// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #include "Common/StringUtils.h" #include "GPU/ge_constants.h" #include "GPU/GPUState.h" #include "Core/Config.h" #include "GPU/Directx9/VertexShaderGeneratorHLSL.h" #include "GPU/Common/VertexDecoderCommon.h" #include "GPU/Common/ShaderUniforms.h" #undef WRITE #define WRITE p+=sprintf static const char * const boneWeightAttrDecl[9] = { "#ERROR#", "float a_w1:TEXCOORD1;\n", "vec2 a_w1:TEXCOORD1;\n", "vec3 a_w1:TEXCOORD1;\n", "vec4 a_w1:TEXCOORD1;\n", "vec4 a_w1:TEXCOORD1;\n float a_w2:TEXCOORD2;\n", "vec4 a_w1:TEXCOORD1;\n vec2 a_w2:TEXCOORD2;\n", "vec4 a_w1:TEXCOORD1;\n vec3 a_w2:TEXCOORD2;\n", "vec4 a_w1:TEXCOORD1;\n vec4 a_w2:TEXCOORD2;\n", }; extern const char *hlsl_preamble_vs; bool GenerateVertexShaderHLSL(const VShaderID &id, char *buffer, ShaderLanguage lang, std::string *errorString) { char *p = buffer; bool isModeThrough = id.Bit(VS_BIT_IS_THROUGH); bool lmode = id.Bit(VS_BIT_LMODE); bool doTexture = id.Bit(VS_BIT_DO_TEXTURE); GETexMapMode uvGenMode = static_cast(id.Bits(VS_BIT_UVGEN_MODE, 2)); bool doTextureTransform = uvGenMode == GE_TEXMAP_TEXTURE_MATRIX; // this is only valid for some settings of uvGenMode GETexProjMapMode uvProjMode = static_cast(id.Bits(VS_BIT_UVPROJ_MODE, 2)); bool doShadeMapping = uvGenMode == GE_TEXMAP_ENVIRONMENT_MAP; bool doFlatShading = id.Bit(VS_BIT_FLATSHADE); bool useHWTransform = id.Bit(VS_BIT_USE_HW_TRANSFORM); bool hasColor = id.Bit(VS_BIT_HAS_COLOR) || !useHWTransform; bool hasNormal = id.Bit(VS_BIT_HAS_NORMAL) && useHWTransform; bool hasTexcoord = id.Bit(VS_BIT_HAS_TEXCOORD) || !useHWTransform; bool enableFog = id.Bit(VS_BIT_ENABLE_FOG); bool flipNormal = id.Bit(VS_BIT_NORM_REVERSE); int ls0 = id.Bits(VS_BIT_LS0, 2); int ls1 = id.Bits(VS_BIT_LS1, 2); bool enableBones = id.Bit(VS_BIT_ENABLE_BONES); bool enableLighting = id.Bit(VS_BIT_LIGHTING_ENABLE); int matUpdate = id.Bits(VS_BIT_MATERIAL_UPDATE, 3); bool doBezier = id.Bit(VS_BIT_BEZIER) && !enableBones && useHWTransform; bool doSpline = id.Bit(VS_BIT_SPLINE) && !enableBones && useHWTransform; if ((doBezier || doSpline) && !hasNormal) { // Bad usage. *errorString = "Invalid flags - tess requires normal."; return false; } bool hasColorTess = id.Bit(VS_BIT_HAS_COLOR_TESS); bool hasTexcoordTess = id.Bit(VS_BIT_HAS_TEXCOORD_TESS); bool hasNormalTess = id.Bit(VS_BIT_HAS_NORMAL_TESS); bool flipNormalTess = id.Bit(VS_BIT_NORM_REVERSE_TESS); DoLightComputation doLight[4] = { LIGHT_OFF, LIGHT_OFF, LIGHT_OFF, LIGHT_OFF }; if (useHWTransform) { int shadeLight0 = doShadeMapping ? ls0 : -1; int shadeLight1 = doShadeMapping ? ls1 : -1; for (int i = 0; i < 4; i++) { if (i == shadeLight0 || i == shadeLight1) doLight[i] = LIGHT_SHADE; if (enableLighting && id.Bit(VS_BIT_LIGHT0_ENABLE + i)) doLight[i] = LIGHT_FULL; } } int numBoneWeights = 0; int boneWeightScale = id.Bits(VS_BIT_WEIGHT_FMTSCALE, 2); if (enableBones) { numBoneWeights = 1 + id.Bits(VS_BIT_BONES, 3); } // Output some compatibility defines