// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #if defined(_WIN32) && defined(_DEBUG) #include "Common/CommonWindows.h" #endif #include "base/stringutil.h" #include "GPU/ge_constants.h" #include "GPU/GPUState.h" #include "Core/Config.h" #include "GPU/Directx9/VertexShaderGeneratorDX9.h" #include "GPU/Common/VertexDecoderCommon.h" #undef WRITE #define WRITE p+=sprintf namespace DX9 { bool CanUseHardwareTransformDX9(int prim) { if (!g_Config.bHardwareTransform) return false; return !gstate.isModeThrough() && prim != GE_PRIM_RECTANGLES; } // prim so we can special case for RECTANGLES :( void ComputeVertexShaderIDDX9(VertexShaderIDDX9 *id, u32 vertType, int prim, bool useHWTransform) { bool doTexture = gstate.isTextureMapEnabled() && !gstate.isModeClear(); bool doTextureProjection = gstate.getUVGenMode() == GE_TEXMAP_TEXTURE_MATRIX; bool doShadeMapping = gstate.getUVGenMode() == GE_TEXMAP_ENVIRONMENT_MAP; bool hasColor = (vertType & GE_VTYPE_COL_MASK) != 0; bool hasNormal = (vertType & GE_VTYPE_NRM_MASK) != 0; bool hasTexcoord = (vertType & GE_VTYPE_TC_MASK) != 0; bool enableFog = gstate.isFogEnabled() && !gstate.isModeThrough() && !gstate.isModeClear(); bool lmode = gstate.isUsingSecondaryColor() && gstate.isLightingEnabled(); int id0 = 0; int id1 = 0; id0 = lmode & 1; id0 |= (gstate.isModeThrough() & 1) << 1; id0 |= (enableFog & 1) << 2; id0 |= (hasColor & 1) << 3; if (doTexture) { id0 |= 1 << 4; id0 |= (gstate_c.flipTexture & 1) << 5; id0 |= (doTextureProjection & 1) << 6; } if (useHWTransform) { id0 |= 1 << 8; id0 |= (hasNormal & 1) << 9; // UV generation mode id0 |= gstate.getUVGenMode() << 16; // The next bits are used differently depending on UVgen mode if (doTextureProjection) { id0 |= gstate.getUVProjMode() << 18; } else if (doShadeMapping) { id0 |= gstate.getUVLS0() << 18; id0 |= gstate.getUVLS1() << 20; } // Bones if (vertTypeIsSkinningEnabled(vertType)) id0 |= (TranslateNumBones(vertTypeGetNumBoneWeights(vertType)) - 1) << 22; // Okay, d[1] coming up. ============== if (gstate.isLightingEnabled() || doShadeMapping) { // Light bits for (int i = 0; i < 4; i++) { id1 |= gstate.getLightComputation(i) << (i * 4); id1 |= gstate.getLightType(i) << (i * 4 + 2); } id1 |= (gstate.materialupdate & 7) << 16; for (int i = 0; i < 4; i++) { id1 |= (gstate.isLightChanEnabled(i) & 1) << (20 + i); } // doShadeMapping is stored as UVGenMode, so this is enough for isLightingEnabled. id1 |= 1 << 24; } // 2 bits. id1 |= (vertTypeGetWeightMask(vertType) >> GE_VTYPE_WEIGHT_SHIFT) << 25; id1 |= (gstate.areNormalsReversed() & 1) << 27; id1 |= (hasTexcoord & 1) << 28; } id->d[0] = id0; id->d[1] = id1; } static const char * const boneWeightAttrDecl[9] = { "#ERROR#", "float a_w1:TEXCOORD1;\n", "float2 a_w1:TEXCOORD1;\n", "float3 a_w1:TEXCOORD1;\n", "float4 a_w1:TEXCOORD1;\n", "float4 a_w1:TEXCOORD1;\n float a_w2:TEXCOORD2;\n", "float4 a_w1:TEXCOORD1;\n float2 a_w2:TEXCOORD2;\n", "float4 a_w1:TEXCOORD1;\n float3 a_w2:TEXCOORD2;\n", "float4 a_w1:TEXCOORD1;\n float4 a_w2:TEXCOORD2;\n", }; enum DoLightComputation { LIGHT_OFF, LIGHT_SHADE, LIGHT_FULL, }; void GenerateVertexShaderDX9(int prim, char *buffer, bool useHWTransform) { char *p = buffer; const u32 vertType = gstate.vertType; bool