// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #include #include "Common/StringUtils.h" #include "Common/GPU/OpenGL/GLFeatures.h" #include "Common/GPU/ShaderWriter.h" #include "Common/GPU/thin3d.h" #include "Common/VR/PPSSPPVR.h" #include "Core/Config.h" #include "GPU/ge_constants.h" #include "GPU/GPUState.h" #include "GPU/Common/ShaderId.h" #include "GPU/Common/ShaderUniforms.h" #include "GPU/Common/VertexDecoderCommon.h" #include "GPU/Common/VertexShaderGenerator.h" #undef WRITE #define WRITE(p, ...) p.F(__VA_ARGS__) static const char * const boneWeightAttrDecl[9] = { "#ERROR#", "attribute mediump float w1;\n", "attribute mediump vec2 w1;\n", "attribute mediump vec3 w1;\n", "attribute mediump vec4 w1;\n", "attribute mediump vec4 w1;\nattribute mediump float w2;\n", "attribute mediump vec4 w1;\nattribute mediump vec2 w2;\n", "attribute mediump vec4 w1;\nattribute mediump vec3 w2;\n", "attribute mediump vec4 w1, w2;\n", }; static const char * const boneWeightInDecl[9] = { "#ERROR#", "in mediump float w1;\n", "in mediump vec2 w1;\n", "in mediump vec3 w1;\n", "in mediump vec4 w1;\n", "in mediump vec4 w1;\nin mediump float w2;\n", "in mediump vec4 w1;\nin mediump vec2 w2;\n", "in mediump vec4 w1;\nin mediump vec3 w2;\n", "in mediump vec4 w1, w2;\n", }; const char *boneWeightAttrDeclHLSL[9] = { "#ERROR boneWeightAttrDecl#\n", "float a_w1:TEXCOORD1;\n", "vec2 a_w1:TEXCOORD1;\n", "vec3 a_w1:TEXCOORD1;\n", "vec4 a_w1:TEXCOORD1;\n", "vec4 a_w1:TEXCOORD1;\n float a_w2:TEXCOORD2;\n", "vec4 a_w1:TEXCOORD1;\n vec2 a_w2:TEXCOORD2;\n", "vec4 a_w1:TEXCOORD1;\n vec3 a_w2:TEXCOORD2;\n", "vec4 a_w1:TEXCOORD1;\n vec4 a_w2:TEXCOORD2;\n", }; const char *boneWeightAttrInitHLSL[9] = { " #ERROR#\n", " vec4 w1 = vec4(In.a_w1, 0.0, 0.0, 0.0);\n", " vec4 w1 = vec4(In.a_w1.xy, 0.0, 0.0);\n", " vec4 w1 = vec4(In.a_w1.xyz, 0.0);\n", " vec4 w1 = In.a_w1;\n", " vec4 w1 = In.a_w1;\n vec4 w2 = vec4(In.a_w2, 0.0, 0.0, 0.0);\n", " vec4 w1 = In.a_w1;\n vec4 w2 = vec4(In.a_w2.xy, 0.0, 0.0);\n", " vec4 w1 = In.a_w1;\n vec4 w2 = vec4(In.a_w2.xyz, 0.0);\n", " vec4 w1 = In.a_w1;\n vec4 w2 = In.a_w2;\n", }; // Depth range and viewport // // After the multiplication with the projection matrix, we have a 4D vector in clip space. // In OpenGL, Z is from -1 to 1, while in D3D, Z is from 0 to 1. // PSP appears to use the OpenGL convention. As Z is from -1 to 1, and the viewport is represented // by a center and a scale, to find the final Z value, all we need to do is to multiply by ZScale and // add ZCenter - these are properly scaled to directly give a Z value in [0, 65535]. // // z = vec.z * ViewportZScale + ViewportZCenter; // // That will give us the final value between 0 and 65535, which we can simply floor to simulate // the limited precision of the PSP's depth buffer. Then we convert it back: // z = floor(z); // // vec.z = (z - ViewportZCenter) / ViewportZScale; // // Now, the