// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. // Ideas for speeding things up on mobile OpenGL ES implementations // // Use superbuffers! Yes I just invented that name. // // The idea is to avoid respecifying the vertex format between every draw call (multiple glVertexAttribPointer ...) // by combining the contents of multiple draw calls into one buffer, as long as // they have exactly the same output vertex format. (different input formats is fine! This way // we can combine the data for multiple draws with different numbers of bones, as we consider numbones < 4 to be = 4) // into one VBO. // // This will likely be a win because I believe that between every change of VBO + glVertexAttribPointer*N, the driver will // perform a lot of validation, probably at draw call time, while all the validation can be skipped if the only thing // that changes between two draw calls is simple state or texture or a matrix etc, not anything vertex related. // Also the driver will have to manage hundreds instead of thousands of VBOs in games like GTA. // // * Every 10 frames or something, do the following: // - Frame 1: // + Mark all drawn buffers with in-frame sequence numbers (alternatively, // just log them in an array) // - Frame 2 (beginning?): // + Take adjacent buffers that have the same output vertex format, and add them // to a list of buffers to combine. Create said buffers with appropriate sizes // and precompute the offsets that the draws should be written into. // - Frame 2 (end): // + Actually do the work of combining the buffers. This probably means re-decoding // the vertices into a new one. Will also have to apply index offsets. // // Also need to change the drawing code so that we don't glBindBuffer and respecify glVAP if // two subsequent drawcalls come from the same superbuffer. // // Or we ignore all of this including vertex caching and simply find a way to do highly optimized vertex streaming, // like Dolphin is trying to. That will likely never be able to reach the same speed as perfectly optimized // superbuffers though. For this we will have to JIT the vertex decoder but that's not too hard. // // Now, when do we delete superbuffers? Maybe when half the buffers within have been killed? // // Another idea for GTA which switches textures a lot while not changing much other state is to use ES 3 Array // textures, if they are the same size (even if they aren't, might be okay to simply resize the textures to match // if they're just a multiple of 2 away) or something. Then we'd have to add a W texture coordinate to choose the // texture within the bound texture array to the vertex data when merging into superbuffers. // // There are even more things to try. For games that do matrix palette skinning by quickly switching bones and // just drawing a few triangles per call (NBA, FF:CC, Tekken 6 etc) we could even collect matrices, upload them // all at once, writing matrix indices into the vertices in addition to the weights, and then doing a single // draw call with specially generated shader to draw the whole mesh. This code will be seriously complex though. #include "base/logging.h" #include "base/timeutil.h" #include "Common/MemoryUtil.h" #include "Core/MemMap.h" #include "Core/Host.h" #include "Core/System.h" #include "Core/Reporting.h" #include "Core/Config.h" #include "Core/CoreTiming.h" #include "gfx/gl_debug_log.h" #include "profiler/profiler.h" #include "GPU/Math3D.h" #include "GPU/GPUState.h" #include "GPU/ge_constants.h" #include "GPU/Common/TextureDecoder.h" #include "GPU/Common/SplineCommon.h" #include "GPU/Common/VertexDecoderCommon.h" #include "GPU/Common/SoftwareTransformCommon.h" #include "GPU/GLES/FragmentTestCacheGLES.h" #include "GPU/GLES/StateMappingGLES.h" #include "GPU/GLES/TextureCacheGLES.h" #include "GPU/GLES/DrawEngineGLES.h" #include "GPU/GLES/ShaderManagerGLES.h" #include "GPU/GLES/GPU_GLES.h" const GLuint glprim[8] = { GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES, // Rectangles need to be expanded into triangles. }; enum { TRANSFORMED_VERTEX_BUFFER_SIZE = VERTEX_BUFFER_MAX * sizeof(TransformedVertex) }; #define VERTEXCACHE_DECIMATION_INTERVAL 17 #define VERTEXCACHE_NAME_DECIMATION_INTERVAL 41 #define VERTEXCACHE_NAME_DECIMATION_MAX 100 #define VERTEXCACHE_NAME_CACHE_SIZE 64 #define VERTEXCACHE_NAME_CACHE_FULL_BYTES (1024 * 1024) #define VERTEXCACHE_NAME_CACHE_MAX_AGE 120 enum { VAI_KILL_AGE = 120, VAI_UNRELIABLE_KILL_AGE = 240, VAI_UNRELIABLE_KILL_MAX = 4 }; DrawEngineGLES::DrawEngineGLES(Draw::DrawContext *draw) : vai_(256), draw_(draw), inputLayoutMap_(16) { render_ = (GLRenderManager *)draw_->GetNativeObject(Draw::NativeObject::RENDER_MANAGER); decOptions_.expandAllWeightsToFloat = false; decOptions_.expand8BitNormalsToFloat = false; decimationCounter_ = VERTEXCACHE_DECIMATION_INTERVAL; bufferDecimationCounter_ = VERTEXCACHE_NAME_DECIMATION_INTERVAL; // Allocate nicely aligned memory. Maybe graphics drivers will // appreciate it. // All this is a LOT of memory, need to see if we can cut down somehow. decoded = (u8 *)AllocateMemoryPages(DECODED_VERTEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); decIndex = (u16 *)AllocateMemoryPages(DECODED_INDEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); splineBuffer = (u8 *)AllocateMemoryPages(SPLINE_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); indexGen.Setup(decIndex); InitDeviceObjects(); tessDataTransfer = new TessellationDataTransferGLES(gl_extensions.VersionGEThan(3, 0, 0)); } DrawEngineGLES::~DrawEngineGLES() { DestroyDeviceObjects(); FreeMemoryPages(decoded, DECODED_VERTEX_BUFFER_SIZE); FreeMemoryPages(decIndex, DECODED_INDEX_BUFFER_SIZE); FreeMemoryPages(splineBuffer, SPLINE_BUFFER_SIZE); delete tessDataTransfer; } void DrawEngineGLES::DeviceLost() { DestroyDeviceObjects(); } void DrawEngineGLES::DeviceRestore() { InitDeviceObjects(); } void DrawEngineGLES::InitDeviceObjects() { for (int i = 0; i < GLRenderManager::MAX_INFLIGHT_FRAMES; i++) { frameData_[i].pushVertex = new GLPushBuffer(render_, GL_ARRAY_BUFFER, 1024 * 1024); frameData_[i].pushIndex = new GLPushBuffer(render_, GL_ELEMENT_ARRAY_BUFFER, 256 * 1024); render_->RegisterPushBuffer(i, frameData_[i].pushVertex); render_->RegisterPushBuffer(i, frameData_[i].pushIndex); } int vertexSize = sizeof(TransformedVertex); std::vector entries; entries.push_back({ ATTR_POSITION, 4, GL_FLOAT, GL_FALSE, vertexSize, 0 }); entries.push_back({ ATTR_TEXCOORD, 3, GL_FLOAT, GL_FALSE, vertexSize, offsetof(TransformedVertex, u) }); entries.push_back({ ATTR_COLOR0, 4, GL_UNSIGNED_BYTE, GL_TRUE, vertexSize, offsetof(TransformedVertex, color0) }); entries.push_back({ ATTR_COLOR1, 3, GL_UNSIGNED_BYTE, GL_TRUE, vertexSize, offsetof(TransformedVertex, color1) }); softwareInputLayout_ = render_->CreateInputLayout(entries); } void DrawEngineGLES::DestroyDeviceObjects() { for (int i = 0; i < GLRenderManager::MAX_INFLIGHT_FRAMES; i++) { render_->UnregisterPushBuffer(i, frameData_[i].pushVertex); render_->UnregisterPushBuffer(i, frameData_[i].pushIndex); frameData_[i].pushVertex->Destroy(); frameData_[i].pushIndex->Destroy(); delete frameData_[i].pushVertex; delete frameData_[i].pushIndex; } ClearTrackedVertexArrays(); render_->DeleteInputLayout(softwareInputLayout_); } void DrawEngineGLES::ClearInputLayoutMap() { inputLayoutMap_.Iterate([&](const uint32_t &key, GLRInputLayout *il) { render_->DeleteInputLayout(il); }); inputLayoutMap_.Clear(); } void DrawEngineGLES::BeginFrame() { FrameData &frameData = frameData_[render_->GetCurFrame()]; frameData.pushIndex->Begin(); frameData.pushVertex->Begin(); } void DrawEngineGLES::EndFrame() { FrameData &frameData = frameData_[render_->GetCurFrame()]; frameData.pushIndex->End(); frameData.pushVertex->End(); } struct GlTypeInfo { u16 type; u8 count; u8 normalized; }; static const GlTypeInfo GLComp[] = { {0}, // DEC_NONE, {GL_FLOAT, 1, GL_FALSE}, // DEC_FLOAT_1, {GL_FLOAT, 2, GL_FALSE}, // DEC_FLOAT_2, {GL_FLOAT, 3, GL_FALSE}, // DEC_FLOAT_3, {GL_FLOAT, 4, GL_FALSE}, // DEC_FLOAT_4, {GL_BYTE, 4, GL_TRUE}, // DEC_S8_3, {GL_SHORT, 4, GL_TRUE},// DEC_S16_3, {GL_UNSIGNED_BYTE, 1, GL_TRUE},// DEC_U8_1, {GL_UNSIGNED_BYTE, 2, GL_TRUE},// DEC_U8_2, {GL_UNSIGNED_BYTE, 3, GL_TRUE},// DEC_U8_3, {GL_UNSIGNED_BYTE, 4, GL_TRUE},// DEC_U8_4, {GL_UNSIGNED_SHORT, 1, GL_TRUE},// DEC_U16_1, {GL_UNSIGNED_SHORT, 2, GL_TRUE},// DEC_U16_2, {GL_UNSIGNED_SHORT, 3, GL_TRUE},// DEC_U16_3, {GL_UNSIGNED_SHORT, 4, GL_TRUE},// DEC_U16_4, }; static inline void VertexAttribSetup(int attrib, int fmt, int stride, int offset, std::vector &entries) { if (fmt) { const GlTypeInfo &type = GLComp[fmt]; GLRInputLayout::Entry entry; entry.offset = offset; entry.location = attrib; entry.normalized = type.normalized; entry.type = type.type; entry.stride = stride; entry.count = type.count; entries.push_back(entry); } } // TODO: Use VBO and get rid of the vertexData pointers - with that, we will supply only offsets GLRInputLayout *DrawEngineGLES::SetupDecFmtForDraw(LinkedShader *program, const DecVtxFormat &decFmt) { uint32_t key = decFmt.id; GLRInputLayout *inputLayout = inputLayoutMap_.Get(key); if (inputLayout) { return inputLayout; } std::vector entries; VertexAttribSetup(ATTR_W1, decFmt.w0fmt, decFmt.stride, decFmt.w0off, entries); VertexAttribSetup(ATTR_W2, decFmt.w1fmt, decFmt.stride, decFmt.w1off, entries); VertexAttribSetup(ATTR_TEXCOORD, decFmt.uvfmt, decFmt.stride, decFmt.uvoff, entries); VertexAttribSetup(ATTR_COLOR0, decFmt.c0fmt, decFmt.stride, decFmt.c0off, entries); VertexAttribSetup(ATTR_COLOR1, decFmt.c1fmt, decFmt.stride, decFmt.c1off, entries); VertexAttribSetup(ATTR_NORMAL, decFmt.nrmfmt, decFmt.stride, decFmt.nrmoff, entries); VertexAttribSetup(ATTR_POSITION, decFmt.posfmt, decFmt.stride, decFmt.posoff, entries); inputLayout = render_->CreateInputLayout(entries); inputLayoutMap_.Insert(key, inputLayout); return inputLayout; } void DrawEngineGLES::SubmitPrim(void *verts, void *inds, GEPrimitiveType prim, int vertexCount, u32 vertType, int *bytesRead) { if (!indexGen.PrimCompatible(prevPrim_, prim) || numDrawCalls >= MAX_DEFERRED_DRAW_CALLS || vertexCountInDrawCalls_ + vertexCount > VERTEX_BUFFER_MAX) Flush(); // TODO: Is this the right thing to do? if (prim == GE_PRIM_KEEP_PREVIOUS) { prim = prevPrim_ != GE_PRIM_INVALID ? prevPrim_ : GE_PRIM_POINTS; } else { prevPrim_ = prim; } SetupVertexDecoder(vertType); *bytesRead = vertexCount * dec_->VertexSize(); if ((vertexCount < 2 && prim > 0) || (vertexCount < 3 && prim > 2 && prim != GE_PRIM_RECTANGLES)) return; DeferredDrawCall &dc = drawCalls[numDrawCalls]; dc.verts = verts; dc.inds = inds; dc.vertType = vertType; dc.indexType = (vertType & GE_VTYPE_IDX_MASK) >> GE_VTYPE_IDX_SHIFT; dc.prim = prim; dc.vertexCount = vertexCount; u32 dhash = dcid_; dhash ^= (u32)(uintptr_t)verts; dhash = __rotl(dhash, 13); dhash ^= (u32)(uintptr_t)inds; dhash = __rotl(dhash, 13); dhash ^= (u32)vertType; dhash = __rotl(dhash, 13); dhash ^= (u32)vertexCount; dhash = __rotl(dhash, 13); dhash ^= (u32)prim; dcid_ = dhash; if (inds) { GetIndexBounds(inds, vertexCount, vertType, &dc.indexLowerBound, &dc.indexUpperBound); } else { dc.indexLowerBound = 0; dc.indexUpperBound = vertexCount - 1; } uvScale[numDrawCalls] = gstate_c.uv; numDrawCalls++; vertexCountInDrawCalls_ += vertexCount; if (g_Config.bSoftwareSkinning && (vertType & GE_VTYPE_WEIGHT_MASK)) { DecodeVertsStep(decoded, decodeCounter_, decodedVerts_); decodeCounter_++; } if (prim == GE_PRIM_RECTANGLES && (gstate.getTextureAddress(0) & 0x3FFFFFFF) == (gstate.getFrameBufAddress() & 0x3FFFFFFF)) { // Rendertarget == texture? if (!g_Config.bDisableSlowFramebufEffects) { gstate_c.Dirty(DIRTY_TEXTURE_PARAMS); Flush(); } } } void DrawEngineGLES::DecodeVertsToPushBuffer(GLPushBuffer *push, uint32_t *bindOffset, GLRBuffer **buf) { u8 *dest = decoded; // Figure out how much pushbuffer space we need to allocate. if (push) { int vertsToDecode = ComputeNumVertsToDecode(); dest = (u8 *)push->Push(vertsToDecode * dec_->GetDecVtxFmt().stride, bindOffset, buf); } DecodeVerts(dest); } void DrawEngineGLES::MarkUnreliable(VertexArrayInfo *vai) { vai->status = VertexArrayInfo::VAI_UNRELIABLE; if (vai->vbo) { render_->DeleteBuffer(vai->vbo); vai->vbo = 0; } if (vai->ebo) { render_->DeleteBuffer(vai->ebo); vai->ebo = 0; } } void DrawEngineGLES::ClearTrackedVertexArrays() { vai_.Iterate([&](uint32_t hash, VertexArrayInfo *vai){ FreeVertexArray(vai); delete vai; }); vai_.Clear(); } void DrawEngineGLES::DecimateTrackedVertexArrays() { if (--decimationCounter_ <= 0) { decimationCounter_ = VERTEXCACHE_DECIMATION_INTERVAL; } else { return; } const int threshold = gpuStats.numFlips - VAI_KILL_AGE; const int unreliableThreshold = gpuStats.numFlips - VAI_UNRELIABLE_KILL_AGE; int unreliableLeft = VAI_UNRELIABLE_KILL_MAX; vai_.Iterate([&](uint32_t hash, VertexArrayInfo *vai) { bool kill; if (vai->status == VertexArrayInfo::VAI_UNRELIABLE) { // We limit killing unreliable so we don't rehash too often. kill = vai->lastFrame < unreliableThreshold && --unreliableLeft >= 0; } else { kill = vai->lastFrame < threshold; } if (kill) { FreeVertexArray(vai); delete vai; vai_.Remove(hash); } }); vai_.Maintain(); } void DrawEngineGLES::FreeVertexArray(VertexArrayInfo *vai) { if (vai->vbo) { render_->DeleteBuffer(vai->vbo); vai->vbo = nullptr; } if (vai->ebo) { render_->DeleteBuffer(vai->ebo); vai->ebo = nullptr; } } void DrawEngineGLES::DoFlush() { PROFILE_THIS_SCOPE("flush"); FrameData &frameData = frameData_[render_->GetCurFrame()]; gpuStats.numFlushes++; gpuStats.numTrackedVertexArrays = (int)vai_.size(); bool textureNeedsApply = false; if (gstate_c.IsDirty(DIRTY_TEXTURE_IMAGE | DIRTY_TEXTURE_PARAMS) && !gstate.isModeClear() && gstate.isTextureMapEnabled()) { textureCache_->SetTexture(); gstate_c.Clean(DIRTY_TEXTURE_IMAGE | DIRTY_TEXTURE_PARAMS); textureNeedsApply = true; } GEPrimitiveType prim = prevPrim_; VShaderID vsid; Shader *vshader = shaderManager_->ApplyVertexShader(prim, lastVType_, &vsid); GLRBuffer *vertexBuffer = nullptr; GLRBuffer *indexBuffer = nullptr; uint32_t vertexBufferOffset = 0; uint32_t indexBufferOffset = 0; if (vshader->UseHWTransform()) { int vertexCount = 0; bool useElements = true; // Cannot cache vertex data with morph enabled. bool useCache = g_Config.bVertexCache && !