTextureHeight(0); const float widthFactor = (float)w * invW; const float heightFactor = (float)h * invH; float uvscaleoff[4]; if (gstate_c.bezier || gstate_c.spline) { // When we are generating UV coordinates through the bezier/spline, we need to apply the scaling. // However, this is missing a check that we're not getting our UV:s supplied for us in the vertices. uvscaleoff[0] = gstate_c.uv.uScale * widthFactor; uvscaleoff[1] = gstate_c.uv.vScale * heightFactor; uvscaleoff[2] = gstate_c.uv.uOff * widthFactor; uvscaleoff[3] = gstate_c.uv.vOff * heightFactor; } else { uvscaleoff[0] = widthFactor; uvscaleoff[1] = heightFactor; uvscaleoff[2] = 0.0f; uvscaleoff[3] = 0.0f; } render_->SetUniformF(&u_uvscaleoffset, 4, uvscaleoff); } if ((dirty & DIRTY_TEXCLAMP) && u_texclamp != -1) { const float invW = 1.0f / (float)gstate_c.curTextureWidth; const float invH = 1.0f / (float)gstate_c.curTextureHeight; const int w = gstate.getTextureWidth(0); const int h = gstate.getTextureHeight(0); const float widthFactor = (float)w * invW; const float heightFactor = (float)h * invH; // First wrap xy, then half texel xy (for clamp.) const float texclamp[4] = { widthFactor, heightFactor, invW * 0.5f, invH * 0.5f, }; const float texclampoff[2] = { gstate_c.curTextureXOffset * invW, gstate_c.curTextureYOffset * invH, }; render_->SetUniformF(&u_texclamp, 4, texclamp); if (u_texclampoff != -1) { render_->SetUniformF(&u_texclampoff, 2, texclampoff); } } // Transform if (dirty & DIRTY_WORLDMATRIX) { SetMatrix4x3(render_, &u_world, gstate.worldMatrix); } if (dirty & DIRTY_VIEWMATRIX) { SetMatrix4x3(render_, &u_view, gstate.viewMatrix); } if (dirty & DIRTY_TEXMATRIX) { SetMatrix4x3(render_, &u_texmtx, gstate.tgenMatrix); } if (dirty & DIRTY_DEPTHRANGE) { // Since depth is [-1, 1] mapping to [minz, maxz], this is easyish. float vpZScale = gstate.getViewportZScale(); float vpZCenter = gstate.getViewportZCenter(); // These are just the reverse of the formulas in GPUStateUtils. float halfActualZRange = vpZScale / gstate_c.vpDepthScale; float minz = -((gstate_c.vpZOffset * halfActualZRange) - vpZCenter) - halfActualZRange; float viewZScale = halfActualZRange; float viewZCenter = minz + halfActualZRange; if (!gstate_c.Supports(GPU_SUPPORTS_ACCURATE_DEPTH)) { viewZScale = vpZScale; viewZCenter = vpZCenter; } float viewZInvScale; if (viewZScale != 0.0) { viewZInvScale = 1.0f / viewZScale; } else { viewZInvScale = 0.0; } float data[4] = { viewZScale, viewZCenter, viewZCenter, viewZInvScale }; SetFloatUniform4(render_, &u_depthRange, data); } if (dirty & DIRTY_CULLRANGE) { float minValues[4], maxValues[4]; CalcCullRange(minValues, maxValues, !useBufferedRendering, true); SetFloatUniform4(render_, &u_cullRangeMin, minValues); SetFloatUniform4(render_, &u_cullRangeMax, maxValues); } if (dirty & DIRTY_STENCILREPLACEVALUE) { float f = (float)gstate.getStencilTestRef() * (1.0f / 255.0f); render_->SetUniformF(&u_stencilReplaceValue, 1, &f); } float bonetemp[16]; for (int i = 0; i < numBones; i++) { if (dirty & (DIRTY_BONEMATRIX0 << i)) { ConvertMatrix4x3To4x4(bonetemp, gstate.boneMatrix + 12 * i); render_->SetUniformM4x4(&u_bone[i], bonetemp); } } if (dirty & DIRTY_SHADERBLEND) { if (u_blendFixA != -1) { SetColorUniform3(render_, &u_blendFixA, gstate.getFixA()); } if (u_blendFixB != -1) { SetColorUniform3(render_, &u_blendFixB, gstate.getFixB()); } const float fbotexSize[2] = { 1.0f / (float)gstate_c.curRTRenderWidth, 1.0f / (float)gstate_c.curRTRenderHeight, }; if (u_fbotexSize != -1) { render_->SetUniformF(&u_fbotexSize, 2, fbotexSize); } } // Lighting if (dirty & DIRTY_AMBIENT) { SetColorUniform3Alpha(render_, &u_ambient, gstate.ambientcolor, gstate.getAmbientA()); } if (dirty & DIRTY_MATAMBIENTALPHA) { SetColorUniform3Alpha(render_, &u_matambientalpha, gstate.materialambient, gstate.getMaterialAmbientA()); } if (dirty & DIRTY_MATDIFFUSE) { SetColorUniform3(render_, &u_matdiffuse, gstate.materialdiffuse); } if (dirty & DIRTY_MATEMISSIVE) { SetColorUniform3(render_, &u_matemissive, gstate.materialemissive); } if (dirty & DIRTY_MATSPECULAR) { SetColorUniform3ExtraFloat(render_, &u_matspecular, gstate.materialspecular, getFloat24(gstate.materialspecularcoef)); } for (int i = 0; i < 4; i++) { if (dirty & (DIRTY_LIGHT0 << i)) { if (gstate.isDirectionalLight(i)) { // Prenormalize float x = getFloat24(gstate.lpos[i * 3 + 0]); float y = getFloat24(gstate.lpos[i * 3 + 1]); float z = getFloat24(gstate.lpos[i * 3 + 2]); float len = sqrtf(x*x + y*y + z*z); if (len == 0.0f) len = 1.0f; else len = 1.0f / len; float vec[3] = { x * len, y * len, z * len }; render_->SetUniformF(&u_lightpos[i], 3, vec); } else { SetFloat24Uniform3(render_, &u_lightpos[i], &gstate.lpos[i * 3]); } if (u_lightdir[i] != -1) SetFloat24Uniform3(render_, &u_lightdir[i], &gstate.ldir[i * 3]); if (u_lightatt[i] != -1) SetFloat24Uniform3(render_, &u_lightatt[i], &gstate.latt[i * 3]); if (u_lightangle_spotCoef[i] != -1) { float lightangle_spotCoef[2] = { getFloat24(gstate.lcutoff[i]), getFloat24(gstate.lconv[i]) }; SetFloatUniform2(render_, &u_lightangle_spotCoef[i], lightangle_spotCoef); } if (u_lightambient[i] != -1) SetColorUniform3(render_, &u_lightambient[i], gstate.lcolor[i * 3]); if (u_lightdiffuse[i] != -1) SetColorUniform3(render_, &u_lightdiffuse[i], gstate.lcolor[i * 3 + 1]); if (u_lightspecular[i] != -1) SetColorUniform3(render_, &u_lightspecular[i], gstate.lcolor[i * 3 + 2]); } } if (dirty & DIRTY_BEZIERSPLINE) { if (u_spline_counts != -1) { render_->SetUniformI1(&u_spline_counts, gstate_c.spline_num_points_u); } } } ShaderManagerGLES::ShaderManagerGLES(Draw::DrawContext *draw) : ShaderManagerCommon(draw), lastShader_(nullptr), shaderSwitchDirtyUniforms_(0), diskCacheDirty_(false), fsCache_(16), vsCache_(16) { render_ = (GLRenderManager *)draw->GetNativeObject(Draw::NativeObject::RENDER_MANAGER); codeBuffer_ = new char[16384]; lastFSID_.set_invalid(); lastVSID_.set_invalid(); } ShaderManagerGLES::~ShaderManagerGLES() { delete [] codeBuffer_; } void ShaderManagerGLES::Clear() { DirtyLastShader(); for (auto iter = linkedShaderCache_.begin(); iter != linkedShaderCache_.end(); ++iter) { delete iter->ls; } fsCache_.Iterate([&](const FShaderID &key, Shader *shader) { delete