regular machinery will take over and do the calculation again. // // Depth is not clipped to the viewport, but does clip to "minz" and "maxz". It may also be clamped // to 0 and 65535 if a depth clamping/clipping flag is set (x/y clipping is performed only if depth // needs to be clamped.) // // Additionally, depth is clipped to negative z based on vec.z (before viewport), at -1. // // All this above is for full transform mode. // In through mode, the Z coordinate just goes straight through and there is no perspective division. // We simulate this of course with pretty much an identity matrix. Rounding Z becomes very easy. // // TODO: Skip all this if we can actually get a 16-bit depth buffer along with stencil, which // is a bit of a rare configuration, although quite common on mobile. static const char * const boneWeightDecl[9] = { "#ERROR#", "layout(location = 3) in float w1;\n", "layout(location = 3) in vec2 w1;\n", "layout(location = 3) in vec3 w1;\n", "layout(location = 3) in vec4 w1;\n", "layout(location = 3) in vec4 w1;\nlayout(location = 4) in float w2;\n", "layout(location = 3) in vec4 w1;\nlayout(location = 4) in vec2 w2;\n", "layout(location = 3) in vec4 w1;\nlayout(location = 4) in vec3 w2;\n", "layout(location = 3) in vec4 w1;\nlayout(location = 4) in vec4 w2;\n", }; bool GenerateVertexShader(const VShaderID &id, char *buffer, const ShaderLanguageDesc &compat, Draw::Bugs bugs, uint32_t *attrMask, uint64_t *uniformMask, std::string *errorString) { *attrMask = 0; *uniformMask = 0; bool highpFog = false; bool highpTexcoord = false; std::vector gl_exts; if (ShaderLanguageIsOpenGL(compat.shaderLanguage)) { if (gl_extensions.EXT_gpu_shader4) { gl_exts.push_back("#extension GL_EXT_gpu_shader4 : enable"); } bool useClamp = gstate_c.Supports(GPU_SUPPORTS_DEPTH_CLAMP) && !id.Bit(VS_BIT_IS_THROUGH); if (gl_extensions.EXT_clip_cull_distance && (id.Bit(VS_BIT_VERTEX_RANGE_CULLING) || useClamp)) { gl_exts.push_back("#extension GL_EXT_clip_cull_distance : enable"); } if (gl_extensions.APPLE_clip_distance && (id.Bit(VS_BIT_VERTEX_RANGE_CULLING) || useClamp)) { gl_exts.push_back("#extension GL_APPLE_clip_distance : enable"); } if (gl_extensions.ARB_cull_distance && id.Bit(VS_BIT_VERTEX_RANGE_CULLING)) { gl_exts.push_back("#extension GL_ARB_cull_distance : enable"); } } if (IsVRBuild() && IsMultiviewSupported()) { gl_exts.push_back("#extension GL_OVR_multiview2 : enable\nlayout(num_views=2) in;"); } ShaderWriter p(buffer, compat, ShaderStage::Vertex, gl_exts.data(), gl_exts.size()); bool isModeThrough = id.Bit(VS_BIT_IS_THROUGH); bool lmode = id.Bit(VS_BIT_LMODE); bool doTexture = id.Bit(VS_BIT_DO_TEXTURE); GETexMapMode uvGenMode = static_cast(id.Bits(VS_BIT_UVGEN_MODE, 2)); bool doTextureTransform = uvGenMode == GE_TEXMAP_TEXTURE_MATRIX; // this is only valid for some settings of uvGenMode GETexProjMapMode uvProjMode = static_cast(id.Bits(VS_BIT_UVPROJ_MODE, 