(lastVType_ & GE_VTYPE_MORPHCOUNT_MASK); // Also avoid caching when software skinning. if (g_Config.bSoftwareSkinning && (lastVType_ & GE_VTYPE_WEIGHT_MASK)) useCache = false; // TEMPORARY useCache = false; if (useCache) { u32 id = dcid_ ^ gstate.getUVGenMode(); // This can have an effect on which UV decoder we need to use! And hence what the decoded data will look like. See #9263 VertexArrayInfo *vai = vai_.Get(id); if (!vai) { vai = new VertexArrayInfo(); vai_.Insert(id, vai); } switch (vai->status) { case VertexArrayInfo::VAI_NEW: { // Haven't seen this one before. ReliableHashType dataHash = ComputeHash(); vai->hash = dataHash; vai->minihash = ComputeMiniHash(); vai->status = VertexArrayInfo::VAI_HASHING; vai->drawsUntilNextFullHash = 0; DecodeVerts(decoded); // writes to indexGen vai->numVerts = indexGen.VertexCount(); vai->prim = indexGen.Prim(); vai->maxIndex = indexGen.MaxIndex(); vai->flags = gstate_c.vertexFullAlpha ? VAI_FLAG_VERTEXFULLALPHA : 0; goto rotateVBO; } // Hashing - still gaining confidence about the buffer. // But if we get this far it's likely to be worth creating a vertex buffer. case VertexArrayInfo::VAI_HASHING: { vai->numDraws++; if (vai->lastFrame != gpuStats.numFlips) { vai->numFrames++; } if (vai->drawsUntilNextFullHash == 0) { // Let's try to skip a full hash if mini would fail. const u32 newMiniHash = ComputeMiniHash(); ReliableHashType newHash = vai->hash; if (newMiniHash == vai->minihash) { newHash = ComputeHash(); } if (newMiniHash != vai->minihash || newHash != vai->hash) { MarkUnreliable(vai); DecodeVerts(decoded); goto rotateVBO; } if (vai->numVerts > 64) { // exponential backoff up to 16 draws, then every 32 vai->drawsUntilNextFullHash = std::min(32, vai->numFrames); } else { // Lower numbers seem much more likely to change. vai->drawsUntilNextFullHash = 0; } // TODO: tweak //if (vai->numFrames > 1000) { // vai->status = VertexArrayInfo::VAI_RELIABLE; //} } else { vai->drawsUntilNextFullHash--; u32 newMiniHash = ComputeMiniHash(); if (newMiniHash != vai->minihash) { MarkUnreliable(vai); DecodeVerts(decoded); goto rotateVBO; } } if (vai->vbo == 0) { DecodeVerts(decoded); vai->numVerts = indexGen.VertexCount(); vai->prim = indexGen.Prim(); vai->maxIndex = indexGen.MaxIndex(); vai->flags = gstate_c.vertexFullAlpha ? VAI_FLAG_VERTEXFULLALPHA : 0; useElements = !indexGen.SeenOnlyPurePrims(); if (!useElements && indexGen.PureCount()) { vai->numVerts = indexGen.PureCount(); } _dbg_assert_msg_(G3D, gstate_c.vertBounds.minV >= gstate_c.vertBounds.maxV, "Should not have checked UVs when caching."); size_t vsz = dec_->GetDecVtxFmt().stride * indexGen.MaxIndex(); vai->vbo = render_->CreateBuffer(GL_ARRAY_BUFFER, vsz, GL_STATIC_DRAW); render_->BufferSubdata(vai->vbo, 0, vsz, decoded); // If there's only been one primitive type, and it's either TRIANGLES, LINES or POINTS, // there is no need for the index buffer we built. We can then use glDrawArrays instead // for a very minor speed boost. if (useElements) { size_t esz = sizeof(short) * indexGen.VertexCount(); vai->ebo = render_->CreateBuffer(GL_ARRAY_BUFFER, esz, GL_STATIC_DRAW); render_->BufferSubdata(vai->ebo, 0, esz, (uint8_t *)decIndex, false); } else { vai->ebo = 0; render_->BindIndexBuffer(vai->ebo); } } else { gpuStats.numCachedDrawCalls++; useElements = vai->ebo ? true : false; gpuStats.numCachedVertsDrawn += vai->numVerts; gstate_c.vertexFullAlpha = vai->flags & VAI_FLAG_VERTEXFULLALPHA; } vertexBuffer = vai->vbo; indexBuffer = vai->ebo; vertexCount = vai->numVerts; prim = static_cast(vai->prim); break; } // Reliable - we don't even bother hashing anymore. Right now we don't go here until after a very long time. case VertexArrayInfo::VAI_RELIABLE: { vai->numDraws++; if (vai->lastFrame != gpuStats.numFlips) { vai->numFrames++; } gpuStats.numCachedDrawCalls++; gpuStats.numCachedVertsDrawn += vai->numVerts; vertexBuffer = vai->vbo; indexBuffer = vai->ebo; vertexCount = vai->numVerts; prim = static_cast(vai->prim); gstate_c.vertexFullAlpha = vai->flags & VAI_FLAG_VERTEXFULLALPHA; break; } case VertexArrayInfo::VAI_UNRELIABLE: { vai->numDraws++; if (vai->lastFrame != gpuStats.numFlips) { vai->numFrames++; } DecodeVerts(decoded); goto rotateVBO; } } vai->lastFrame = gpuStats.numFlips; } else { if (g_Config.bSoftwareSkinning && (lastVType_ & GE_VTYPE_WEIGHT_MASK)) { // If software skinning, we've already predecoded into "decoded". So push that content. size_t size = decodedVerts_ * dec_->GetDecVtxFmt().stride; u8 *dest = (u8 *)frameData.pushVertex->Push(size, &vertexBufferOffset, &vertexBuffer); memcpy(dest, decoded, size); } else { // Decode directly into the pushbuffer DecodeVertsToPushBuffer(frameData.pushVertex, &vertexBufferOffset, &vertexBuffer); } rotateVBO: gpuStats.numUncachedVertsDrawn += indexGen.VertexCount(); useElements = !indexGen.SeenOnlyPurePrims(); vertexCount = indexGen.VertexCount(); if (!useElements && indexGen.PureCount()) { vertexCount = indexGen.PureCount(); } prim = indexGen.Prim(); } VERBOSE_LOG(G3D, "Flush prim %i! %i verts in one go", prim, vertexCount); bool hasColor = (lastVType_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE; if (gstate.isModeThrough()) { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255); } else { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255); } if (textureNeedsApply) textureCache_->ApplyTexture(); // Need to ApplyDrawState after ApplyTexture because depal can launch a render pass and that wrecks the state. ApplyDrawState(prim); ApplyDrawStateLate(false, 0); LinkedShader *program = shaderManager_->ApplyFragmentShader(vsid, vshader, lastVType_, prim); GLRInputLayout *inputLayout = SetupDecFmtForDraw(program, dec_->GetDecVtxFmt()); render_->BindVertexBuffer(inputLayout, vertexBuffer, vertexBufferOffset); if (useElements) { if (!indexBuffer) { indexBufferOffset = (uint32_t)frameData.pushIndex->Push(decIndex, sizeof(uint16_t) * indexGen.VertexCount(), &indexBuffer); render_->BindIndexBuffer(indexBuffer); } if (gstate_c.bezier || gstate_c.spline) render_->DrawIndexed(glprim[prim], vertexCount, GL_UNSIGNED_SHORT, (GLvoid*)(intptr_t)indexBufferOffset, numPatches); else render_->DrawIndexed(glprim[prim], vertexCount, GL_UNSIGNED_SHORT, (GLvoid*)(intptr_t)indexBufferOffset); } else { render_->Draw(glprim[prim], 0, vertexCount); } } else { DecodeVerts(decoded); bool hasColor = (lastVType_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE; if (gstate.isModeThrough()) { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255); } else { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255); } gpuStats.numUncachedVertsDrawn += indexGen.VertexCount(); prim = indexGen.Prim(); // Undo