// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #if _MSC_VER == 1700 // Has to be included before TextureScaler.h, else we get those std::bind errors in VS2012.. #include "../native/base/basictypes.h" #endif #include #include #include #include #include #include "GPU/Common/TextureScalerCommon.h" #include "Core/Config.h" #include "Common/Common.h" #include "Common/Log.h" #include "Common/MsgHandler.h" #include "Common/CommonFuncs.h" #include "Common/ThreadPools.h" #include "Common/CPUDetect.h" #include "ext/xbrz/xbrz.h" #if _M_SSE >= 0x401 #include #endif // Report the time and throughput for each larger scaling operation in the log //#define SCALING_MEASURE_TIME //#define DEBUG_SCALER_OUTPUT #ifdef SCALING_MEASURE_TIME #include "base/timeutil.h" #endif /////////////////////////////////////// Helper Functions (mostly math for parallelization) namespace { //////////////////////////////////////////////////////////////////// Various image processing #define R(_col) ((_col>> 0)&0xFF) #define G(_col) ((_col>> 8)&0xFF) #define B(_col) ((_col>>16)&0xFF) #define A(_col) ((_col>>24)&0xFF) #define DISTANCE(_p1,_p2) ( abs(static_cast(static_cast(R(_p1))-R(_p2))) + abs(static_cast(static_cast(G(_p1))-G(_p2))) \ + abs(static_cast(static_cast(B(_p1))-B(_p2))) + abs(static_cast(static_cast(A(_p1))-A(_p2))) ) // this is sadly much faster than an inline function with a loop, at least in VC10 #define MIX_PIXELS(_p0, _p1, _factors) \ ( (R(_p0)*(_factors)[0] + R(_p1)*(_factors)[1])/255 << 0 ) | \ ( (G(_p0)*(_factors)[0] + G(_p1)*(_factors)[1])/255 << 8 ) | \ ( (B(_p0)*(_factors)[0] + B(_p1)*(_factors)[1])/255 << 16 ) | \ ( (A(_p0)*(_factors)[0] + A(_p1)*(_factors)[1])/255 << 24 ) #define BLOCK_SIZE 32 // 3x3 convolution with Neumann boundary conditions, parallelizable // quite slow, could be sped up a lot // especially handling of separable kernels void convolve3x3(u32* data, u32* out, const int kernel[3][3], int width, int height, int l, int u) { for (int yb = 0; yb < (u - l) / BLOCK_SIZE + 1; ++yb) { for (int xb = 0; xb < width / BLOCK_SIZE + 1; ++xb) { for (int y = l + yb*BLOCK_SIZE; y < l + (yb + 1)*BLOCK_SIZE && y < u; ++y) { for (int x = xb*BLOCK_SIZE; x < (xb + 1)*BLOCK_SIZE && x < width; ++x) { int val = 0; for (int yoff = -1; yoff <= 1; ++yoff) { int yy = std::max(std::min(y + yoff, height - 1), 0); for (int xoff = -1; xoff <= 1; ++xoff) { int xx = std::max(std::min(x + xoff, width - 1), 0); val += data[yy*width + xx] * kernel[yoff + 1][xoff + 1]; } } out[y*width + x] = abs(val); } } } } } // deposterization: smoothes posterized gradients from low-color-depth (e.g. 444, 565, compressed) sources void deposterizeH(u32* data, u32* out, int w, int l, int u) { static const int T = 8; for (int y = l; y < u; ++y) { for (int x = 0; x < w; ++x) { int inpos = y*w + x; u32 center = data[inpos]; if (x == 0 || x == w - 1) { out[y*w + x] = center; continue; } u32 left = data[inpos - 1]; u32 right = data[inpos + 1]; out[y*w + x] = 0; for (int c = 0; c < 4; ++c) { u8 lc = ((left >> c * 8) & 0xFF); u8 cc = ((center >> c * 8) & 0xFF); u8 rc = ((right >> c * 8) & 0xFF); if ((lc != rc) && ((lc == cc && abs((int)((int)rc) - cc) <= T) || (rc == cc && abs((int)((int)lc) - cc) <= T))) { // blend this component out[y*w + x] |= ((rc + lc) / 2) << (c * 