WRITE(p, "%s", hlsl_preamble_vs); if (lang == HLSL_D3D9) { WRITE(p, "#pragma warning( disable : 3571 )\n"); if (isModeThrough) { WRITE(p, "float4x4 u_proj_through : register(c%i);\n", CONST_VS_PROJ_THROUGH); } else { WRITE(p, "float4x4 u_proj : register(c%i);\n", CONST_VS_PROJ); // Add all the uniforms we'll need to transform properly. } if (enableFog) { WRITE(p, "vec2 u_fogcoef : register(c%i);\n", CONST_VS_FOGCOEF); } if (useHWTransform || !hasColor) WRITE(p, "vec4 u_matambientalpha : register(c%i);\n", CONST_VS_MATAMBIENTALPHA); // matambient + matalpha if (useHWTransform) { // When transforming by hardware, we need a great deal more uniforms... WRITE(p, "mat3x4 u_world : register(c%i);\n", CONST_VS_WORLD); WRITE(p, "mat3x4 u_view : register(c%i);\n", CONST_VS_VIEW); if (doTextureTransform) WRITE(p, "mat3x4 u_texmtx : register(c%i);\n", CONST_VS_TEXMTX); if (enableBones) { #ifdef USE_BONE_ARRAY WRITE(p, "mat3x4 u_bone[%i] : register(c%i);\n", numBones, CONST_VS_BONE0); #else for (int i = 0; i < numBoneWeights; i++) { WRITE(p, "mat3x4 u_bone%i : register(c%i);\n", i, CONST_VS_BONE0 + i * 3); } #endif } if (doTexture) { WRITE(p, "vec4 u_uvscaleoffset : register(c%i);\n", CONST_VS_UVSCALEOFFSET); } for (int i = 0; i < 4; i++) { if (doLight[i] != LIGHT_OFF) { // This is needed for shade mapping WRITE(p, "vec3 u_lightpos%i : register(c%i);\n", i, CONST_VS_LIGHTPOS + i); } if (doLight[i] == LIGHT_FULL) { GELightType type = static_cast(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2)); GELightComputation comp = static_cast(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2)); if (type != GE_LIGHTTYPE_DIRECTIONAL) WRITE(p, "vec3 u_lightatt%i : register(c%i);\n", i, CONST_VS_LIGHTATT + i); if (type == GE_LIGHTTYPE_SPOT || type == GE_LIGHTTYPE_UNKNOWN) { WRITE(p, "vec3 u_lightdir%i : register(c%i);\n", i, CONST_VS_LIGHTDIR + i); WRITE(p, "vec4 u_lightangle_spotCoef%i : register(c%i);\n", i, CONST_VS_LIGHTANGLE_SPOTCOEF + i); } WRITE(p, "vec3 u_lightambient%i : register(c%i);\n", i, CONST_VS_LIGHTAMBIENT + i); WRITE(p, "vec3 u_lightdiffuse%i : register(c%i);\n", i, CONST_VS_LIGHTDIFFUSE + i); if (comp == GE_LIGHTCOMP_BOTH) { WRITE(p, "vec3 u_lightspecular%i : register(c%i);\n", i, CONST_VS_LIGHTSPECULAR + i); } } } if (enableLighting) { WRITE(p, "vec4 u_ambient : register(c%i);\n", CONST_VS_AMBIENT); if ((matUpdate & 2) == 0 || !hasColor) WRITE(p, "vec3 u_matdiffuse : register(c%i);\n", CONST_VS_MATDIFFUSE); // if ((matUpdate & 4) == 0) WRITE(p, "vec4 u_matspecular : register(c%i);\n", CONST_VS_MATSPECULAR); // Specular coef is contained in alpha WRITE(p, "vec3 u_matemissive : register(c%i);\n", CONST_VS_MATEMISSIVE); } } if (!isModeThrough && gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) { WRITE(p, "vec4 u_depthRange : register(c%i);\n", CONST_VS_DEPTHRANGE); } if (!isModeThrough) { WRITE(p, "vec4 u_cullRangeMin : register(c%i);\n", CONST_VS_CULLRANGEMIN); WRITE(p, "vec4 u_cullRangeMax : register(c%i);\n", CONST_VS_CULLRANGEMAX); } } else { WRITE(p, "cbuffer