the strip optimization, not supported by the SW code yet. if (prim == GE_PRIM_TRIANGLE_STRIP) prim = GE_PRIM_TRIANGLES; TransformedVertex *drawBuffer = NULL; int numTrans; bool drawIndexed = false; u16 *inds = decIndex; SoftwareTransformResult result{}; // TODO: Keep this static? Faster than repopulating? SoftwareTransformParams params{}; params.decoded = decoded; params.transformed = transformed; params.transformedExpanded = transformedExpanded; params.fbman = framebufferManager_; params.texCache = textureCache_; params.allowClear = true; params.allowSeparateAlphaClear = true; int maxIndex = indexGen.MaxIndex(); int vertexCount = indexGen.VertexCount(); // TODO: Split up into multiple draw calls for GLES 2.0 where you can't guarantee support for more than 0x10000 verts. #if defined(MOBILE_DEVICE) if (vertexCount > 0x10000 / 3) vertexCount = 0x10000 / 3; #endif SoftwareTransform( prim, vertexCount, dec_->VertexType(), inds, GE_VTYPE_IDX_16BIT, dec_->GetDecVtxFmt(), maxIndex, drawBuffer, numTrans, drawIndexed, ¶ms, &result); if (textureNeedsApply) textureCache_->ApplyTexture(); ApplyDrawState(prim); ApplyDrawStateLate(result.setStencil, result.stencilValue); LinkedShader *program = shaderManager_->ApplyFragmentShader(vsid, vshader, lastVType_, prim); if (result.action == SW_DRAW_PRIMITIVES) { const int vertexSize = sizeof(transformed[0]); bool doTextureProjection = gstate.getUVGenMode() == GE_TEXMAP_TEXTURE_MATRIX; if (drawIndexed) { vertexBufferOffset = (uint32_t)frameData.pushVertex->Push(drawBuffer, maxIndex * sizeof(TransformedVertex), &vertexBuffer); indexBufferOffset = (uint32_t)frameData.pushIndex->Push(inds, sizeof(uint16_t) * numTrans, &indexBuffer); render_->BindVertexBuffer(softwareInputLayout_, vertexBuffer, vertexBufferOffset); render_->BindIndexBuffer(indexBuffer); render_->DrawIndexed(glprim[prim], numTrans, GL_UNSIGNED_SHORT, (void *)(intptr_t)indexBufferOffset); } else { vertexBufferOffset = (uint32_t)frameData.pushVertex->Push(drawBuffer, numTrans * sizeof(TransformedVertex), &vertexBuffer); render_->BindVertexBuffer(softwareInputLayout_, vertexBuffer, vertexBufferOffset); render_->Draw(glprim[prim], 0, numTrans); } } else if (result.action == SW_CLEAR) { u32 clearColor = result.color; float clearDepth = result.depth; const float col[4] = { ((clearColor & 0xFF)) / 255.0f, ((clearColor & 0xFF00) >> 8) / 255.0f, ((clearColor & 0xFF0000) >> 16) / 255.0f, ((clearColor & 0xFF000000) >> 24) / 255.0f, }; bool colorMask = gstate.isClearModeColorMask(); bool alphaMask = gstate.isClearModeAlphaMask(); bool depthMask = gstate.isClearModeDepthMask(); if (depthMask) { framebufferManager_->SetDepthUpdated(); } GLbitfield target = 0; if (colorMask || alphaMask) target |= GL_COLOR_BUFFER_BIT; if (alphaMask) target |= GL_STENCIL_BUFFER_BIT; if (depthMask) target |= GL_DEPTH_BUFFER_BIT; render_->Clear(clearColor, clearDepth, clearColor >> 24, target); framebufferManager_->SetColorUpdated(gstate_c.skipDrawReason); int scissorX1 = gstate.getScissorX1(); int scissorY1 = gstate.getScissorY1(); int scissorX2 = gstate.getScissorX2() + 1; int scissorY2 = gstate.getScissorY2() + 1; framebufferManager_->SetSafeSize(scissorX2, scissorY2); if (g_Config.bBlockTransferGPU && (gstate_c.featureFlags & GPU_USE_CLEAR_RAM_HACK) && colorMask && (alphaMask || gstate.FrameBufFormat() == GE_FORMAT_565)) { framebufferManager_->ApplyClearToMemory(scissorX1, scissorY1, scissorX2, scissorY2, clearColor); } gstate_c.Dirty(DIRTY_BLEND_STATE); // Make