8); } else { // no change for this component out[y*w + x] |= cc << (c * 8); } } } } } void deposterizeV(u32* data, u32* out, int w, int h, int l, int u) { static const int T = 8; for (int xb = 0; xb < w / BLOCK_SIZE + 1; ++xb) { for (int y = l; y < u; ++y) { for (int x = xb*BLOCK_SIZE; x < (xb + 1)*BLOCK_SIZE && x < w; ++x) { u32 center = data[y * w + x]; if (y == 0 || y == h - 1) { out[y*w + x] = center; continue; } u32 upper = data[(y - 1) * w + x]; u32 lower = data[(y + 1) * w + x]; out[y*w + x] = 0; for (int c = 0; c < 4; ++c) { u8 uc = ((upper >> c * 8) & 0xFF); u8 cc = ((center >> c * 8) & 0xFF); u8 lc = ((lower >> c * 8) & 0xFF); if ((uc != lc) && ((uc == cc && abs((int)((int)lc) - cc) <= T) || (lc == cc && abs((int)((int)uc) - cc) <= T))) { // blend this component out[y*w + x] |= ((lc + uc) / 2) << (c * 8); } else { // no change for this component out[y*w + x] |= cc << (c * 8); } } } } } } // generates a distance mask value for each pixel in data // higher values -> larger distance to the surrounding pixels void generateDistanceMask(u32* data, u32* out, int width, int height, int l, int u) { for (int yb = 0; yb < (u - l) / BLOCK_SIZE + 1; ++yb) { for (int xb = 0; xb < width / BLOCK_SIZE + 1; ++xb) { for (int y = l + yb*BLOCK_SIZE; y < l + (yb + 1)*BLOCK_SIZE && y < u; ++y) { for (int x = xb*BLOCK_SIZE; x < (xb + 1)*BLOCK_SIZE && x < width; ++x) { const u32 center = data[y*width + x]; u32 dist = 0; for (int yoff = -1; yoff <= 1; ++yoff) { int yy = y + yoff; if (yy == height || yy == -1) { dist += 1200; // assume distance at borders, usually makes for better result continue; } for (int xoff = -1; xoff <= 1; ++xoff) { if (yoff == 0 && xoff == 0) continue; int xx = x + xoff; if (xx == width || xx == -1) { dist += 400; // assume distance at borders, usually makes for better result continue; } dist += DISTANCE(data[yy*width + xx], center); } } out[y*width + x] = dist; } } } } } // mix two images based on a mask void mix(u32* data, u32* source, u32* mask, u32 maskmax, int width, int l, int u) { for (int y = l; y < u; ++y) { for (int x = 0; x < width; ++x) { int pos = y*width + x; u8 mixFactors[2] = { 0, static_cast((std::min(mask[pos], maskmax) * 255) / maskmax) }; mixFactors[0] = 255 - mixFactors[1]; data[pos] = MIX_PIXELS(data[pos], source[pos], mixFactors); if (A(source[pos]) == 0) data[pos] = data[pos] & 0x00FFFFFF; // xBRZ always does a better job with hard alpha } } } //////////////////////////////////////////////////////////////////// Bicubic scaling // generate the value of a Mitchell-Netravali scaling spline at distance d, with parameters A and B // B=1 C=0 : cubic B spline (very smooth) // B=C=1/3 : recommended for general upscaling // B=0 C=1/2 : Catmull-Rom spline (sharp, ringing) // see Mitchell & Netravali, "Reconstruction Filters in Computer Graphics" inline float mitchell(float x, float B, float C) { float ax = fabs(x); if (ax >= 2.0f) return 0.0f; if (ax >= 1.0f) return ((-B - 6 * C)*(x*x*x) + (6 * B + 30 * C)*(x*x) + (-12 * B - 48 * C)*x + (8 * B + 24 * C)) / 6.0f; return ((12 - 9 * B - 6 * C)*(x*x*x) + (-18 + 12 * B + 6 * C)*(x*x) + (6 - 2 * B)) / 6.0f; } // arrays for pre-calculating weights and sums (~20KB) // Dimensions: // 0: 0 = BSpline, 1 = mitchell // 2: 2-5x scaling // 2,3: 5x5 generated pixels // 4,5: 