#include "VRMath.h" float ToDegrees(float rad) { return (float)(rad / M_PI * 180.0f); } float ToRadians(float deg) { return (float)(deg * M_PI / 180.0f); } /* ================================================================================ ovrMatrix4f ================================================================================ */ float ovrMatrix4f_Minor(const ovrMatrix4f* m, int r0, int r1, int r2, int c0, int c1, int c2) { return m->M[r0][c0] * (m->M[r1][c1] * m->M[r2][c2] - m->M[r2][c1] * m->M[r1][c2]) - m->M[r0][c1] * (m->M[r1][c0] * m->M[r2][c2] - m->M[r2][c0] * m->M[r1][c2]) + m->M[r0][c2] * (m->M[r1][c0] * m->M[r2][c1] - m->M[r2][c0] * m->M[r1][c1]); } ovrMatrix4f ovrMatrix4f_CreateFromQuaternion(const XrQuaternionf* q) { const float ww = q->w * q->w; const float xx = q->x * q->x; const float yy = q->y * q->y; const float zz = q->z * q->z; ovrMatrix4f out; out.M[0][0] = ww + xx - yy - zz; out.M[0][1] = 2 * (q->x * q->y - q->w * q->z); out.M[0][2] = 2 * (q->x * q->z + q->w * q->y); out.M[0][3] = 0; out.M[1][0] = 2 * (q->x * q->y + q->w * q->z); out.M[1][1] = ww - xx + yy - zz; out.M[1][2] = 2 * (q->y * q->z - q->w * q->x); out.M[1][3] = 0; out.M[2][0] = 2 * (q->x * q->z - q->w * q->y); out.M[2][1] = 2 * (q->y * q->z + q->w * q->x); out.M[2][2] = ww - xx - yy + zz; out.M[2][3] = 0; out.M[3][0] = 0; out.M[3][1] = 0; out.M[3][2] = 0; out.M[3][3] = 1; return out; } ovrMatrix4f ovrMatrix4f_CreateProjectionFov( const float angleLeft, const float angleRight, const float angleUp, const float angleDown, const float nearZ, const float farZ) { const float tanAngleLeft = tanf(angleLeft); const float tanAngleRight = tanf(angleRight); const float tanAngleDown = tanf(angleDown); const float tanAngleUp = tanf(angleUp); const float tanAngleWidth = tanAngleRight - tanAngleLeft; // Set to tanAngleDown - tanAngleUp for a clip space with positive Y // down (Vulkan). Set to tanAngleUp - tanAngleDown for a clip space with // positive Y up (OpenGL / D3D / Metal). const float tanAngleHeight = tanAngleUp - tanAngleDown; // Set to nearZ for a [-1,1] Z clip space (OpenGL / OpenGL ES). // Set to zero for a [0,1] Z clip space (Vulkan / D3D / Metal). const float offsetZ = nearZ; ovrMatrix4f result; if (farZ <= nearZ) { // place the far plane at infinity result.M[0][0] = 2 / tanAngleWidth; result.M[0][1] = 0; result.M[0][2] = (tanAngleRight + tanAngleLeft) / tanAngleWidth; result.M[0][3] = 0; result.M[1][0] = 0; result.M[1][1] = 2 / tanAngleHeight; result.M[1][2] = (tanAngleUp + tanAngleDown) / tanAngleHeight; result.M[1][3] = 0; result.M[2][0] = 0; result.M[2][1] = 0; result.M[2][2] = -1; result.M[2][3] = -(nearZ + offsetZ); result.M[3][0] = 0; result.M[3][1] = 0; result.M[3][2] = -1; result.M[3][3] = 0; } else { // normal projection result.M[0][0] = 2 / tanAngleWidth; result.M[0][1] = 0; result.M[0][2] = (tanAngleRight + tanAngleLeft) / tanAngleWidth; result.M[0][3] = 0; result.M[1][0] = 0; result.M[1][1] = 2 / tanAngleHeight; result.M[1][2] = (tanAngleUp + tanAngleDown) / tanAngleHeight; result.M[1][3] = 0; result.M[2][0] = 0; result.M[2][1] = 0; result.M[2][2] = -(farZ + offsetZ) / (farZ - nearZ); result.M[2][3] = -(farZ * (nearZ + offsetZ)) / (farZ - nearZ); result.M[3][0] = 