// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "sceKernel.h" #include "sceKernelAlarm.h" #include "sceKernelInterrupt.h" #include "HLE.h" #include "../../Core/CoreTiming.h" const int NATIVEALARM_SIZE = 20; struct NativeAlarm { SceSize size; u64 schedule; u32 handlerPtr; u32 commonPtr; }; struct Alarm : public KernelObject { const char *GetName() {return "[Alarm]";} const char *GetTypeName() {return "Alarm";} static u32 GetMissingErrorCode() { return SCE_KERNEL_ERROR_UNKNOWN_ALMID; } int GetIDType() const { return SCE_KERNEL_TMID_Alarm; } virtual void DoState(PointerWrap &p) { p.Do(alm); p.DoMarker("Alarm"); } NativeAlarm alm; }; void __KernelScheduleAlarm(Alarm *alarm, u64 ticks); class AlarmIntrHandler : public SubIntrHandler { public: static SubIntrHandler *Create() { return new AlarmIntrHandler(); } void setAlarm(Alarm *alarm) { alarmID = alarm->GetUID(); handlerAddress = alarm->alm.handlerPtr; enabled = true; } virtual void copyArgsToCPU(const PendingInterrupt &pend) { SubIntrHandler::copyArgsToCPU(pend); u32 error; Alarm *alarm = kernelObjects.Get(alarmID, error); if (alarm) currentMIPS->r[MIPS_REG_A0] = alarm->alm.commonPtr; else ERROR_LOG(HLE, "sceKernelAlarm: Unable to send interrupt args: alarm deleted?"); } virtual void handleResult(int result) { // A non-zero result means to reschedule. if (result > 0) { u32 error; Alarm *alarm = kernelObjects.Get(alarmID, error); __KernelScheduleAlarm(alarm, (u64) usToCycles(result)); } else { if (result < 0) WARN_LOG(HLE, "Alarm requested reschedule for negative value %u, ignoring", (unsigned) result); // Delete the alarm if it's not rescheduled. kernelObjects.Destroy(alarmID); __ReleaseSubIntrHandler(PSP_SYSTIMER0_INTR, alarmID); } } virtual void DoState(PointerWrap &p) { SubIntrHandler::DoState(p); p.Do(alarmID); p.DoMarker("AlarmIntrHandler"); } SceUID alarmID; }; static int alarmTimer = 0; void __KernelTriggerAlarm(u64 userdata, int cyclesLate) { int uid = (int) userdata; u32 error; Alarm *alarm = kernelObjects.Get(uid, error); if (alarm) __TriggerInterrupt(PSP_INTR_IMMEDIATE, PSP_SYSTIMER0_INTR, uid); } void __KernelAlarmInit() { alarmTimer = CoreTiming::RegisterEvent("Alarm", __KernelTriggerAlarm); __RegisterSubIntrCreator(PSP_SYSTIMER0_INTR, AlarmIntrHandler::Create); } void __KernelAlarmDoState(PointerWrap &p) { p.Do(alarmTimer); CoreTiming::RestoreRegisterEvent(alarmTimer, "Alarm", __KernelTriggerAlarm); p.DoMarker("sceKernelAlarm"); } KernelObject *__KernelAlarmObject() { // Default object to load from state. return new Alarm; } void __KernelScheduleAlarm(Alarm *alarm, u64 ticks) { alarm->alm.schedule = (CoreTiming::GetTicks() + ticks) / (u64) CoreTiming::GetClockFrequencyMHz(); CoreTiming::ScheduleEvent((int) ticks, alarmTimer, alarm->GetUID()); } SceUID __KernelSetAlarm(u64 ticks, u32 handlerPtr, u32 commonPtr) { if (!Memory::IsValidAddress(handlerPtr)) return SCE_KERNEL_ERROR_ILLEGAL_ADDR; Alarm *alarm = new Alarm; SceUID uid = kernelObjects.Create(alarm); alarm->alm.size = NATIVEALARM_SIZE; alarm->alm.handlerPtr = handlerPtr; alarm->alm.commonPtr = commonPtr; u32 error; AlarmIntrHandler *handler = (AlarmIntrHandler *) __RegisterSubIntrHandler(PSP_SYSTIMER0_INTR, uid, error); if (error != 0) { kernelObjects.Destroy(uid); return error; } handler->setAlarm(alarm); __KernelScheduleAlarm(alarm, ticks); return uid; } SceUID sceKernelSetAlarm(SceUInt micro, u32 handlerPtr, u32 commonPtr) { DEBUG_LOG(HLE, "sceKernelSetAlarm(%d, %08x, %08x)", micro, handlerPtr, commonPtr); return __KernelSetAlarm(usToCycles((u64) micro), handlerPtr, commonPtr); } SceUID sceKernelSetSysClockAlarm(u32 microPtr, u32 handlerPtr, u32 commonPtr) { u64 micro; if (Memory::IsValidAddress(microPtr)) micro = Memory::Read_U64(microPtr); else return -1; DEBUG_LOG(HLE, "sceKernelSetSysClockAlarm(%lld, %08x, %08x)", micro, handlerPtr, commonPtr); return __KernelSetAlarm(usToCycles(micro), handlerPtr, commonPtr); } int sceKernelCancelAlarm(SceUID uid) { DEBUG_LOG(HLE, "sceKernelCancelAlarm(%08x)", uid); CoreTiming::UnscheduleEvent(alarmTimer, uid); __ReleaseSubIntrHandler(PSP_SYSTIMER0_INTR, uid); return kernelObjects.Destroy(uid); } int sceKernelReferAlarmStatus(SceUID uid, u32 infoPtr) { u32 error; Alarm *alarm = kernelObjects.Get(uid, error); if (!alarm) { ERROR_LOG(HLE, "sceKernelReferAlarmStatus(%08x, %08x): invalid alarm", uid, infoPtr); return error; } DEBUG_LOG(HLE, "sceKernelReferAlarmStatus(%08x, %08x)", uid, infoPtr); if (!Memory::IsValidAddress(infoPtr)) return -1; u32 size = Memory::Read_U32(infoPtr); // Alarms actually respect size and write (kinda) what it can hold. if (size > 0) Memory::Write_U32(alarm->alm.size, infoPtr); if (size > 4) Memory::Write_U64(alarm->alm.schedule, infoPtr + 4); if (size > 12) Memory::Write_U32(alarm->alm.handlerPtr, infoPtr + 12); if (size > 16) Memory::Write_U32(alarm->alm.commonPtr, infoPtr + 16); return 0; }