shader; }); vsCache_.Iterate([&](const VShaderID &key, Shader *shader) { delete shader; }); linkedShaderCache_.clear(); fsCache_.Clear(); vsCache_.Clear(); DirtyShader(); } void ShaderManagerGLES::ClearCache(bool deleteThem) { // TODO: Recreate all from the diskcache when we come back. Clear(); } void ShaderManagerGLES::DeviceLost() { Clear(); } void ShaderManagerGLES::DeviceRestore(Draw::DrawContext *draw) { render_ = (GLRenderManager *)draw->GetNativeObject(Draw::NativeObject::RENDER_MANAGER); draw_ = draw; } void ShaderManagerGLES::DirtyShader() { // Forget the last shader ID lastFSID_.set_invalid(); lastVSID_.set_invalid(); DirtyLastShader(); gstate_c.Dirty(DIRTY_ALL_UNIFORMS | DIRTY_VERTEXSHADER_STATE | DIRTY_FRAGMENTSHADER_STATE); shaderSwitchDirtyUniforms_ = 0; } void ShaderManagerGLES::DirtyLastShader() { lastShader_ = nullptr; lastVShaderSame_ = false; } Shader *ShaderManagerGLES::CompileFragmentShader(FShaderID FSID) { uint64_t uniformMask; if (!GenerateFragmentShader(FSID, codeBuffer_, &uniformMask)) { return nullptr; } std::string desc = FragmentShaderDesc(FSID); return new Shader(render_, codeBuffer_, desc, GL_FRAGMENT_SHADER, false, 0, uniformMask); } Shader *ShaderManagerGLES::CompileVertexShader(VShaderID VSID) { bool useHWTransform = VSID.Bit(VS_BIT_USE_HW_TRANSFORM); uint32_t attrMask; uint64_t uniformMask; GenerateVertexShader(VSID, codeBuffer_, &attrMask, &uniformMask); std::string desc = VertexShaderDesc(VSID); return new Shader(render_, codeBuffer_, desc, GL_VERTEX_SHADER, useHWTransform, attrMask, uniformMask); } Shader *ShaderManagerGLES::ApplyVertexShader(bool useHWTransform, bool useHWTessellation, u32 vertType, VShaderID *VSID) { if (gstate_c.IsDirty(DIRTY_VERTEXSHADER_STATE)) { gstate_c.Clean(DIRTY_VERTEXSHADER_STATE); ComputeVertexShaderID(VSID, vertType, useHWTransform, useHWTessellation); } else { *VSID = lastVSID_; } if (lastShader_ != nullptr && *VSID == lastVSID_) { lastVShaderSame_ = true; return lastShader_->vs_; // Already all set. } else { lastVShaderSame_ = false; } lastVSID_ = *VSID; Shader *vs = vsCache_.Get(*VSID); if (!vs) { // Vertex shader not in cache. Let's compile it. vs = CompileVertexShader(*VSID); if (vs->Failed()) { auto gr = GetI18NCategory("Graphics"); ERROR_LOG(G3D, "Shader compilation failed, falling back to software transform"); if (!g_Config.bHideSlowWarnings) { host->NotifyUserMessage(gr->T("hardware transform error - falling back to software"), 2.5f, 0xFF3030FF); } delete vs; // TODO: Look for existing shader with the appropriate ID, use that instead of generating a new one - however, need to make sure // that that shader ID is not used when computing the linked shader ID below, because then IDs won't match // next time and we'll do this over and over... // Can still work with software transform. VShaderID vsidTemp; ComputeVertexShaderID(&vsidTemp, vertType, false, false); vs = CompileVertexShader(vsidTemp); } vsCache_.Insert(*VSID, vs); diskCacheDirty_ = true; } return vs; } LinkedShader *ShaderManagerGLES::ApplyFragmentShader(VShaderID VSID, Shader *vs, u32 vertType, bool useBufferedRendering) { uint64_t