2)); bool doShadeMapping = uvGenMode == GE_TEXMAP_ENVIRONMENT_MAP; bool flatBug = bugs.Has(Draw::Bugs::BROKEN_FLAT_IN_SHADER) && g_Config.bVendorBugChecksEnabled; bool needsZWHack = bugs.Has(Draw::Bugs::EQUAL_WZ_CORRUPTS_DEPTH) && g_Config.bVendorBugChecksEnabled; bool doFlatShading = id.Bit(VS_BIT_FLATSHADE) && !flatBug; bool useHWTransform = id.Bit(VS_BIT_USE_HW_TRANSFORM); bool hasColor = id.Bit(VS_BIT_HAS_COLOR) || !useHWTransform; bool hasNormal = id.Bit(VS_BIT_HAS_NORMAL) && useHWTransform; bool hasTexcoord = id.Bit(VS_BIT_HAS_TEXCOORD) || !useHWTransform; bool flipNormal = id.Bit(VS_BIT_NORM_REVERSE); int ls0 = id.Bits(VS_BIT_LS0, 2); int ls1 = id.Bits(VS_BIT_LS1, 2); bool enableBones = id.Bit(VS_BIT_ENABLE_BONES) && useHWTransform; bool enableLighting = id.Bit(VS_BIT_LIGHTING_ENABLE); int matUpdate = id.Bits(VS_BIT_MATERIAL_UPDATE, 3); bool lightUberShader = id.Bit(VS_BIT_LIGHT_UBERSHADER) && enableLighting; // checking lighting here for the shader test's benefit, in reality if ubershader is set, lighting is set. if (lightUberShader && !compat.bitwiseOps) { *errorString = "Light ubershader requires bitwise ops in shader language"; return false; } // Apparently we don't support bezier/spline together with bones. bool doBezier = id.Bit(VS_BIT_BEZIER) && !enableBones && useHWTransform; bool doSpline = id.Bit(VS_BIT_SPLINE) && !enableBones && useHWTransform; if (doBezier || doSpline) { if (!hasNormal) { // Bad usage. *errorString = "Invalid flags - tess requires normal."; return false; } if (compat.shaderLanguage == HLSL_D3D9 || compat.texelFetch == nullptr) { *errorString = "Tess not supported on this shader language version"; return false; } } bool hasColorTess = id.Bit(VS_BIT_HAS_COLOR_TESS); bool hasTexcoordTess = id.Bit(VS_BIT_HAS_TEXCOORD_TESS); bool hasNormalTess = id.Bit(VS_BIT_HAS_NORMAL_TESS); bool flipNormalTess = id.Bit(VS_BIT_NORM_REVERSE_TESS); const char *shading = ""; if (compat.glslES30 || compat.shaderLanguage == GLSL_VULKAN) shading = doFlatShading ? "flat " : ""; DoLightComputation doLight[4] = { LIGHT_OFF, LIGHT_OFF, LIGHT_OFF, LIGHT_OFF }; if (useHWTransform) { int shadeLight0 = doShadeMapping ? ls0 : -1; int shadeLight1 = doShadeMapping ? ls1 : -1; for (int i = 0; i < 4; i++) { if (i == shadeLight0 || i == shadeLight1) doLight[i] = LIGHT_SHADE; if (enableLighting && id.Bit(VS_BIT_LIGHT0_ENABLE + i)) doLight[i] = LIGHT_FULL; } } int numBoneWeights = 0; int boneWeightScale = id.Bits(VS_BIT_WEIGHT_FMTSCALE, 2); if (enableBones) { numBoneWeights = 1 + id.Bits(VS_BIT_BONES, 3); } bool texCoordInVec3 = false; bool vertexRangeCulling = id.Bit(VS_BIT_VERTEX_RANGE_CULLING) && !isModeThrough; bool clipClampedDepth = !isModeThrough && gstate_c.Supports(GPU_SUPPORTS_DEPTH_CLAMP) && gstate_c.Supports(GPU_SUPPORTS_CLIP_DISTANCE); const char *clipClampedDepthSuffix = "[0]"; const char *vertexRangeClipSuffix = clipClampedDepth ? "[1]" : "[0]"; if (compat.shaderLanguage == GLSL_VULKAN) { WRITE(p, "\n"); WRITE(p, "layout (std140, set = 0, binding = 3) uniform baseVars {\n%s};\n", ub_baseStr); if (enableLighting || doShadeMapping) WRITE(p, "layout (std140, set = 0, binding = 4) uniform lightVars {\n%s};\n", ub_vs_lightsStr); if (enableBones) WRITE(p, "layout (std140, set = 0, binding = 5) uniform boneVars {\n%s};\n", ub_vs_bonesStr); if (enableBones) { WRITE(p, "%s", boneWeightDecl[numBoneWeights]); } if (useHWTransform) WRITE(p, "layout (location = %d) in vec3 position;\n", (int)PspAttributeLocation::POSITION); else WRITE(p, "layout (location = %d) in vec4 position;\n", (int)PspAttributeLocation::POSITION); if (useHWTransform && hasNormal) WRITE(p, "layout (location = %d) in vec3 normal;\n", (int)PspAttributeLocation::NORMAL); if (!useHWTransform) WRITE(p, "layout (location = %d) in float fog;\n", (int)PspAttributeLocation::NORMAL); if (doTexture && hasTexcoord) { if (!useHWTransform && doTextureTransform && !isModeThrough) { WRITE(p, "layout (location = %d) in vec3 texcoord;\n", (int)PspAttributeLocation::TEXCOORD); texCoordInVec3 = true; } else WRITE(p, "layout (location = %d) in vec2 texcoord;\n", (int)PspAttributeLocation::TEXCOORD); } if (hasColor) { WRITE(p, "layout (location = %d) in vec4 color0;\n", (int)PspAttributeLocation::COLOR0); if (lmode && !useHWTransform) // only software transform supplies color1 as vertex data WRITE(p, "layout (location = %d) in vec3 color1;\n", (int)PspAttributeLocation::COLOR1); } WRITE(p, "layout (location = 1) %sout lowp vec4 v_color0;\n", shading); if (lmode) { WRITE(p, "layout (location = 2) %sout lowp vec3 v_color1;\n", shading); } if (doTexture) { WRITE(p, "layout (location = 0) out highp vec3 v_texcoord;\n"); } WRITE(p, "layout (location = 3) out highp float v_fogdepth;\n"); WRITE(p, "invariant gl_Position;\n"); } else if (compat.shaderLanguage == HLSL_D3D11 || compat.shaderLanguage == HLSL_D3D9) { // Note: These two share some code after this hellishly large if/else. if (compat.shaderLanguage == HLSL_D3D11) { WRITE(p, "cbuffer base : register(b0) {\n%s};\n", ub_baseStr); WRITE(p, "cbuffer lights: register(b1) {\n%s};\n", ub_vs_lightsStr); WRITE(p, "cbuffer bones : register(b2) {\n%s};\n", ub_vs_bonesStr); } else { WRITE(p, "#pragma warning( disable : 3571 )\n"); if (isModeThrough) { WRITE(p, "mat4 u_proj_through : register(c%i);\n", CONST_VS_PROJ_THROUGH); } else if (useHWTransform) { WRITE(p, "mat4 u_proj : register(c%i);\n", CONST_VS_PROJ); } else { WRITE(p, "float u_rotation : register(c%i);\n", CONST_VS_ROTATION); } WRITE(p, "vec2 u_fogcoef : register(c%i);\n", CONST_VS_FOGCOEF); if (useHWTransform || !hasColor) WRITE(p, "vec4 u_matambientalpha : register(c%i);\n", CONST_VS_MATAMBIENTALPHA); // matambient + matalpha if (useHWTransform) { // When transforming by hardware, we need a great deal more uniforms... WRITE(p, "mat3x4 