base : register(b0) {\n%s};\n", cb_baseStr); WRITE(p, "cbuffer lights: register(b1) {\n%s};\n", cb_vs_lightsStr); WRITE(p, "cbuffer bones : register(b2) {\n%s};\n", cb_vs_bonesStr); } bool scaleUV = !isModeThrough && (uvGenMode == GE_TEXMAP_TEXTURE_COORDS || uvGenMode == GE_TEXMAP_UNKNOWN); // And the "varyings". bool texCoordInVec3 = false; if (useHWTransform) { WRITE(p, "struct VS_IN { \n"); if ((doSpline || doBezier) && lang == HLSL_D3D11) { WRITE(p, " uint instanceId : SV_InstanceID;\n"); } if (enableBones) { WRITE(p, " %s", boneWeightAttrDecl[numBoneWeights]); } if (doTexture && hasTexcoord) { WRITE(p, " vec2 texcoord : TEXCOORD0;\n"); } if (hasColor) { WRITE(p, " vec4 color0 : COLOR0;\n"); } if (hasNormal) { WRITE(p, " vec3 normal : NORMAL;\n"); } WRITE(p, " vec3 position : POSITION;\n"); WRITE(p, "};\n"); } else { WRITE(p, "struct VS_IN {\n"); WRITE(p, " vec4 position : POSITION;\n"); if (doTexture && hasTexcoord) { if (doTextureTransform && !isModeThrough) { texCoordInVec3 = true; WRITE(p, " vec3 texcoord : TEXCOORD0;\n"); } else WRITE(p, " vec2 texcoord : TEXCOORD0;\n"); } if (hasColor) { WRITE(p, " vec4 color0 : COLOR0;\n"); } // only software transform supplies color1 as vertex data if (lmode) { WRITE(p, " vec4 color1 : COLOR1;\n"); } WRITE(p, "};\n"); } WRITE(p, "struct VS_OUT {\n"); if (doTexture) { WRITE(p, " vec3 v_texcoord : TEXCOORD0;\n"); } const char *colorInterpolation = doFlatShading && lang == HLSL_D3D11 ? "nointerpolation " : ""; WRITE(p, " %svec4 v_color0 : COLOR0;\n", colorInterpolation); if (lmode) WRITE(p, " vec3 v_color1 : COLOR1;\n"); if (enableFog) { WRITE(p, " float v_fogdepth: TEXCOORD1;\n"); } if (lang == HLSL_D3D9) { WRITE(p, " vec4 gl_Position : POSITION;\n"); } else { WRITE(p, " vec4 gl_Position : SV_Position;\n"); } WRITE(p, "};\n"); // Confirmed: Through mode gets through exactly the same in GL and D3D in Phantasy Star: Text is 38023.0 in the test scene. if (!isModeThrough && gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) { // Apply the projection and viewport to get the Z buffer value, floor to integer, undo the viewport and projection. // The Z range in D3D is different but we compensate for that using parameters. WRITE(p, "\nvec4 depthRoundZVP(vec4 v) {\n"); WRITE(p, " float z = v.z / v.w;\n"); WRITE(p, " z = (z * u_depthRange.x + u_depthRange.y);\n"); WRITE(p, " z = floor(z);\n"); WRITE(p, " z = (z - u_depthRange.z) * u_depthRange.w;\n"); WRITE(p, " return vec4(v.x, v.y, z * v.w, v.w);\n"); WRITE(p, "}\n\n"); } // Hardware tessellation if (doSpline || doBezier) { if (lang == HLSL_D3D11) { WRITE(p, "struct TessData {\n"); WRITE(p, " vec3 pos; float pad1;\n"); WRITE(p, " vec2 tex; vec2 pad2;\n"); WRITE(p, " vec4 col;\n"); WRITE(p, "};\n"); WRITE(p, "StructuredBuffer tess_data : register(t0);\n"); WRITE(p, "struct TessWeight {\n"); WRITE(p, " vec4 basis;\n"); WRITE(p, " vec4 deriv;\n"); WRITE(p, "};\n"); WRITE(p, "StructuredBuffer tess_weights_u : register(t1);\n"); WRITE(p, "StructuredBuffer tess_weights_v : register(t2);\n"); } const char *init[3] = { "0.0, 0.0", "0.0, 0.0, 0.0", "0.0, 0.0, 0.0, 0.0" }; for (int i = 2; i <= 4; i++) { // Define 3 types vec2, vec3, vec4 WRITE(p, "float%d tess_sample(in float%d points[16], float4x4 weights) {\n", i, i); WRITE(p, " float%d pos = float%d(%s);\n", i, i, init[i - 2]); for (int v = 0; v < 4; ++v) { for (int u = 0; u < 4; ++u) { WRITE(p, " pos += weights[%i][%i] * points[%i];\n", v, u, v * 4 + u); } } WRITE(p, " return pos;\n"); WRITE(p, "}\n"); } WRITE(p, "float4x4 outerProduct(vec4 u, vec4 v) {\n"); WRITE(p, " return mul((float4x1)v, (float1x4)u);\n"); WRITE(p, "}\n"); WRITE(p, "struct Tess {\n"); WRITE(p, " vec3 pos;\n"); if (doTexture) WRITE(p, " vec2 tex;\n"); WRITE(p, " vec4 col;\n"); if (hasNormalTess) WRITE(p, " vec3 nrm;\n"); WRITE(p, "};\n"); WRITE(p, "void tessellate(in VS_IN In, out Tess tess) {\n"); WRITE(p, " int2 point_pos = int2(In.position.z, In.normal.z)%s;\n", doBezier ? " * 3" : ""); WRITE(p, " int2 weight_idx = int2(In.position.xy);\n"); // Load 4x4 control points WRITE(p, " vec3 _pos[16];\n"); WRITE(p, " vec2 _tex[16];\n"); WRITE(p, " vec4 _col[16];\n"); WRITE(p, " int index;\n"); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { WRITE(p, " index = (%i + point_pos.y) * u_spline_counts + (%i + point_pos.x);\n", i, j); WRITE(p, " _pos[%i] = tess_data[index].pos;\n", i * 4 + j); if (doTexture && hasTexcoordTess) WRITE(p, " _tex[%i] = tess_data[index].tex;\n", i * 4 + j); if (hasColorTess) WRITE(p, " _col[%i] = tess_data[index].col;\n", i * 4 + j); } } // Basis polynomials as weight coefficients WRITE(p, " vec4 basis_u = tess_weights_u[weight_idx.x].basis;\n"); WRITE(p, " vec4 basis_v = tess_weights_v[weight_idx.y].basis;\n"); WRITE(p, " float4x4 basis = outerProduct(basis_u, basis_v);\n"); // Tessellate WRITE(p, " tess.pos = tess_sample(_pos, basis);\n"); if (doTexture) { if (hasTexcoordTess) WRITE(p, " tess.tex = tess_sample(_tex, basis);\n"); else WRITE(p, " tess.tex = In.normal.xy;\n"); } if (hasColorTess) WRITE(p, " tess.col = tess_sample(_col, basis);\n"); else WRITE(p, " tess.col = u_matambientalpha;\n"); if (hasNormalTess) { // Derivatives as weight coefficients WRITE(p, " vec4 deriv_u = tess_weights_u[weight_idx.x].deriv;\n"); WRITE(p, " vec4 deriv_v = tess_weights_v[weight_idx.y].deriv;\n"); WRITE(p, " vec3 du = tess_sample(_pos, outerProduct(deriv_u, basis_v));\n"); WRITE(p, " vec3 dv = tess_sample(_pos, outerProduct(basis_u, deriv_v));\n"); WRITE(p, " tess.nrm = normalize(cross(du, dv));\n"); } WRITE(p, "}\n"); } WRITE(p, "VS_OUT main(VS_IN In) {\n"); WRITE(p, " VS_OUT Out;\n"); if (doTexture) { if (texCoordInVec3) { WRITE(p, " vec3 texcoord = In.texcoord;\n"); } else { WRITE(p, " vec2 texcoord = In.texcoord;\n"); } } if (hasColor) { WRITE(p, " vec4 color0 = In.color0;\n"); if (lmode && !useHWTransform) { WRITE(p, " vec4 color1 = In.color1;\n"); } } if (hasNormal) { WRITE(p, " vec3 normal = In.normal;\n"); } if (useHWTransform) { WRITE(p, " vec3 position = In.position;\n"); } else { WRITE(p, " vec4 position = In.position;\n"); } if (!useHWTransform) { // Simple pass-through of vertex data to fragment shader if (doTexture) { if (texCoordInVec3) { WRITE(p, " Out.v_texcoord = texcoord;\n"); } else { WRITE(p, " Out.v_texcoord = vec3(texcoord, 1.0);\n"); } } if (hasColor) { WRITE(p, " Out.v_color0 = color0;\n"); if (lmode) WRITE(p, " Out.v_color1 = color1.rgb;\n"); } else { WRITE(p, " Out.v_color0 = u_matambientalpha;\n"); if (lmode) WRITE(p, " Out.v_color1 = vec3(0.0);\n"); } if (enableFog) { WRITE(p, " Out.v_fogdepth = position.w;\n"); } if (isModeThrough) { WRITE(p, " vec4 outPos = mul(u_proj_through, vec4(In.position.xyz, 1.0));\n"); } else { if (gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) { WRITE(p, " vec4 outPos = depthRoundZVP(mul(u_proj, vec4(In.position.xyz, 1.0)));\n"); } else { WRITE(p, " vec4 outPos = mul(u_proj, vec4(In.position.xyz, 1.0));\n"); } } } else { // Step 1: World Transform / Skinning if (!enableBones) { if (doSpline || doBezier) { // Hardware tessellation WRITE(p, " Tess tess;\n"); WRITE(p, " tessellate(In, tess);\n"); WRITE(p, " vec3 worldpos = mul(vec4(tess.pos.xyz, 1.0), u_world).xyz;\n"); if (hasNormalTess) WRITE(p, " vec3 worldnormal = normalize(mul(vec4(%stess.nrm, 0.0), u_world)).xyz;\n", flipNormalTess ? "-" : ""); else WRITE(p, " mediump vec3 worldnormal = vec3(0.0, 0.0, 1.0);\n"); } else { // No skinning, just standard T&L. WRITE(p, " vec3 worldpos = mul(vec4(position.xyz, 1.0), u_world).xyz;\n"); if (hasNormal) WRITE(p, " mediump vec3 worldnormal = normalize(mul(vec4(%snormal, 0.0), u_world).xyz);\n", flipNormal ? "-" : ""); else WRITE(p, " mediump vec3 worldnormal = vec3(0.0, 0.0, 1.0);\n"); } } else { static const char * const boneWeightAttr[8] = { "a_w1.x", "a_w1.y", "a_w1.z", "a_w1.w", "a_w2.x", "a_w2.y", "a_w2.z", "a_w2.w", }; if (lang == HLSL_D3D11) { if (numBoneWeights == 1) WRITE(p, " mat3x4 skinMatrix = mul(In.a_w1, u_bone[0])"); else WRITE(p, " float4x3 skinMatrix = mul(In.a_w1.x, u_bone[0])"); for (int i = 1; i < numBoneWeights; i++) { const char *weightAttr = boneWeightAttr[i]; // workaround for "cant do .x of scalar" issue if (numBoneWeights == 1 && i == 0) weightAttr = "a_w1"; if (numBoneWeights == 5 && i == 4) weightAttr = "a_w2"; WRITE(p, " + mul(In.%s, u_bone[%i])", weightAttr, i); } } else { if (numBoneWeights == 1) WRITE(p, " float4x3 skinMatrix = mul(In.a_w1, u_bone0)"); else WRITE(p, " float4x3 skinMatrix = mul(In.a_w1.x, u_bone0)"); for (int i = 1; i < numBoneWeights; i++) { const char *weightAttr = boneWeightAttr[i]; // workaround for "cant do .x of scalar" issue if (numBoneWeights == 1 && i == 0) weightAttr = "a_w1"; if (numBoneWeights == 5 && i == 4) weightAttr = "a_w2"; WRITE(p, " + mul(In.