dirty = gstate_c.GetDirtyUniforms(); if (dirty) { if (lastShader_) lastShader_->dirtyUniforms |= dirty; shaderSwitchDirtyUniforms_ |= dirty; gstate_c.CleanUniforms(); } FShaderID FSID; if (gstate_c.IsDirty(DIRTY_FRAGMENTSHADER_STATE)) { gstate_c.Clean(DIRTY_FRAGMENTSHADER_STATE); ComputeFragmentShaderID(&FSID, draw_->GetBugs()); } else { FSID = lastFSID_; } if (lastVShaderSame_ && FSID == lastFSID_) { lastShader_->UpdateUniforms(vertType, VSID, useBufferedRendering); return lastShader_; } lastFSID_ = FSID; Shader *fs = fsCache_.Get(FSID); if (!fs) { // Fragment shader not in cache. Let's compile it. fs = CompileFragmentShader(FSID); fsCache_.Insert(FSID, fs); diskCacheDirty_ = true; } // Okay, we have both shaders. Let's see if there's a linked one. LinkedShader *ls = nullptr; u64 switchDirty = shaderSwitchDirtyUniforms_; for (auto iter = linkedShaderCache_.begin(); iter != linkedShaderCache_.end(); ++iter) { // Deferred dirtying! Let's see if we can make this even more clever later. iter->ls->dirtyUniforms |= switchDirty; if (iter->vs == vs && iter->fs == fs) { ls = iter->ls; } } shaderSwitchDirtyUniforms_ = 0; if (ls == nullptr) { _dbg_assert_(FSID.Bit(FS_BIT_LMODE) == VSID.Bit(VS_BIT_LMODE)); _dbg_assert_(FSID.Bit(FS_BIT_DO_TEXTURE) == VSID.Bit(VS_BIT_DO_TEXTURE)); _dbg_assert_(FSID.Bit(FS_BIT_ENABLE_FOG) == VSID.Bit(VS_BIT_ENABLE_FOG)); _dbg_assert_(FSID.Bit(FS_BIT_FLATSHADE) == VSID.Bit(VS_BIT_FLATSHADE)); // Check if we can link these. ls = new LinkedShader(render_, VSID, vs, FSID, fs, vs->UseHWTransform()); ls->use(VSID); const LinkedShaderCacheEntry entry(vs, fs, ls); linkedShaderCache_.push_back(entry); } else { ls->use(VSID); } ls->UpdateUniforms(vertType, VSID, useBufferedRendering); lastShader_ = ls; return ls; } std::string Shader::GetShaderString(DebugShaderStringType type, ShaderID id) const { switch (type) { case SHADER_STRING_SOURCE_CODE: return source_; case SHADER_STRING_SHORT_DESC: return isFragment_ ? FragmentShaderDesc(FShaderID(id)) : VertexShaderDesc(VShaderID(id)); default: return "N/A"; } } std::vector ShaderManagerGLES::DebugGetShaderIDs(DebugShaderType type) { std::string id; std::vector ids; switch (type) { case SHADER_TYPE_VERTEX: { vsCache_.Iterate([&](const VShaderID &id, Shader *shader) { std::string idstr; id.ToString(&idstr); ids.push_back(idstr); }); } break; case SHADER_TYPE_FRAGMENT: { fsCache_.Iterate([&](const FShaderID &id, Shader *shader) { std::string idstr; id.ToString(&idstr); ids.push_back(idstr); }); } break; default: break; } return ids; } std::string ShaderManagerGLES::DebugGetShaderString(std::string id, DebugShaderType type, DebugShaderStringType stringType) { ShaderID shaderId; shaderId.FromString(id); switch (type) { case SHADER_TYPE_VERTEX: { Shader *vs = vsCache_.Get(VShaderID(shaderId)); return vs ? vs->GetShaderString(stringType, shaderId) : ""; } case SHADER_TYPE_FRAGMENT: { Shader *fs = fsCache_.Get(FShaderID(shaderId)); return fs->GetShaderString(stringType, shaderId); } default: return "N/A"; } } // Shader pseudo-cache. // // We simply store the IDs of the shaders used during gameplay. On next