5x5 pixels sampled from float bicubicWeights[2][4][5][5][5][5]; float bicubicInvSums[2][4][5][5]; // initialize pre-computed weights array void initBicubicWeights() { float B[2] = { 1.0f, 0.334f }; float C[2] = { 0.0f, 0.334f }; for (int type = 0; type < 2; ++type) { for (int factor = 2; factor <= 5; ++factor) { for (int x = 0; x < factor; ++x) { for (int y = 0; y < factor; ++y) { float sum = 0.0f; for (int sx = -2; sx <= 2; ++sx) { for (int sy = -2; sy <= 2; ++sy) { float dx = (x + 0.5f) / factor - (sx + 0.5f); float dy = (y + 0.5f) / factor - (sy + 0.5f); float dist = sqrt(dx*dx + dy*dy); float weight = mitchell(dist, B[type], C[type]); bicubicWeights[type][factor - 2][x][y][sx + 2][sy + 2] = weight; sum += weight; } } bicubicInvSums[type][factor - 2][x][y] = 1.0f / sum; } } } } } // perform bicubic scaling by factor f, with precomputed spline type T template void scaleBicubicT(u32* data, u32* out, int w, int h, int l, int u) { int outw = w*f; for (int yb = 0; yb < (u - l)*f / BLOCK_SIZE + 1; ++yb) { for (int xb = 0; xb < w*f / BLOCK_SIZE + 1; ++xb) { for (int y = l*f + yb*BLOCK_SIZE; y < l*f + (yb + 1)*BLOCK_SIZE && y < u*f; ++y) { for (int x = xb*BLOCK_SIZE; x < (xb + 1)*BLOCK_SIZE && x < w*f; ++x) { float r = 0.0f, g = 0.0f, b = 0.0f, a = 0.0f; int cx = x / f, cy = y / f; // sample supporting pixels in original image for (int sx = -2; sx <= 2; ++sx) { for (int sy = -2; sy <= 2; ++sy) { float weight = bicubicWeights[T][f - 2][x%f][y%f][sx + 2][sy + 2]; if (weight != 0.0f) { // clamp pixel locations int csy = std::max(std::min(sy + cy, h - 1), 0); int csx = std::max(std::min(sx + cx, w - 1), 0); // sample & add weighted components u32 sample = data[csy*w + csx]; r += weight*R(sample); g += weight*G(sample); b += weight*B(sample); a += weight*A(sample); } } } // generate and write result float invSum = bicubicInvSums[T][f - 2][x%f][y%f]; int ri = std::min(std::max(static_cast(ceilf(r*invSum)), 0), 255); int gi = std::min(std::max(static_cast(ceilf(g*invSum)), 0), 255); int bi = std::min(std::max(static_cast(ceilf(b*invSum)), 0), 255); int ai = std::min(std::max(static_cast(ceilf(a*invSum)), 0), 255); out[y*outw + x] = (ai << 24) | (bi << 16) | (gi << 8) | ri; } } } } } #if _M_SSE >= 0x401 template void scaleBicubicTSSE41(u32* data, u32* out, int w, int h, int l, int u) { int outw = w*f; for (int yb = 0; yb < (u - l)*f / BLOCK_SIZE + 1; ++yb) { for (int xb = 0; xb < w*f / BLOCK_SIZE + 1; ++xb) { for (int y = l*f + yb*BLOCK_SIZE; y < l*f + (yb + 1)*BLOCK_SIZE && y < u*f; ++y) { for (int x = xb*BLOCK_SIZE; x < (xb + 1)*BLOCK_SIZE && x < w*f; ++x) { __m128 result = _mm_set1_ps(0.0f); int cx = x / f, cy = y / f; // sample supporting pixels in original image for (int sx = -2; sx <= 2; ++sx) { for (int sy = -2; sy <= 2; ++sy) { float weight = bicubicWeights[T][f - 2][x%f][y%f][sx + 2][sy + 2]; if (weight != 0.0f) { // clamp pixel locations int csy = std::max(std::min(sy + cy, h - 1), 0); int csx = std::max(std::min(sx + cx, w - 1), 0); // sample & add weighted components __m128i sample = _mm_cvtsi32_si128(data[csy*w + csx]); sample = _mm_cvtepu8_epi32(sample); __m128 col = _mm_cvtepi32_ps(sample); col = _mm_mul_ps(col, _mm_set1_ps(weight)); result = _mm_add_ps(result, col); } } } // generate and write result __m128i pixel = _mm_cvtps_epi32(_mm_mul_ps(result, _mm_set1_ps(bicubicInvSums[T][f - 2][x%f][y%f]))); pixel = _mm_packs_epi32(pixel, pixel); pixel = _mm_packus_epi16(pixel, pixel); out[y*outw + x] = _mm_cvtsi128_si32(pixel); } } } } } #endif void scaleBicubicBSpline(int factor, u32* data, u32* out, int w, int h, int l, int u) { #if _M_SSE >= 0x401 if (cpu_info.bSSE4_1) { switch (factor) { case 2: scaleBicubicTSSE41<2, 0>(data, out, w, h, l, u); break; // when I first tested this, case 3: scaleBicubicTSSE41<3, 0>(data, out, w, h, l, u); break; // it was even slower than I had expected case 4: scaleBicubicTSSE41<4, 0>(data, out, w, h, l, u); break; // turns out I had not included case 5: scaleBicubicTSSE41<5, 0>(data, out, w, h, l, u); break; // any of these break statements default: ERROR_LOG(G3D, "Bicubic upsampling only implemented for factors 2 to 5"); } } else { #endif switch (factor) { case 2: scaleBicubicT<2, 0>(data, out, w, h, l, u); break; // when I first tested this, case 3: scaleBicubicT<3, 0>(data, out, w, h, l, u); break; // it was even slower than I had expected case 4: scaleBicubicT<4, 0>(data, out, w, h, l, u); break; // turns out I had not included case 5: scaleBicubicT<5, 0>(data, out, w, h, l, u); break; // any of these break statements default: ERROR_LOG(G3D, "Bicubic upsampling only implemented for factors 2 to 5"); } #if _M_SSE >= 0x401 } #endif } void scaleBicubicMitchell(int factor, u32* data, u32* out, int w, int h, int l, int u) { #if _M_SSE >= 0x401 if (cpu_info.bSSE4_1) { switch (factor) { case 2: scaleBicubicTSSE41<2, 1>(data, out, w, h, l, u); break; case 3: scaleBicubicTSSE41<3, 1>(data, out, w, h, l, u); break; case 4: scaleBicubicTSSE41<4, 1>(data, out, w, h, l, u); break; case 5: scaleBicubicTSSE41<5, 1>(data, out, w, h, l, u); break; default: ERROR_LOG(G3D, "Bicubic upsampling only implemented for factors 2 to 5"); } } else { #endif switch (factor) { case 2: scaleBicubicT<2, 1>(data, out, w, h, l, u); break; case 3: scaleBicubicT<3, 1>(data, out, w, h, l, u); break; case 4: scaleBicubicT<4, 1>(data, out, w, h, l, u); break; case 5: scaleBicubicT<5, 1>(data, out, w, h, l, u); break; default: ERROR_LOG(G3D, "Bicubic upsampling only implemented for factors 2 to 5"); } #if _M_SSE >= 0x401 } #endif } //////////////////////////////////////////////////////////////////// Bilinear scaling const static u8 BILINEAR_FACTORS[4][3][2] = { { { 44, 211 }, { 0, 0 }, { 0, 0 } }, // x2 { { 64, 191 }, { 0, 255 }, { 0, 0 } }, // x3 { { 77, 178 }, { 26, 229 }, { 0, 0 } }, // x4 { { 102, 153 }, { 51, 204 }, { 0, 255 } }, // x5 }; // integral bilinear upscaling by factor f, horizontal part template void bilinearHt(u32* data, u32* out, int w, int l, int u) { static_assert(f > 1 && f <= 5, "Bilinear scaling only implemented for factors 2 to 5"); int outw = w*f; for (int y = l; y < u; ++y) { for (int x = 0; x < w; ++x) { int inpos = y*w + x; u32 left = data[inpos - (x == 0 ? 0 : 1)]; u32 center = data[inpos]; u32 right = data[inpos + (x == w - 1 ? 