%s, u_bone%i)", weightAttr, i); } } WRITE(p, ";\n"); // Trying to simplify this results in bugs in LBP... WRITE(p, " vec3 skinnedpos = mul(float4(position.xyz, 1.0), skinMatrix).xyz;\n"); WRITE(p, " vec3 worldpos = mul(float4(skinnedpos, 1.0), u_world).xyz;\n"); if (hasNormal) { WRITE(p, " vec3 skinnednormal = mul(float4(%snormal, 0.0), skinMatrix).xyz;\n", flipNormal ? "-" : ""); } else { WRITE(p, " vec3 skinnednormal = mul(float4(0.0, 0.0, %s1.0, 0.0), skinMatrix).xyz;\n", flipNormal ? "-" : ""); } WRITE(p, " mediump vec3 worldnormal = normalize(mul(float4(skinnednormal, 0.0), u_world).xyz);\n"); } WRITE(p, " vec4 viewPos = vec4(mul(vec4(worldpos, 1.0), u_view).xyz, 1.0);\n"); // Final view and projection transforms. if (gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) { WRITE(p, " vec4 outPos = depthRoundZVP(mul(u_proj, viewPos));\n"); } else { WRITE(p, " vec4 outPos = mul(u_proj, viewPos);\n"); } // TODO: Declare variables for dots for shade mapping if needed. const char *ambientStr = (matUpdate & 1) && hasColor ? "color0" : "u_matambientalpha"; const char *diffuseStr = (matUpdate & 2) && hasColor ? "color0.rgb" : "u_matdiffuse"; const char *specularStr = (matUpdate & 4) && hasColor ? "color0.rgb" : "u_matspecular.rgb"; if (doBezier || doSpline) { // TODO: Probably, should use hasColorTess but FF4 has a problem with drawing the background. ambientStr = (matUpdate & 1) && hasColor ? "tess.col" : "u_matambientalpha"; diffuseStr = (matUpdate & 2) && hasColor ? "tess.col.rgb" : "u_matdiffuse"; specularStr = (matUpdate & 4) && hasColor ? "tess.col.rgb" : "u_matspecular.rgb"; } bool diffuseIsZero = true; bool specularIsZero = true; bool distanceNeeded = false; bool anySpots = false; if (enableLighting) { WRITE(p, " vec4 lightSum0 = u_ambient * %s + float4(u_matemissive, 0.0);\n", ambientStr); for (int i = 0; i < 4; i++) { GELightType type = static_cast(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2)); GELightComputation comp = static_cast(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2)); if (doLight[i] != LIGHT_FULL) continue; diffuseIsZero = false; if (comp == GE_LIGHTCOMP_BOTH) specularIsZero = false; if (type != GE_LIGHTTYPE_DIRECTIONAL) distanceNeeded = true; if (type == GE_LIGHTTYPE_SPOT || type == GE_LIGHTTYPE_UNKNOWN) anySpots = true; } if (!specularIsZero) { WRITE(p, " vec3 lightSum1 = 0;\n"); } if (!diffuseIsZero) { WRITE(p, " vec3 toLight;\n"); WRITE(p, " vec3 diffuse;\n"); } if (distanceNeeded) { WRITE(p, " float distance;\n"); WRITE(p, " float lightScale;\n"); } WRITE(p, " float ldot;\n"); if (anySpots) { WRITE(p, " float angle;\n"); } } // Calculate lights if needed. If shade mapping is enabled, lights may need to be // at least partially calculated. for (int i = 0; i < 4; i++) { if (doLight[i] != LIGHT_FULL) continue; GELightType type = static_cast(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2)); GELightComputation comp = static_cast(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2)); if (type == GE_LIGHTTYPE_DIRECTIONAL) { // We prenormalize light positions for directional lights. WRITE(p, " toLight = u_lightpos%i;\n", i); } else { WRITE(p, " toLight = u_lightpos%i - worldpos;\n", i); WRITE(p, " distance = length(toLight);\n"); WRITE(p, " toLight /= distance;\n"); } bool