startup of // the same game, we simply compile all the shaders from the start, so we don't have to // compile them on the fly later. Ideally we would store the actual compiled shaders // rather than just their IDs, but OpenGL does not support this, except for a few obscure // vendor-specific extensions. // // If things like GPU supported features have changed since the last time, we discard the cache // as sometimes these features might have an effect on the ID bits. #define CACHE_HEADER_MAGIC 0x83277592 #define CACHE_VERSION 14 struct CacheHeader { uint32_t magic; uint32_t version; uint32_t featureFlags; uint32_t reserved; int numVertexShaders; int numFragmentShaders; int numLinkedPrograms; }; void ShaderManagerGLES::Load(const std::string &filename) { File::IOFile f(filename, "rb"); u64 sz = f.GetSize(); if (!f.IsOpen()) { return; } CacheHeader header; if (!f.ReadArray(&header, 1)) { return; } if (header.magic != CACHE_HEADER_MAGIC || header.version != CACHE_VERSION || header.featureFlags != gstate_c.featureFlags) { return; } time_update(); diskCachePending_.start = time_now_d(); diskCachePending_.Clear(); // Sanity check the file contents if (header.numFragmentShaders > 1000 || header.numVertexShaders > 1000 || header.numLinkedPrograms > 1000) { ERROR_LOG(G3D, "Corrupt shader cache file header, aborting."); return; } // Also make sure the size makes sense, in case there's corruption. u64 expectedSize = sizeof(header); expectedSize += header.numVertexShaders * sizeof(VShaderID); expectedSize += header.numFragmentShaders * sizeof(FShaderID); expectedSize += header.numLinkedPrograms * (sizeof(VShaderID) + sizeof(FShaderID)); if (sz != expectedSize) { ERROR_LOG(G3D, "Shader cache file is wrong size: %lld instead of %lld", sz, expectedSize); return; } diskCachePending_.vert.resize(header.numVertexShaders); if (!f.ReadArray(&diskCachePending_.vert[0], header.numVertexShaders)) { diskCachePending_.vert.clear(); return; } diskCachePending_.frag.resize(header.numFragmentShaders); if (!f.ReadArray(&diskCachePending_.frag[0], header.numFragmentShaders)) { diskCachePending_.vert.clear(); diskCachePending_.frag.clear(); return; } for (int i = 0; i < header.numLinkedPrograms; i++) { VShaderID vsid; FShaderID fsid; if (!f.ReadArray(&vsid, 1)) { return; } if (!f.ReadArray(&fsid, 1)) { return; } diskCachePending_.link.push_back(std::make_pair(vsid, fsid)); } // Actual compilation happens in ContinuePrecompile(), called by GPU_GLES's IsReady. NOTICE_LOG(G3D, "Precompiling the shader cache from '%s'", filename.c_str()); diskCacheDirty_ = false; } bool ShaderManagerGLES::ContinuePrecompile(float sliceTime) { auto &pending = diskCachePending_; if (pending.Done()) { return true; } PSP_SetLoading("Compiling shaders..."); double start = real_time_now(); // Let's try to keep it under sliceTime if possible. double end = start + sliceTime; for (size_t &i = pending.vertPos; i < pending.vert.size(); i++) { if (real_time_now() >= end) { // We'll finish later. return false; } const VShaderID &id = pending.vert[i]; if (!vsCache_.Get(id)) { if (id.Bit(VS_BIT_IS_THROUGH) && id.Bit(VS_BIT_USE_HW_TRANSFORM)) { // Clearly