0; result.M[3][1] = 0; result.M[3][2] = -1; result.M[3][3] = 0; } return result; } ovrMatrix4f ovrMatrix4f_CreateRotation(const float radiansX, const float radiansY, const float radiansZ) { const float sinX = sinf(radiansX); const float cosX = cosf(radiansX); const ovrMatrix4f rotationX = { {{1, 0, 0, 0}, {0, cosX, -sinX, 0}, {0, sinX, cosX, 0}, {0, 0, 0, 1}}}; const float sinY = sinf(radiansY); const float cosY = cosf(radiansY); const ovrMatrix4f rotationY = { {{cosY, 0, sinY, 0}, {0, 1, 0, 0}, {-sinY, 0, cosY, 0}, {0, 0, 0, 1}}}; const float sinZ = sinf(radiansZ); const float cosZ = cosf(radiansZ); const ovrMatrix4f rotationZ = { {{cosZ, -sinZ, 0, 0}, {sinZ, cosZ, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}}; const ovrMatrix4f rotationXY = ovrMatrix4f_Multiply(&rotationY, &rotationX); return ovrMatrix4f_Multiply(&rotationZ, &rotationXY); } ovrMatrix4f ovrMatrix4f_Inverse(const ovrMatrix4f* m) { const float rcpDet = 1.0f / (m->M[0][0] * ovrMatrix4f_Minor(m, 1, 2, 3, 1, 2, 3) - m->M[0][1] * ovrMatrix4f_Minor(m, 1, 2, 3, 0, 2, 3) + m->M[0][2] * ovrMatrix4f_Minor(m, 1, 2, 3, 0, 1, 3) - m->M[0][3] * ovrMatrix4f_Minor(m, 1, 2, 3, 0, 1, 2)); ovrMatrix4f out; out.M[0][0] = ovrMatrix4f_Minor(m, 1, 2, 3, 1, 2, 3) * rcpDet; out.M[0][1] = -ovrMatrix4f_Minor(m, 0, 2, 3, 1, 2, 3) * rcpDet; out.M[0][2] = ovrMatrix4f_Minor(m, 0, 1, 3, 1, 2, 3) * rcpDet; out.M[0][3] = -ovrMatrix4f_Minor(m, 0, 1, 2, 1, 2, 3) * rcpDet; out.M[1][0] = -ovrMatrix4f_Minor(m, 1, 2, 3, 0, 2, 3) * rcpDet; out.M[1][1] = ovrMatrix4f_Minor(m, 0, 2, 3, 0, 2, 3) * rcpDet; out.M[1][2] = -ovrMatrix4f_Minor(m, 0, 1, 3, 0, 2, 3) * rcpDet; out.M[1][3] = ovrMatrix4f_Minor(m, 0, 1, 2, 0, 2, 3) * rcpDet; out.M[2][0] = ovrMatrix4f_Minor(m, 1, 2, 3, 0, 1, 3) * rcpDet; out.M[2][1] = -ovrMatrix4f_Minor(m, 0, 2, 3, 0, 1, 3) * rcpDet; out.M[2][2] = ovrMatrix4f_Minor(m, 0, 1, 3, 0, 1, 3) * rcpDet; out.M[2][3] = -ovrMatrix4f_Minor(m, 0, 1, 2, 0, 1, 3) * rcpDet; out.M[3][0] = -ovrMatrix4f_Minor(m, 1, 2, 3, 0, 1, 2) * rcpDet; out.M[3][1] = ovrMatrix4f_Minor(m, 0, 2, 3, 0, 1, 2) * rcpDet; out.M[3][2] = -ovrMatrix4f_Minor(m, 0, 1, 3, 0, 1, 2) * rcpDet; out.M[3][3] = ovrMatrix4f_Minor(m, 0, 1, 2, 0, 1, 2) * rcpDet; return out; } /// Use left-multiplication to accumulate transformations. ovrMatrix4f ovrMatrix4f_Multiply(const ovrMatrix4f* a, const ovrMatrix4f* b) { ovrMatrix4f out; out.M[0][0] = a->M[0][0] * b->M[0][0] + a->M[0][1] * b->M[1][0] + a->M[0][2] * b->M[2][0] + a->M[0][3] * b->M[3][0]; out.M[1][0] = a->M[1][0] * b->M[0][0] + a->M[1][1] * b->M[1][0] + a->M[1][2] * b->M[2][0] + a->M[1][3] * b->M[3][0]; out.M[2][0] = a->M[2][0] * b->M[0][0] + a->M[2][1] * b->M[1][0] + a->M[2][2] * b->M[2][0] + a->M[2][3] * b->M[3][0]; out.M[3][0] = a->M[3][0] * b->M[0][0] + a->M[3][1] * b->M[1][0] + a->M[3][2] * b->M[2][0] + a->M[3][3] * b->M[3][0]; out.M[0][1] = a->M[0][0] * b->M[0][1] + a->M[0][1] * b->M[1][1] + a->M[0][2] * b->M[2][1] + a->M[0][3] * b->M[3][1]; out.M[1][1] = a->M[1][0] * b->M[0][1] + a->M[1][1] * b->M[1][1] + a->M[1][2] * b->M[2][1] + a->M[1][3] * b->M[3][1]; out.M[2][1] = a->M[2][0] * b->M[0][1] + a->M[2][1] * b->M[1][1] + a->M[2][2] * b->M[2][1] + a->M[2][3] * b->M[3][1]; out.M[3][1] = a->M[3][0] * b->M[0][1] + a->M