0 : 1)]; int i = 0; for (; i < f / 2 + f % 2; ++i) { // first half of the new pixels + center, hope the compiler unrolls this out[y*outw + x*f + i] = MIX_PIXELS(left, center, BILINEAR_FACTORS[f - 2][i]); } for (; i < f; ++i) { // second half of the new pixels, hope the compiler unrolls this out[y*outw + x*f + i] = MIX_PIXELS(right, center, BILINEAR_FACTORS[f - 2][f - 1 - i]); } } } } void bilinearH(int factor, u32* data, u32* out, int w, int l, int u) { switch (factor) { case 2: bilinearHt<2>(data, out, w, l, u); break; case 3: bilinearHt<3>(data, out, w, l, u); break; case 4: bilinearHt<4>(data, out, w, l, u); break; case 5: bilinearHt<5>(data, out, w, l, u); break; default: ERROR_LOG(G3D, "Bilinear upsampling only implemented for factors 2 to 5"); } } // integral bilinear upscaling by factor f, vertical part // gl/gu == global lower and upper bound template void bilinearVt(u32* data, u32* out, int w, int gl, int gu, int l, int u) { static_assert(f>1 && f <= 5, "Bilinear scaling only implemented for 2x, 3x, 4x, and 5x"); int outw = w*f; for (int xb = 0; xb < outw / BLOCK_SIZE + 1; ++xb) { for (int y = l; y < u; ++y) { u32 uy = y - (y == gl ? 0 : 1); u32 ly = y + (y == gu - 1 ? 0 : 1); for (int x = xb*BLOCK_SIZE; x < (xb + 1)*BLOCK_SIZE && x < outw; ++x) { u32 upper = data[uy * outw + x]; u32 center = data[y * outw + x]; u32 lower = data[ly * outw + x]; int i = 0; for (; i < f / 2 + f % 2; ++i) { // first half of the new pixels + center, hope the compiler unrolls this out[(y*f + i)*outw + x] = MIX_PIXELS(upper, center, BILINEAR_FACTORS[f - 2][i]); } for (; i < f; ++i) { // second half of the new pixels, hope the compiler unrolls this out[(y*f + i)*outw + x] = MIX_PIXELS(lower, center, BILINEAR_FACTORS[f - 2][f - 1 - i]); } } } } } void bilinearV(int factor, u32* data, u32* out, int w, int gl, int gu, int l, int u) { switch (factor) { case 2: bilinearVt<2>(data, out, w, gl, gu, l, u); break; case 3: bilinearVt<3>(data, out, w, gl, gu, l, u); break; case 4: bilinearVt<4>(data, out, w, gl, gu, l, u); break; case 5: bilinearVt<5>(data, out, w, gl, gu, l, u); break; default: ERROR_LOG(G3D, "Bilinear upsampling only implemented for factors 2 to 5"); } } #undef BLOCK_SIZE #undef MIX_PIXELS #undef DISTANCE #undef R #undef G #undef B #undef A #ifdef DEBUG_SCALER_OUTPUT // used for debugging texture scaling (writing textures to files) static int g_imgCount = 0; void dbgPPM(int w, int h, u8* pixels, const char* prefix = "dbg") { // 3 component RGB char fn[32]; snprintf(fn, 32, "%s%04d.ppm", prefix, g_imgCount++); FILE *fp = fopen(fn, "wb"); fprintf(fp, "P6\n%d %d\n255\n", w, h); for (int j = 0; j < h; ++j) { for (int i = 0; i < w; ++i) { static unsigned char color[3]; color[0] = pixels[(j*w + i) * 4 + 0]; /* red */ color[1] = pixels[(j*w + i) * 4 + 1]; /* green */ color[2] = pixels[(j*w + i) * 4 + 2]; /* blue */ fwrite(color, 1, 3, fp); } } fclose(fp); } void dbgPGM(int w, int h, u32* pixels, const char* prefix = "dbg") { // 1 component char fn[32]; snprintf(fn, 32, "%s%04d.pgm", prefix, g_imgCount++); FILE *fp = fopen(fn, "wb"); fprintf(fp, "P5\n%d %d\n65536\n", w, h); for (int j = 0; j < h; ++j) { for (int i = 0; i < w; ++i) { fwrite((pixels + (j*w + i)), 1, 2, fp); } } fclose(fp); } #endif } /////////////////////////////////////// Texture Scaler TextureScalerCommon::TextureScalerCommon() { initBicubicWeights(); } TextureScalerCommon::~TextureScalerCommon() { } bool TextureScalerCommon::IsEmptyOrFlat(u32* data, int pixels, int fmt) { int pixelsPerWord = 4 / BytesPerPixel(fmt); u32 ref = data[0]; if (pixelsPerWord > 1 && (ref & 0x0000FFFF) != (ref >> 16)) { return false; } for (int i = 0; i < pixels / pixelsPerWord; ++i) { if (data[i] != ref) return false; } return true; } void TextureScalerCommon::ScaleAlways(u32 *out, u32 *src, u32 &dstFmt, int &width, int &height, int factor) { if (IsEmptyOrFlat(src, width*height, dstFmt)) { // This means it was a flat texture. Vulkan wants the size up front, so we need to make it happen. u32 pixel; // Since it's flat, one pixel is enough. It might end up pointing to data, though. u32 *pixelPointer = &pixel; ConvertTo8888(dstFmt, src, pixelPointer, 1, 1); if (pixelPointer != &pixel) { pixel = *pixelPointer; } dstFmt = Get8888Format(); width *= factor; height *= factor; // ABCD. If A = D, and AB = CD, then they must all be equal (B = C, etc.) if ((pixel & 0x000000FF) == (pixel >> 24) && (pixel & 0x0000FFFF) == (pixel >> 16)) { memset(out, pixel & 0xFF, width * height * sizeof(u32)); } else { // Let's hope this is vectorized. for (int i = 0; i < width * height; ++i) { out[i] = pixel; } } } else { ScaleInto(out, src, dstFmt, width, height, factor); } } bool TextureScalerCommon::ScaleInto(u32 *outputBuf, u32 *src, u32 &dstFmt, int &width, int &height, int factor) { #ifdef SCALING_MEASURE_TIME double t_start = real_time_now(); #endif bufInput.resize(width*height); // used to store the input image image if it needs to be reformatted u32 *inputBuf = bufInput.data(); // convert texture to correct format for scaling ConvertTo8888(dstFmt, src, inputBuf, width, height); // deposterize if (g_Config.bTexDeposterize) { bufDeposter.resize(width*height); DePosterize(inputBuf, bufDeposter.data(), width, height); inputBuf = bufDeposter.data(); } // scale switch (g_Config.iTexScalingType) { case XBRZ: ScaleXBRZ(factor, inputBuf, outputBuf, width, height); break; case HYBRID: ScaleHybrid(factor, inputBuf, outputBuf, width, height); break; case BICUBIC: ScaleBicubicMitchell(factor, inputBuf, outputBuf, width, height); break; case HYBRID_BICUBIC: ScaleHybrid(factor, inputBuf, outputBuf, width, height, true); break; default: ERROR_LOG(G3D, "Unknown scaling type: %d", g_Config.iTexScalingType); } // update values accordingly dstFmt = Get8888Format(); width *= factor; height *= factor; #ifdef SCALING_MEASURE_TIME if (width*height > 64 * 64 * factor*factor) { double t = real_time_now() - t_start; NOTICE_LOG(G3D, "TextureScaler: processed %9d pixels in %6.5lf seconds. (%9.2lf Mpixels/second)", width*height, t, (width*height) / (t * 1000 * 1000)); } #endif return true; } bool TextureScalerCommon::Scale(u32* &data, u32 &dstFmt, int &width, int &height, int factor) { // prevent processing empty or flat textures (this happens a lot in some games) // doesn't hurt the standard case, will be very quick for textures with actual texture if (IsEmptyOrFlat(data, width*height, dstFmt)) { DEBUG_LOG(G3D, "TextureScaler: early exit -- empty/flat texture"); return false; } bufOutput.resize(width*height*factor*factor); // used to store the upscaled image u32 *outputBuf = bufOutput.data(); if (ScaleInto(outputBuf, data, dstFmt, width, height, factor)) { data = outputBuf; return true; } return false; } void TextureScalerCommon::ScaleXBRZ(int factor, u32* source, u32* dest, int width, int height) { xbrz::ScalerCfg