u_world : register(c%i);\n", CONST_VS_WORLD); WRITE(p, "mat3x4 u_view : register(c%i);\n", CONST_VS_VIEW); if (doTextureTransform) WRITE(p, "mat3x4 u_texmtx : register(c%i);\n", CONST_VS_TEXMTX); if (enableBones) { #ifdef USE_BONE_ARRAY WRITE(p, "mat3x4 u_bone[%i] : register(c%i);\n", numBones, CONST_VS_BONE0); #else for (int i = 0; i < numBoneWeights; i++) { WRITE(p, "mat3x4 u_bone%i : register(c%i);\n", i, CONST_VS_BONE0 + i * 3); } #endif } if (doTexture) { WRITE(p, "vec4 u_uvscaleoffset : register(c%i);\n", CONST_VS_UVSCALEOFFSET); } // No need for light ubershader support here, D3D9 doesn't do it. for (int i = 0; i < 4; i++) { if (doLight[i] != LIGHT_OFF) { // This is needed for shade mapping WRITE(p, "vec3 u_lightpos%i : register(c%i);\n", i, CONST_VS_LIGHTPOS + i); } if (doLight[i] == LIGHT_FULL) { GELightType type = static_cast(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2)); GELightComputation comp = static_cast(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2)); if (type != GE_LIGHTTYPE_DIRECTIONAL) WRITE(p, "vec3 u_lightatt%i : register(c%i);\n", i, CONST_VS_LIGHTATT + i); if (type == GE_LIGHTTYPE_SPOT || type == GE_LIGHTTYPE_UNKNOWN) { WRITE(p, "vec3 u_lightdir%i : register(c%i);\n", i, CONST_VS_LIGHTDIR + i); WRITE(p, "vec4 u_lightangle_spotCoef%i : register(c%i);\n", i, CONST_VS_LIGHTANGLE_SPOTCOEF + i); } WRITE(p, "vec3 u_lightambient%i : register(c%i);\n", i, CONST_VS_LIGHTAMBIENT + i); WRITE(p, "vec3 u_lightdiffuse%i : register(c%i);\n", i, CONST_VS_LIGHTDIFFUSE + i); if (comp == GE_LIGHTCOMP_BOTH) { WRITE(p, "vec3 u_lightspecular%i : register(c%i);\n", i, CONST_VS_LIGHTSPECULAR + i); } } } if (enableLighting) { WRITE(p, "vec4 u_ambient : register(c%i);\n", CONST_VS_AMBIENT); if ((matUpdate & 2) == 0 || !hasColor) WRITE(p, "vec3 u_matdiffuse : register(c%i);\n", CONST_VS_MATDIFFUSE); // if ((matUpdate & 4) == 0) WRITE(p, "vec4 u_matspecular : register(c%i);\n", CONST_VS_MATSPECULAR); // Specular coef is contained in alpha WRITE(p, "vec3 u_matemissive : register(c%i);\n", CONST_VS_MATEMISSIVE); } } if (!isModeThrough) { WRITE(p, "vec4 u_depthRange : register(c%i);\n", CONST_VS_DEPTHRANGE); WRITE(p, "vec4 u_cullRangeMin : register(c%i);\n", CONST_VS_CULLRANGEMIN); WRITE(p, "vec4 u_cullRangeMax : register(c%i);\n", CONST_VS_CULLRANGEMAX); } } // And the "varyings". if (useHWTransform) { WRITE(p, "struct VS_IN { \n"); if ((doSpline || doBezier) && compat.shaderLanguage == HLSL_D3D11) { WRITE(p, " uint instanceId : SV_InstanceID;\n"); } if (enableBones) { WRITE(p, " %s", boneWeightAttrDeclHLSL[numBoneWeights]); } if (doTexture && hasTexcoord) { WRITE(p, " vec2 texcoord : TEXCOORD0;\n"); } if (hasColor) { WRITE(p, " vec4 color0 : COLOR0;\n"); } if (hasNormal) { WRITE(p, " vec3 normal : NORMAL;\n"); } WRITE(p, " vec3 position : POSITION;\n"); WRITE(p, "};\n"); } else { WRITE(p, "struct VS_IN {\n"); WRITE(p, " vec4 