doSpecular = comp == GE_LIGHTCOMP_BOTH; bool poweredDiffuse = comp == GE_LIGHTCOMP_ONLYPOWDIFFUSE; WRITE(p, " ldot = dot(toLight, worldnormal);\n"); if (poweredDiffuse) { // pow(0.0, 0.0) may be undefined, but the PSP seems to treat it as 1.0. // Seen in Tales of the World: Radiant Mythology (#2424.) WRITE(p, " if (u_matspecular.a <= 0.0) {\n"); WRITE(p, " ldot = 1.0;\n"); WRITE(p, " } else {\n"); WRITE(p, " ldot = pow(max(ldot, 0.0), u_matspecular.a);\n"); WRITE(p, " }\n"); } const char *timesLightScale = " * lightScale"; // Attenuation switch (type) { case GE_LIGHTTYPE_DIRECTIONAL: timesLightScale = ""; break; case GE_LIGHTTYPE_POINT: WRITE(p, " lightScale = clamp(1.0 / dot(u_lightatt%i, vec3(1.0, distance, distance*distance)), 0.0, 1.0);\n", i); break; case GE_LIGHTTYPE_SPOT: case GE_LIGHTTYPE_UNKNOWN: WRITE(p, " angle = length(u_lightdir%i) == 0.0 ? 0.0 : dot(normalize(u_lightdir%i), toLight);\n", i, i); WRITE(p, " if (angle >= u_lightangle_spotCoef%i.x) {\n", i); WRITE(p, " lightScale = clamp(1.0 / dot(u_lightatt%i, vec3(1.0, distance, distance*distance)), 0.0, 1.0) * (u_lightangle_spotCoef%i.y <= 0.0 ? 1.0 : pow(angle, u_lightangle_spotCoef%i.y));\n", i, i, i); WRITE(p, " } else {\n"); WRITE(p, " lightScale = 0.0;\n"); WRITE(p, " }\n"); break; default: // ILLEGAL break; } WRITE(p, " diffuse = (u_lightdiffuse%i * %s) * max(ldot, 0.0);\n", i, diffuseStr); if (doSpecular) { WRITE(p, " if (ldot >= 0.0) {\n"); WRITE(p, " ldot = dot(normalize(toLight + vec3(0.0, 0.0, 1.0)), worldnormal);\n"); WRITE(p, " if (u_matspecular.a <= 0.0) {\n"); WRITE(p, " ldot = 1.0;\n"); WRITE(p, " } else {\n"); WRITE(p, " ldot = pow(max(ldot, 0.0), u_matspecular.a);\n"); WRITE(p, " }\n"); WRITE(p, " if (ldot > 0.0)\n"); WRITE(p, " lightSum1 += u_lightspecular%i * %s * ldot %s;\n", i, specularStr, timesLightScale); WRITE(p, " }\n"); } WRITE(p, " lightSum0.rgb += (u_lightambient%i * %s.rgb + diffuse)%s;\n", i, ambientStr, timesLightScale); } if (enableLighting) { // Sum up ambient, emissive here. if (lmode) { WRITE(p, " Out.v_color0 = clamp(lightSum0, 0.0, 1.0);\n"); // v_color1 only exists when lmode = 1. if (specularIsZero) { WRITE(p, " Out.v_color1 = splat3(0.0);\n"); } else { WRITE(p, " Out.v_color1 = clamp(lightSum1, 0.0, 1.0);\n"); } } else { if (specularIsZero) { WRITE(p, " Out.v_color0 = clamp(lightSum0, 0.0, 1.0);\n"); } else { WRITE(p, " Out.v_color0 = clamp(clamp(lightSum0, 0.0, 1.0) + float4(lightSum1, 0.0), 0.0, 1.0);\n"); } } } else { // Lighting doesn't affect color. if (hasColor) { if (doBezier || doSpline) WRITE(p, " Out.v_color0 = tess.col;\n"); else WRITE(p, " Out.v_color0 = color0;\n"); } else { WRITE(p, " Out.v_color0 = u_matambientalpha;\n"); } if (lmode) WRITE(p, " Out.v_color1 = splat3(0.0);\n"); } // Step 3: UV generation if (doTexture) { switch (uvGenMode) { case GE_TEXMAP_TEXTURE_COORDS: // Scale-offset. Easy. case GE_TEXMAP_UNKNOWN: // Not sure what this is, but Riviera uses it. Treating as coords works. if (scaleUV) { if (hasTexcoord) { if (doBezier || doSpline) WRITE(p, " Out.v_texcoord = vec3(tess.tex.xy * u_uvscaleoffset.xy + u_uvscaleoffset.zw, 0.0);\n"); else WRITE(p, " Out.v_texcoord = vec3(texcoord.xy * u_uvscaleoffset.xy, 0.0);\n"); } else { WRITE(p, " Out.v_texcoord = splat3(0.0);\n"); } } else { if (hasTexcoord) { WRITE(p, " Out.v_texcoord = vec3(texcoord.xy * u_uvscaleoffset.xy + u_uvscaleoffset.zw, 0.0);\n"); } else { WRITE(p, " Out.v_texcoord = vec3(u_uvscaleoffset.zw, 0.0);\n"); } } break; case GE_TEXMAP_TEXTURE_MATRIX: // Projection mapping. { std::string temp_tc; switch (uvProjMode) { case GE_PROJMAP_POSITION: // Use model space XYZ as source temp_tc = "vec4(position.xyz, 1.0)"; break; case GE_PROJMAP_UV: // Use unscaled UV as source { if (hasTexcoord) { temp_tc = StringFromFormat("vec4(texcoord.xy, 0.0, 1.0)"); } else { temp_tc = "vec4(0.0, 0.0, 0.0, 1.0)"; } } break; case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized transformed normal as source if (hasNormal) temp_tc = flipNormal ? "vec4(normalize(-normal), 1.0)" : "vec4(normalize(normal), 1.0)"; else temp_tc = "vec4(0.0, 0.0, 1.0, 1.0)"; break; case GE_PROJMAP_NORMAL: // Use non-normalized transformed normal as source if (hasNormal) temp_tc = flipNormal ? "vec4(-normal, 1.0)" : "vec4(normal, 1.0)"; else temp_tc = "vec4(0.0, 0.0, 1.0, 1.0)"; break; } // Transform by texture matrix. XYZ as we are doing projection mapping. WRITE(p, " Out.v_texcoord.xyz = mul(%s, u_texmtx) * vec3(u_uvscaleoffset.xy, 1.0);\n", temp_tc.c_str()); } break; case GE_TEXMAP_ENVIRONMENT_MAP: // Shade mapping - use dots from light sources. { std::string lightFactor0 = StringFromFormat("(length(u_lightpos%i) == 0.0 ? worldnormal.z : dot(normalize(u_lightpos%i), worldnormal))", ls0, ls0); std::string lightFactor1 = StringFromFormat("(length(u_lightpos%i) == 0.0 ? worldnormal.z : dot(normalize(u_lightpos%i), worldnormal))", ls1, ls1); WRITE(p, " Out.v_texcoord = vec3(u_uvscaleoffset.xy * vec2(1.0 + %s, 1.0 + %s) * 0.5, 1.0);\n", lightFactor0.c_str(), lightFactor1.c_str()); } break; default: // Should be unreachable. _assert_(false); return false; } } // Compute fogdepth if (enableFog) { WRITE(p, " Out.v_fogdepth = (viewPos.z + u_fogcoef.x) * u_fogcoef.y;\n"); } } if (!isModeThrough && gstate_c.Supports(GPU_SUPPORTS_VS_RANGE_CULLING)) { WRITE(p, " vec3 projPos = outPos.xyz / outPos.w;\n"); // Vertex range culling doesn't happen when depth is clamped, so only do this if in range. WRITE(p, " if (u_cullRangeMin.w <= 0.0 || (projPos.z >= u_cullRangeMin.z && projPos.z <= u_cullRangeMax.z)) {\n"); const char *outMin = "projPos.x < u_cullRangeMin.x || projPos.y < u_cullRangeMin.y || projPos.z < u_cullRangeMin.z"; const char *outMax = "projPos.x > u_cullRangeMax.x || projPos.y > u_cullRangeMax.y || projPos.z > u_cullRangeMax.z"; WRITE(p, " if (%s || %s) {\n", outMin, outMax); WRITE(p, " outPos.w = u_cullRangeMax.w;\n"); WRITE(p, " }\n"); WRITE(p, " }\n"); } WRITE(p, " Out.gl_Position = outPos;\n"); WRITE(p, " return Out;\n"); WRITE(p, "}\n"); return true; }