cfg; GlobalThreadPool::Loop(std::bind(&xbrz::scale, factor, source, dest, width, height, xbrz::ColorFormat::ARGB, cfg, std::placeholders::_1, std::placeholders::_2), 0, height); } void TextureScalerCommon::ScaleBilinear(int factor, u32* source, u32* dest, int width, int height) { bufTmp1.resize(width*height*factor); u32 *tmpBuf = bufTmp1.data(); GlobalThreadPool::Loop(std::bind(&bilinearH, factor, source, tmpBuf, width, std::placeholders::_1, std::placeholders::_2), 0, height); GlobalThreadPool::Loop(std::bind(&bilinearV, factor, tmpBuf, dest, width, 0, height, std::placeholders::_1, std::placeholders::_2), 0, height); } void TextureScalerCommon::ScaleBicubicBSpline(int factor, u32* source, u32* dest, int width, int height) { GlobalThreadPool::Loop(std::bind(&scaleBicubicBSpline, factor, source, dest, width, height, std::placeholders::_1, std::placeholders::_2), 0, height); } void TextureScalerCommon::ScaleBicubicMitchell(int factor, u32* source, u32* dest, int width, int height) { GlobalThreadPool::Loop(std::bind(&scaleBicubicMitchell, factor, source, dest, width, height, std::placeholders::_1, std::placeholders::_2), 0, height); } void TextureScalerCommon::ScaleHybrid(int factor, u32* source, u32* dest, int width, int height, bool bicubic) { // Basic algorithm: // 1) determine a feature mask C based on a sobel-ish filter + splatting, and upscale that mask bilinearly // 2) generate 2 scaled images: A - using Bilinear filtering, B - using xBRZ // 3) output = A*C + B*(1-C) const static int KERNEL_SPLAT[3][3] = { { 1, 1, 1 }, { 1, 1, 1 }, { 1, 1, 1 } }; bufTmp1.resize(width*height); bufTmp2.resize(width*height*factor*factor); bufTmp3.resize(width*height*factor*factor); GlobalThreadPool::Loop(std::bind(&generateDistanceMask, source, bufTmp1.data(), width, height, std::placeholders::_1, std::placeholders::_2), 0, height); GlobalThreadPool::Loop(std::bind(&convolve3x3, bufTmp1.data(), bufTmp2.data(), KERNEL_SPLAT, width, height, std::placeholders::_1, std::placeholders::_2), 0, height); ScaleBilinear(factor, bufTmp2.data(), bufTmp3.data(), width, height); // mask C is now in bufTmp3 ScaleXBRZ(factor, source, bufTmp2.data(), width, height); // xBRZ upscaled source is in bufTmp2 if (bicubic) ScaleBicubicBSpline(factor, source, dest, width, height); else ScaleBilinear(factor, source, dest, width, height); // Upscaled source is in dest // Now we can mix it all together // The factor 8192 was found through practical testing on a variety of textures GlobalThreadPool::Loop(std::bind(&mix, dest, bufTmp2.data(), bufTmp3.data(), 8192, width*factor, std::placeholders::_1, std::placeholders::_2), 0, height*factor); } void TextureScalerCommon::DePosterize(u32* source, u32* dest, int width, int height) { bufTmp3.resize(width*height); GlobalThreadPool::Loop(std::bind(&deposterizeH, source, bufTmp3.data(), width, std::placeholders::_1, std::placeholders::_2), 0, height); GlobalThreadPool::Loop(std::bind(&deposterizeV, bufTmp3.data(), dest, width, height, std::placeholders::_1, std::placeholders::_2), 0, height); GlobalThreadPool::Loop(std::bind(&deposterizeH, dest, bufTmp3.data(), width, std::placeholders::_1, std::placeholders::_2), 0, height); GlobalThreadPool::Loop(std::bind(&deposterizeV, bufTmp3.data(), dest, width, height, std::placeholders::_1, std::placeholders::_2), 0, height); }