lmode = gstate.isUsingSecondaryColor() && gstate.isLightingEnabled(); bool doTexture = gstate.isTextureMapEnabled() && !gstate.isModeClear(); bool doTextureProjection = gstate.getUVGenMode() == GE_TEXMAP_TEXTURE_MATRIX; bool doShadeMapping = gstate.getUVGenMode() == GE_TEXMAP_ENVIRONMENT_MAP; bool hasColor = (vertType & GE_VTYPE_COL_MASK) != 0 || !useHWTransform; bool hasNormal = (vertType & GE_VTYPE_NRM_MASK) != 0 && useHWTransform; bool hasTexcoord = (vertType & GE_VTYPE_TC_MASK) != 0 || !useHWTransform; bool enableFog = gstate.isFogEnabled() && !gstate.isModeThrough() && !gstate.isModeClear(); bool throughmode = (vertType & GE_VTYPE_THROUGH_MASK) != 0; bool flipV = gstate_c.flipTexture; bool flipNormal = gstate.areNormalsReversed(); bool prescale = g_Config.bPrescaleUV && !throughmode && (gstate.getUVGenMode() == GE_TEXMAP_TEXTURE_COORDS || gstate.getUVGenMode() == GE_TEXMAP_UNKNOWN); DoLightComputation doLight[4] = {LIGHT_OFF, LIGHT_OFF, LIGHT_OFF, LIGHT_OFF}; if (useHWTransform) { int shadeLight0 = doShadeMapping ? gstate.getUVLS0() : -1; int shadeLight1 = doShadeMapping ? gstate.getUVLS1() : -1; for (int i = 0; i < 4; i++) { if (i == shadeLight0 || i == shadeLight1) doLight[i] = LIGHT_SHADE; if (gstate.isLightingEnabled() && gstate.isLightChanEnabled(i)) doLight[i] = LIGHT_FULL; } } WRITE(p, "#pragma warning( disable : 3571 )\n"); if (gstate.isModeThrough()) { WRITE(p, "float4x4 u_proj_through : register(c%i);\n", CONST_VS_PROJ_THROUGH); } else { WRITE(p, "float4x4 u_proj : register(c%i);\n", CONST_VS_PROJ); // Add all the uniforms we'll need to transform properly. } if (enableFog) { WRITE(p, "float2 u_fogcoef : register(c%i);\n", CONST_VS_FOGCOEF); } if (useHWTransform || !hasColor) WRITE(p, "float4 u_matambientalpha : register(c%i);\n", CONST_VS_MATAMBIENTALPHA); // matambient + matalpha if (useHWTransform) { // When transforming by hardware, we need a great deal more uniforms... WRITE(p, "float4x3 u_world : register(c%i);\n", CONST_VS_WORLD); WRITE(p, "float4x3 u_view : register(c%i);\n", CONST_VS_VIEW); if (doTextureProjection) WRITE(p, "float4x3 u_texmtx : register(c%i);\n", CONST_VS_TEXMTX); if (vertTypeIsSkinningEnabled(vertType)) { int numBones = TranslateNumBones(vertTypeGetNumBoneWeights(vertType)); #ifdef USE_BONE_ARRAY WRITE(p, "float4x3 u_bone[%i] : register(c%i);\n", numBones, CONST_VS_BONE0); #else for (int i = 0; i < numBones; i++) { WRITE(p, "float4x3 u_bone%i : register(c%i);\n", i, CONST_VS_BONE0 + i * 3); } #endif } if (doTexture && (flipV || !prescale || gstate.getUVGenMode() == GE_TEXMAP_ENVIRONMENT_MAP || gstate.getUVGenMode() == GE_TEXMAP_TEXTURE_MATRIX)) { WRITE(p, "float4 u_uvscaleoffset : register(c%i);\n", CONST_VS_UVSCALEOFFSET); } for (int i = 0; i < 4; i++) { if (doLight[i] != LIGHT_OFF) { // This is needed for shade mapping WRITE(p, "float3 u_lightpos%i : register(c%i);\n", i, CONST_VS_LIGHTPOS + i); } if (doLight[i] == LIGHT_FULL) { GELightType type = gstate.getLightType(i); if (type != GE_LIGHTTYPE_DIRECTIONAL) WRITE(p, "float3 u_lightatt%i : register(c%i);\n", i, CONST_VS_LIGHTATT + i); if (type == GE_LIGHTTYPE_SPOT || type == GE_LIGHTTYPE_UNKNOWN) { WRITE(p, "float3 u_lightdir%i : register(c%i);\n", i, CONST_VS_LIGHTDIR + i); WRITE(p, "float u_lightangle%i : register(c%i);\n", i, CONST_VS_LIGHTANGLE + i); WRITE(p, "float u_lightspotCoef%i : register(c%i);\n", i, CONST_VS_LIGHTSPOTCOEF + i); } WRITE(p, "float3 u_lightambient%i : register(c%i);\n", i, CONST_VS_LIGHTAMBIENT + i); WRITE(p, "float3 u_lightdiffuse%i : register(c%i);\n", i, CONST_VS_LIGHTDIFFUSE + i); if (gstate.isUsingSpecularLight(i)) WRITE(p, "float3 u_lightspecular%i : register(c%i);\n", i, CONST_VS_LIGHTSPECULAR + i); } } if (gstate.isLightingEnabled()) { WRITE(p, "float4 u_ambient : register(c%i);\n", CONST_VS_AMBIENT); if ((gstate.materialupdate & 2) == 0 || !hasColor) WRITE(p, "float3 u_matdiffuse : register(c%i);\n", CONST_VS_MATDIFFUSE); // if ((gstate.materialupdate & 4) == 0) WRITE(p, "float4 u_matspecular : register(c%i);\n", CONST_VS_MATSPECULAR); // Specular coef is contained in alpha WRITE(p, "float3 u_matemissive : register(c%i);\n", CONST_VS_MATEMISSIVE); } } if (useHWTransform) { WRITE(p, "struct VS_IN { \n"); if (vertTypeIsSkinningEnabled(vertType)) { WRITE(p, "%s", boneWeightAttrDecl[TranslateNumBones(vertTypeGetNumBoneWeights(vertType))]); } if (doTexture && hasTexcoord) { if (doTextureProjection) WRITE(p, " float3 texcoord : TEXCOORD0;\n"); else WRITE(p, " float2 texcoord : TEXCOORD0;\n"); } if (hasColor) { WRITE(p, " float4 color0 : COLOR0;\n"); } if (hasNormal) { WRITE(p, " float3 normal : NORMAL;\n"); } WRITE(p, " float3 position : POSITION;\n"); WRITE(p, "};\n"); } else { WRITE(p, "struct VS_IN {\n"); WRITE(p, " float4 position : POSITION;\n"); WRITE(p, " float3 texcoord : TEXCOORD0;\n"); WRITE(p, " float4 color0 : COLOR0;\n"); // only software transform supplies color1 as vertex data WRITE(p, " float4 color1 : COLOR1;\n"); WRITE(p, "};\n"); } WRITE(p, "struct VS_OUT {\n"); WRITE(p, " float4 gl_Position : POSITION;\n"); if (doTexture) { if (doTextureProjection) WRITE(p, " float3 v_texcoord: TEXCOORD0;\n"); else WRITE(p, " float2 v_texcoord: TEXCOORD0;\n"); } WRITE(p, " float4 v_color0 : COLOR0;\n"); if (lmode) WRITE(p, " float3 v_color1 : COLOR1;\n"); if (enableFog) { WRITE(p, " float2 v_fogdepth: TEXCOORD1;\n"); } WRITE(p, "};\n"); WRITE(p, "VS_OUT main(VS_IN In) {\n"); WRITE(p, " VS_OUT Out = (VS_OUT)0; \n"); if (!useHWTransform) { // Simple pass-through of vertex data to fragment shader if (doTexture) { if (doTextureProjection) { WRITE(p, " Out.v_texcoord = In.texcoord;\n"); } else { WRITE(p, " Out.v_texcoord = In.texcoord.xy;\n"); } } if (hasColor) { WRITE(p, " Out.v_color0 = In.color0;\n"); if (lmode) WRITE(p, " Out.v_color1 = In.color1.rgb;\n"); } else { WRITE(p, " Out.v_color0 = In.u_matambientalpha;\n"); if (lmode) WRITE(p, " Out.v_color1 = float3(0.0);\n"); } if (enableFog) { WRITE(p, " Out.v_fogdepth.x = In.position.w;\n"); } if (gstate.isModeThrough()) { WRITE(p, " Out.gl_Position = mul(float4(In.position.xyz, 1.0), u_proj_through);\n"); } else { WRITE(p, " Out.gl_Position = mul(float4(In.position.xyz, 1.0), u_proj);\n"); } } else { // Step 1: World Transform / Skinning if (!vertTypeIsSkinningEnabled(vertType)) { // No skinning, just standard T&L. WRITE(p, " float3 worldpos = mul(float4(In.position.xyz, 1.0), u_world);\n"); if (hasNormal) WRITE(p, " float3 worldnormal = normalize( mul(float4(%sIn.normal, 0.0), u_world));\n", flipNormal ? "-" : ""); else WRITE(p, " float3 worldnormal = float3(0.0, 0.0, 1.0);\n"); } else { int numWeights = TranslateNumBones(vertTypeGetNumBoneWeights(vertType)); static const char * const boneWeightAttr[8] = { "a_w1.x", "a_w1.y", "a_w1.z", "a_w1.w", "a_w2.x", "a_w2.y", "a_w2.z", "a_w2.w", }; #if defined(USE_FOR_LOOP) && defined(USE_BONE_ARRAY) // To loop through the weights, we unfortunately need to put them in a float array. // GLSL ES sucks - no way to directly initialize an array! switch (numWeights) { case 1: WRITE(p, " float w[1]; w[0] = a_w1;\n"); break; case 2: WRITE(p, " float w[2]; w[0] = a_w1.x; w[1] = a_w1.y;\n"); break; case 3: WRITE(p, " float w[3]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z;\n"); break; case 4: WRITE(p, " float w[4]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w;\n"); break; case 5: WRITE(p, " float w[5]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w; w[4] = a_w2;\n"); break; case 6: WRITE(p, " float w[6]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w; w[4] = a_w2.x; w[5] = a_w2.y;\n"); break; case 7: WRITE(p, " float w[7]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w; w[4] = a_w2.x; w[5] = a_w2.y; w[6] = a_w2.z;\n"); break; case 8: WRITE(p, " float w[8]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w; w[4] = a_w2.x; w[5] = a_w2.y; w[6] = a_w2.z; w[7] = a_w2.w;\n"); break; } WRITE(p, " mat4 skinMatrix = w[0] * u_bone[0];\n"); if (numWeights > 1) { WRITE(p, " for (int i = 1; i < %i; i++) {\n", numWeights); WRITE(p, " skinMatrix += w[i] * u_bone[i];\n"); WRITE(p, " }\n"); } #else #ifdef USE_BONE_ARRAY if (numWeights == 1) WRITE(p, " float4x3 skinMatrix = a_w1 * u_bone[0]"); else WRITE(p, " float4x3 skinMatrix = a_w1.x * u_bone[0]"); for (int i = 1; i < numWeights; i++) { const char *weightAttr = boneWeightAttr[i]; // workaround for "cant do .x of scalar" issue if (numWeights == 1 && i == 0) weightAttr = "a_w1"; if (numWeights == 5 && i == 4) weightAttr = "a_w2"; WRITE(p, " + %s * u_bone[%i]", weightAttr, i); } #else // Uncomment this to screw up bone shaders to check the vertex shader software fallback // WRITE(p, "THIS SHOULD ERROR! #error"); if (numWeights == 1) WRITE(p, " float4x3 skinMatrix = mul(In.a_w1, u_bone0)"); else WRITE(p, " float4x3 skinMatrix = mul(In.a_w1.x, u_bone0)"); for (int i = 1; i < numWeights; i++) { const char *weightAttr = boneWeightAttr[i]; // workaround for "cant do .x of scalar" issue if (numWeights == 1 && i == 0) weightAttr = "a_w1"; if (numWeights == 5 && i == 4) weightAttr = "a_w2"; WRITE(p, " + mul(In.%s, u_bone%i)", weightAttr, i); } #endif #endif WRITE(p, ";\n"); // Trying to simplify this results in bugs in LBP... WRITE(p, " float3 skinnedpos = mul(float4(In.position.xyz, 1.0), skinMatrix);\n"); WRITE(p, " float3 worldpos = mul(float4(skinnedpos, 1.0), u_world);\n"); if (hasNormal) { WRITE(p, " float3 skinnednormal = mul(float4(%sIn.normal, 0.0), skinMatrix);\n", flipNormal ? "-" : ""); WRITE(p, " float3 worldnormal = normalize(mul(float4(skinnednormal, 0.0), u_world));\n"); } else { WRITE(p, " float3 worldnormal = mul( mul( float4(0.0, 0.0, 1.0, 0.0), skinMatrix), u_world);\n"); } } WRITE(p, " float4 