corrupt, bailing. ERROR_LOG_REPORT(G3D, "Corrupt shader cache: Both IS_THROUGH and USE_HW_TRANSFORM set."); pending.Clear(); return false; } Shader *vs = CompileVertexShader(id); if (vs->Failed()) { // Give up on using the cache, just bail. We can't safely create the fallback shaders here // without trying to deduce the vertType from the VSID. ERROR_LOG(G3D, "Failed to compile a vertex shader loading from cache. Skipping rest of shader cache."); delete vs; pending.Clear(); return false; } vsCache_.Insert(id, vs); } else { WARN_LOG(G3D, "Duplicate vertex shader found in GL shader cache, ignoring"); } } for (size_t &i = pending.fragPos; i < pending.frag.size(); i++) { if (real_time_now() >= end) { // We'll finish later. return false; } const FShaderID &id = pending.frag[i]; if (!fsCache_.Get(id)) { fsCache_.Insert(id, CompileFragmentShader(id)); } else { WARN_LOG(G3D, "Duplicate fragment shader found in GL shader cache, ignoring"); } } for (size_t &i = pending.linkPos; i < pending.link.size(); i++) { if (real_time_now() >= end) { // We'll finish later. return false; } const VShaderID &vsid = pending.link[i].first; const FShaderID &fsid = pending.link[i].second; Shader *vs = vsCache_.Get(vsid); Shader *fs = fsCache_.Get(fsid); if (vs && fs) { LinkedShader *ls = new LinkedShader(render_, vsid, vs, fsid, fs, vs->UseHWTransform(), true); LinkedShaderCacheEntry entry(vs, fs, ls); linkedShaderCache_.push_back(entry); } } // Okay, finally done. Time to report status. time_update(); double finish = time_now_d(); NOTICE_LOG(G3D, "Precompile: Compiled and linked %d programs (%d vertex, %d fragment) in %0.1f milliseconds", (int)pending.link.size(), (int)pending.vert.size(), (int)pending.frag.size(), 1000 * (finish - pending.start)); pending.Clear(); return true; } void ShaderManagerGLES::CancelPrecompile() { diskCachePending_.Clear(); } void ShaderManagerGLES::Save(const std::string &filename) { if (!diskCacheDirty_) { return; } if (linkedShaderCache_.empty()) { return; } INFO_LOG(G3D, "Saving the shader cache to '%s'", filename.c_str()); FILE *f = File::OpenCFile(filename, "wb"); if (!f) { // Can't save, give up for now. diskCacheDirty_ = false; return; } CacheHeader header; header.magic = CACHE_HEADER_MAGIC; header.version = CACHE_VERSION; header.reserved = 0; header.featureFlags = gstate_c.featureFlags; header.numVertexShaders = GetNumVertexShaders(); header.numFragmentShaders = GetNumFragmentShaders(); header.numLinkedPrograms = GetNumPrograms(); fwrite(&header, 1, sizeof(header), f); vsCache_.Iterate([&](const ShaderID &id, Shader *shader) { fwrite(&id, 1, sizeof(id), f); }); fsCache_.Iterate([&](const ShaderID &id, Shader *shader) { fwrite(&id, 1, sizeof(id), f); }); for (auto iter : linkedShaderCache_) { ShaderID vsid, fsid; vsCache_.Iterate([&](const ShaderID &id, Shader *shader) { if (iter.vs == shader) vsid = id; }); fsCache_.Iterate([&](const ShaderID &id, Shader *shader) { if (iter.fs == shader) fsid = id; }); fwrite(&vsid, 1, sizeof(vsid), f); fwrite(&fsid, 1, sizeof(fsid), f); } fclose(f); diskCacheDirty_ = false; }