sure the color mask gets re-applied. } } gpuStats.numDrawCalls += numDrawCalls; gpuStats.numVertsSubmitted += vertexCountInDrawCalls_; indexGen.Reset(); decodedVerts_ = 0; numDrawCalls = 0; vertexCountInDrawCalls_ = 0; decodeCounter_ = 0; dcid_ = 0; prevPrim_ = GE_PRIM_INVALID; gstate_c.vertexFullAlpha = true; framebufferManager_->SetColorUpdated(gstate_c.skipDrawReason); // Now seems as good a time as any to reset the min/max coords, which we may examine later. gstate_c.vertBounds.minU = 512; gstate_c.vertBounds.minV = 512; gstate_c.vertBounds.maxU = 0; gstate_c.vertBounds.maxV = 0; #ifndef MOBILE_DEVICE host->GPUNotifyDraw(); #endif CHECK_GL_ERROR_IF_DEBUG(); } bool DrawEngineGLES::IsCodePtrVertexDecoder(const u8 *ptr) const { return decJitCache_->IsInSpace(ptr); } void DrawEngineGLES::TessellationDataTransferGLES::SendDataToShader(const float *pos, const float *tex, const float *col, int size, bool hasColor, bool hasTexCoords) { /* #ifndef USING_GLES2 if (isAllowTexture1D_) { // Position glActiveTexture(GL_TEXTURE4); glBindTexture(GL_TEXTURE_1D, data_tex[0]); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); if (prevSize < size) { glTexImage1D(GL_TEXTURE_1D, 0, GL_RGBA32F, size, 0, GL_RGBA, GL_FLOAT, (GLfloat*)pos); prevSize = size; } else { glTexSubImage1D(GL_TEXTURE_1D, 0, 0, size, GL_RGBA, GL_FLOAT, (GLfloat*)pos); } // Texcoords if (hasTexCoords) { glActiveTexture(GL_TEXTURE5); glBindTexture(GL_TEXTURE_1D, data_tex[1]); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); if (prevSizeTex < size) { glTexImage1D(GL_TEXTURE_1D, 0, GL_RGBA32F, size, 0, GL_RGBA, GL_FLOAT, (GLfloat*)tex); prevSizeTex = size; } else { glTexSubImage1D(GL_TEXTURE_1D, 0, 0, size, GL_RGBA, GL_FLOAT, (GLfloat*)tex); } } // Color glActiveTexture(GL_TEXTURE6); glBindTexture(GL_TEXTURE_1D, data_tex[2]); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); int sizeColor = hasColor ? size : 1; if (prevSizeCol < sizeColor) { glTexImage1D(GL_TEXTURE_1D, 0, GL_RGBA32F, sizeColor, 0, GL_RGBA, GL_FLOAT, (GLfloat*)col); prevSizeCol = sizeColor; } else { glTexSubImage1D(GL_TEXTURE_1D, 0, 0, sizeColor, GL_RGBA, GL_FLOAT, (GLfloat*)col); } } else #endif { // Position glActiveTexture(GL_TEXTURE4); glBindTexture(GL_TEXTURE_2D, data_tex[0]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); if (prevSize < size) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, size, 1, 0, GL_RGBA, GL_FLOAT, (GLfloat*)pos); prevSize = size; } else { glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, size, 1, GL_RGBA, GL_FLOAT, (GLfloat*)pos); } // Texcoords if (hasTexCoords) { glActiveTexture(GL_TEXTURE5); glBindTexture(GL_TEXTURE_2D, data_tex[1]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); if (prevSizeTex < size) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, size, 1, 0, GL_RGBA, GL_FLOAT, (GLfloat*)tex); prevSizeTex = size; } else { glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, size, 1, GL_RGBA, GL_FLOAT, (GLfloat*)tex); } } // Color glActiveTexture(GL_TEXTURE6); glBindTexture(GL_TEXTURE_2D, data_tex[2]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); int sizeColor = hasColor ? size : 1; if (prevSizeCol < sizeColor) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, sizeColor, 1, 0, GL_RGBA, GL_FLOAT, (GLfloat*)col); prevSizeCol = sizeColor; } else { glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, sizeColor, 1, GL_RGBA, GL_FLOAT, (GLfloat*)col); } } glActiveTexture(GL_TEXTURE0); CHECK_GL_ERROR_IF_DEBUG(); */ }