[3][1] * b->M[1][1] + a->M[3][2] * b->M[2][1] + a->M[3][3] * b->M[3][1]; out.M[0][2] = a->M[0][0] * b->M[0][2] + a->M[0][1] * b->M[1][2] + a->M[0][2] * b->M[2][2] + a->M[0][3] * b->M[3][2]; out.M[1][2] = a->M[1][0] * b->M[0][2] + a->M[1][1] * b->M[1][2] + a->M[1][2] * b->M[2][2] + a->M[1][3] * b->M[3][2]; out.M[2][2] = a->M[2][0] * b->M[0][2] + a->M[2][1] * b->M[1][2] + a->M[2][2] * b->M[2][2] + a->M[2][3] * b->M[3][2]; out.M[3][2] = a->M[3][0] * b->M[0][2] + a->M[3][1] * b->M[1][2] + a->M[3][2] * b->M[2][2] + a->M[3][3] * b->M[3][2]; out.M[0][3] = a->M[0][0] * b->M[0][3] + a->M[0][1] * b->M[1][3] + a->M[0][2] * b->M[2][3] + a->M[0][3] * b->M[3][3]; out.M[1][3] = a->M[1][0] * b->M[0][3] + a->M[1][1] * b->M[1][3] + a->M[1][2] * b->M[2][3] + a->M[1][3] * b->M[3][3]; out.M[2][3] = a->M[2][0] * b->M[0][3] + a->M[2][1] * b->M[1][3] + a->M[2][2] * b->M[2][3] + a->M[2][3] * b->M[3][3]; out.M[3][3] = a->M[3][0] * b->M[0][3] + a->M[3][1] * b->M[1][3] + a->M[3][2] * b->M[2][3] + a->M[3][3] * b->M[3][3]; return out; } XrVector3f ovrMatrix4f_ToEulerAngles(const ovrMatrix4f* m) { XrVector4f v1 = {0, 0, -1, 0}; XrVector4f v2 = {1, 0, 0, 0}; XrVector4f v3 = {0, 1, 0, 0}; XrVector4f forwardInVRSpace = XrVector4f_MultiplyMatrix4f(m, &v1); XrVector4f rightInVRSpace = XrVector4f_MultiplyMatrix4f(m, &v2); XrVector4f upInVRSpace = XrVector4f_MultiplyMatrix4f(m, &v3); XrVector3f forward = {-forwardInVRSpace.z, -forwardInVRSpace.x, forwardInVRSpace.y}; XrVector3f right = {-rightInVRSpace.z, -rightInVRSpace.x, rightInVRSpace.y}; XrVector3f up = {-upInVRSpace.z, -upInVRSpace.x, upInVRSpace.y}; XrVector3f forwardNormal = XrVector3f_Normalized(forward); XrVector3f rightNormal = XrVector3f_Normalized(right); XrVector3f upNormal = XrVector3f_Normalized(up); return XrVector3f_GetAnglesFromVectors(forwardNormal, rightNormal, upNormal); } /* ================================================================================ XrPosef ================================================================================ */ XrPosef XrPosef_Identity() { XrPosef r; r.orientation.x = 0; r.orientation.y = 0; r.orientation.z = 0; r.orientation.w = 1; r.position.x = 0; r.position.y = 0; r.position.z = 0; return r; } XrPosef XrPosef_Inverse(const XrPosef a) { XrPosef b; b.orientation = XrQuaternionf_Inverse(a.orientation); b.position = XrQuaternionf_Rotate(b.orientation, XrVector3f_ScalarMultiply(a.position, -1.0f)); return b; } XrPosef XrPosef_Multiply(const XrPosef a, const XrPosef b) { XrPosef c; c.orientation = XrQuaternionf_Multiply(a.orientation, b.orientation); c.position = XrPosef_Transform(a, b.position); return c; } XrVector3f XrPosef_Transform(const XrPosef a, const XrVector3f v) { XrVector3f r0 = XrQuaternionf_Rotate(a.orientation, v); return XrVector3f_Add(r0, a.position); } /* ================================================================================ XrQuaternionf ================================================================================ */ XrQuaternionf XrQuaternionf_CreateFromVectorAngle(const XrVector3f axis, const float angle) { XrQuaternionf r; if (XrVector3f_LengthSquared(axis) == 0.0f) { r.x = 0; r.y = 0; r.z = 0; r.w = 1; return r; } XrVector3f unitAxis = XrVector3f_Normalized(axis); float