viewPos = float4(mul(float4(worldpos, 1.0), u_view), 1.0);\n"); // Final view and projection transforms. WRITE(p, " Out.gl_Position = mul(viewPos, u_proj);\n"); // TODO: Declare variables for dots for shade mapping if needed. const char *ambientStr = (gstate.materialupdate & 1) && hasColor ? "In.color0" : "u_matambientalpha"; const char *diffuseStr = (gstate.materialupdate & 2) && hasColor ? "In.color0.rgb" : "u_matdiffuse"; const char *specularStr = (gstate.materialupdate & 4) && hasColor ? "In.color0.rgb" : "u_matspecular.rgb"; bool diffuseIsZero = true; bool specularIsZero = true; bool distanceNeeded = false; if (gstate.isLightingEnabled()) { WRITE(p, " float4 lightSum0 = u_ambient * %s + float4(u_matemissive, 0.0);\n", ambientStr); for (int i = 0; i < 4; i++) { if (doLight[i] != LIGHT_FULL) continue; diffuseIsZero = false; if (gstate.isUsingSpecularLight(i)) specularIsZero = false; GELightType type = gstate.getLightType(i); if (type != GE_LIGHTTYPE_DIRECTIONAL) distanceNeeded = true; } if (!specularIsZero) { WRITE(p, " float3 lightSum1 = 0;\n"); } if (!diffuseIsZero) { WRITE(p, " float3 toLight;\n"); WRITE(p, " float3 diffuse;\n"); } if (distanceNeeded) { WRITE(p, " float distance;\n"); WRITE(p, " float lightScale;\n"); } } // Calculate lights if needed. If shade mapping is enabled, lights may need to be // at least partially calculated. for (int i = 0; i < 4; i++) { if (doLight[i] != LIGHT_FULL) continue; GELightType type = gstate.getLightType(i); if (type == GE_LIGHTTYPE_DIRECTIONAL) { // We prenormalize light positions for directional lights. WRITE(p, " toLight = u_lightpos%i;\n", i); } else { WRITE(p, " toLight = u_lightpos%i - worldpos;\n", i); WRITE(p, " distance = length(toLight);\n"); WRITE(p, " toLight /= distance;\n"); } bool doSpecular = gstate.isUsingSpecularLight(i); bool poweredDiffuse = gstate.isUsingPoweredDiffuseLight(i); if (poweredDiffuse) { WRITE(p, " float dot%i = pow(dot(toLight, worldnormal), u_matspecular.a);\n", i); // TODO: Somehow the NaN check from GLES seems unnecessary here? // If it returned 0, it'd be wrong, so that's strange. } else { WRITE(p, " float dot%i = dot(toLight, worldnormal);\n", i); } const char *timesLightScale = " * lightScale"; // Attenuation switch (type) { case GE_LIGHTTYPE_DIRECTIONAL: timesLightScale = ""; break; case GE_LIGHTTYPE_POINT: WRITE(p, " lightScale = clamp(1.0 / dot(u_lightatt%i, float3(1.0, distance, distance*distance)), 0.0, 1.0);\n", i); break; case GE_LIGHTTYPE_SPOT: case GE_LIGHTTYPE_UNKNOWN: WRITE(p, " float angle%i = dot(normalize(u_lightdir%i), toLight);\n", i, i); WRITE(p, " if (angle%i >= u_lightangle%i) {\n", i, i); WRITE(p, " lightScale = clamp(1.0 / dot(u_lightatt%i, float3(1.0, distance, distance*distance)), 0.0, 1.0) * pow(angle%i, u_lightspotCoef%i);\n", i, i, i); WRITE(p, " } else {\n"); WRITE(p, " lightScale = 0.0;\n"); WRITE(p, " }\n"); break; default: // ILLEGAL break; } WRITE(p, " diffuse = (u_lightdiffuse%i * %s) * max(dot%i, 0.0);\n", i, diffuseStr, i); if (doSpecular) { WRITE(p, " dot%i = dot(normalize(toLight + float3(0.0, 0.0, 1.0)), worldnormal);\n", i); WRITE(p, " if (dot%i > 0.0)\n", i); WRITE(p, " lightSum1 += u_lightspecular%i * %s * (pow(dot%i, u_matspecular.a) %s);\n", i, specularStr, i, timesLightScale); } WRITE(p, " lightSum0.rgb += (u_lightambient%i * %s.rgb + diffuse)%s;\n", i, ambientStr, timesLightScale); } if (gstate.isLightingEnabled()) { // Sum up ambient, emissive here. if (lmode) { WRITE(p, " Out.v_color0 = clamp(lightSum0, 0.0, 1.0);\n"); // v_color1 only exists when lmode = 1. if (specularIsZero) { WRITE(p, " Out.v_color1 = float3(0, 0, 0);\n"); } else { WRITE(p, " Out.v_color1 = clamp(lightSum1, 0.0, 1.0);\n"); } } else { if (specularIsZero) { WRITE(p, " Out.v_color0 = clamp(lightSum0, 0.0, 1.0);\n"); } else { WRITE(p, " Out.v_color0 = clamp(clamp(lightSum0, 0.0, 1.0) + float4(lightSum1, 0.0), 0.0, 1.0);\n"); } } } else { // Lighting doesn't affect color. if (hasColor) { WRITE(p, " Out.v_color0 = In.color0;\n"); } else { WRITE(p, " Out.v_color0 = u_matambientalpha;\n"); } if (lmode) WRITE(p, " Out.v_color1 = float3(0, 0, 0);\n"); } // Step 3: UV generation if (doTexture) { switch (gstate.getUVGenMode()) { case GE_TEXMAP_TEXTURE_COORDS: // Scale-offset. Easy. case GE_TEXMAP_UNKNOWN: // Not sure what this is, but Riviera uses it. Treating as coords works. if (prescale && !flipV) { if (hasTexcoord) { WRITE(p, " Out.v_texcoord = In.texcoord;\n"); } else { WRITE(p, " Out.v_texcoord = float2(0.0, 0.0);\n"); } } else { if (hasTexcoord) { WRITE(p, " Out.v_texcoord = In.texcoord * u_uvscaleoffset.xy + u_uvscaleoffset.zw;\n"); } else { WRITE(p, " Out.v_texcoord = u_uvscaleoffset.zw;\n"); } } break; case GE_TEXMAP_TEXTURE_MATRIX: // Projection mapping. { std::string temp_tc; switch (gstate.getUVProjMode()) { case GE_PROJMAP_POSITION: // Use model space XYZ as source temp_tc = "float4(In.position.xyz, 1.0)"; break; case GE_PROJMAP_UV: // Use unscaled UV as source { if (hasTexcoord) { temp_tc = StringFromFormat("float4(In.texcoord.xy, 0.0, 1.0)"); } else { temp_tc = "float4(0.0, 0.0, 0.0, 1.0)"; } } break; case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized transformed normal as source if (hasNormal) temp_tc = flipNormal ? "float4(normalize(-In.normal), 1.0)" : "float4(normalize(In.normal), 1.0)"; else temp_tc = "float4(0.0, 0.0, 1.0, 1.0)"; break; case GE_PROJMAP_NORMAL: // Use non-normalized transformed normal as source if (hasNormal) temp_tc = flipNormal ? "float4(-In.normal, 1.0)" : "float4(In.normal, 1.0)"; else temp_tc = "float4(0.0, 0.0, 1.0, 1.0)"; break; } // Transform by texture matrix. XYZ as we are doing projection mapping. WRITE(p, " Out.v_texcoord.xyz = mul(%s,u_texmtx) * float3(u_uvscaleoffset.xy, 1.0);\n", temp_tc.c_str()); } break; case GE_TEXMAP_ENVIRONMENT_MAP: // Shade mapping - use dots from light sources. WRITE(p, " Out.v_texcoord.xy = u_uvscaleoffset.xy * float2(1.0 + dot(normalize(u_lightpos%i), worldnormal), 1.0 - dot(normalize(u_lightpos%i), worldnormal)) * 0.5;\n", gstate.getUVLS0(), gstate.getUVLS1()); break; default: // ILLEGAL break; } // Will flip in the fragment for GE_TEXMAP_TEXTURE_MATRIX. if (flipV && gstate.getUVGenMode() != GE_TEXMAP_TEXTURE_MATRIX) WRITE(p, " Out.v_texcoord.y = 1.0 - Out.v_texcoord.y;\n"); } // Compute fogdepth if (enableFog) WRITE(p, " Out.v_fogdepth.x = (viewPos.z + u_fogcoef.x) * u_fogcoef.y;\n"); } WRITE(p, " return Out;\n"); WRITE(p, "}\n"); } };