sinHalfAngle = sinf(angle * 0.5f); r.w = cosf(angle * 0.5f); r.x = unitAxis.x * sinHalfAngle; r.y = unitAxis.y * sinHalfAngle; r.z = unitAxis.z * sinHalfAngle; return r; } XrQuaternionf XrQuaternionf_Inverse(const XrQuaternionf q) { XrQuaternionf r; r.x = -q.x; r.y = -q.y; r.z = -q.z; r.w = q.w; return r; } XrQuaternionf XrQuaternionf_Multiply(const XrQuaternionf a, const XrQuaternionf b) { XrQuaternionf c; c.x = a.w * b.x + a.x * b.w + a.y * b.z - a.z * b.y; c.y = a.w * b.y - a.x * b.z + a.y * b.w + a.z * b.x; c.z = a.w * b.z + a.x * b.y - a.y * b.x + a.z * b.w; c.w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z; return c; } XrVector3f XrQuaternionf_Rotate(const XrQuaternionf a, const XrVector3f v) { XrVector3f r; XrQuaternionf q = {v.x, v.y, v.z, 0.0f}; XrQuaternionf aq = XrQuaternionf_Multiply(a, q); XrQuaternionf aInv = XrQuaternionf_Inverse(a); XrQuaternionf aqaInv = XrQuaternionf_Multiply(aq, aInv); r.x = aqaInv.x; r.y = aqaInv.y; r.z = aqaInv.z; return r; } XrVector3f XrQuaternionf_ToEulerAngles(const XrQuaternionf q) { ovrMatrix4f m = ovrMatrix4f_CreateFromQuaternion( &q ); return ovrMatrix4f_ToEulerAngles(&m); } /* ================================================================================ XrVector3f, XrVector4f ================================================================================ */ float XrVector3f_Length(const XrVector3f v) { return sqrtf(XrVector3f_LengthSquared(v)); } float XrVector3f_LengthSquared(const XrVector3f v) { return v.x * v.x + v.y * v.y + v.z * v.z;; } XrVector3f XrVector3f_Add(const XrVector3f u, const XrVector3f v) { XrVector3f w; w.x = u.x + v.x; w.y = u.y + v.y; w.z = u.z + v.z; return w; } XrVector3f XrVector3f_GetAnglesFromVectors(const XrVector3f forward, const XrVector3f right, const XrVector3f up) { float sr, sp, sy, cr, cp, cy; sp = -forward.z; float cp_x_cy = forward.x; float cp_x_sy = forward.y; float cp_x_sr = -right.z; float cp_x_cr = up.z; float yaw = atan2(cp_x_sy, cp_x_cy); float roll = atan2(cp_x_sr, cp_x_cr); cy = cos(yaw); sy = sin(yaw); cr = cos(roll); sr = sin(roll); if (fabs(cy) > EPSILON) { cp = cp_x_cy / cy; } else if (fabs(sy) > EPSILON) { cp = cp_x_sy / sy; } else if (fabs(sr) > EPSILON) { cp = cp_x_sr / sr; } else if (fabs(cr) > EPSILON) { cp = cp_x_cr / cr; } else { cp = cos(asin(sp)); } float pitch = atan2(sp, cp); XrVector3f angles; angles.x = ToDegrees(pitch); angles.y = ToDegrees(yaw); angles.z = ToDegrees(roll); return angles; } XrVector3f XrVector3f_Normalized(const XrVector3f v) { float rcpLen = 1.0f / XrVector3f_Length(v); return XrVector3f_ScalarMultiply(v, rcpLen); } XrVector3f XrVector3f_ScalarMultiply(const XrVector3f v, float scale) { XrVector3f u; u.x = v.x * scale; u.y = v.y * scale; u.z = v.z * scale; return u; } XrVector4f XrVector4f_MultiplyMatrix4f(const ovrMatrix4f* a, const XrVector4f* v) { XrVector4f out; out.x = a->M[0][0] * v->x + a->M[0][1] * v->y + a->M[0][2] * v->z + a->M[0][3] * v->w; out.y = a->M[1][0] * v->x + a->M[1][1] * v->y + a->M[1][2] * v->z + a->M[1][3] * v->w; out.z = a->M[2][0] * v->x + a->M[2][1] * v->y + a->M[2][2] * v->z + a->M[2][3] * v->w; out.w = a->M[3][0] * v->x + a->M[3][1] * v->y + a->M[3][2] * v->z + a->M[3][3] * v->w; return out; }