position : POSITION;\n"); if (doTexture && hasTexcoord) { if (doTextureTransform && !isModeThrough) { texCoordInVec3 = true; WRITE(p, " vec3 texcoord : TEXCOORD0;\n"); } else WRITE(p, " vec2 texcoord : TEXCOORD0;\n"); } if (hasColor) { WRITE(p, " vec4 color0 : COLOR0;\n"); } // only software transform supplies color1 as vertex data if (lmode) { WRITE(p, " vec3 color1 : COLOR1;\n"); } WRITE(p, " float fog : NORMAL;\n"); WRITE(p, "};\n"); } WRITE(p, "struct VS_OUT {\n"); if (doTexture) { WRITE(p, " vec3 v_texcoord : TEXCOORD0;\n"); } const char *colorInterpolation = doFlatShading && compat.shaderLanguage == HLSL_D3D11 ? "nointerpolation " : ""; WRITE(p, " %svec4 v_color0 : COLOR0;\n", colorInterpolation); if (lmode) WRITE(p, " vec3 v_color1 : COLOR1;\n"); WRITE(p, " float v_fogdepth : TEXCOORD1;\n"); if (compat.shaderLanguage == HLSL_D3D9) { WRITE(p, " vec4 gl_Position : POSITION;\n"); } else { WRITE(p, " vec4 gl_Position : SV_Position;\n"); bool clipRange = vertexRangeCulling && gstate_c.Supports(GPU_SUPPORTS_CLIP_DISTANCE); if (clipClampedDepth && clipRange) { WRITE(p, " float2 gl_ClipDistance : SV_ClipDistance;\n"); clipClampedDepthSuffix = ".x"; vertexRangeClipSuffix = ".y"; } else if (clipClampedDepth || clipRange) { WRITE(p, " float gl_ClipDistance : SV_ClipDistance;\n"); clipClampedDepthSuffix = ""; vertexRangeClipSuffix = ""; } if (vertexRangeCulling && gstate_c.Supports(GPU_SUPPORTS_CULL_DISTANCE)) { WRITE(p, " float2 gl_CullDistance : SV_CullDistance0;\n"); } } WRITE(p, "};\n"); } else { if (enableBones) { const char * const * boneWeightDecl = boneWeightAttrDecl; if (!strcmp(compat.attribute, "in")) { boneWeightDecl = boneWeightInDecl; } WRITE(p, "%s", boneWeightDecl[numBoneWeights]); *attrMask |= 1 << ATTR_W1; if (numBoneWeights >= 5) *attrMask |= 1 << ATTR_W2; } if (useHWTransform) WRITE(p, "%s vec3 position;\n", compat.attribute); else WRITE(p, "%s vec4 position;\n", compat.attribute); // need to pass the fog coord in w *attrMask |= 1 << ATTR_POSITION; if (useHWTransform && hasNormal) { WRITE(p, "%s mediump vec3 normal;\n", compat.attribute); *attrMask |= 1 << ATTR_NORMAL; } if (!useHWTransform) { WRITE(p, "%s highp float fog;\n", compat.attribute); *attrMask |= 1 << ATTR_NORMAL; } if (doTexture && hasTexcoord) { if (!useHWTransform && doTextureTransform && !isModeThrough) { WRITE(p, "%s vec3 texcoord;\n", compat.attribute); texCoordInVec3 = true; } else { WRITE(p, "%s vec2 texcoord;\n", compat.attribute); } *attrMask |= 1 << ATTR_TEXCOORD; } if (hasColor) { WRITE(p, "%s lowp vec4 color0;\n", compat.attribute); *attrMask |= 1 << ATTR_COLOR0; if (lmode && !useHWTransform) { // only software transform supplies color1 as vertex data WRITE(p, "%s lowp vec3 color1;\n", compat.attribute); *attrMask |= 1 << ATTR_COLOR1; } } if (isModeThrough) { WRITE(p, "uniform mat4 u_proj_through;\n"); *uniformMask |= DIRTY_PROJTHROUGHMATRIX; } else if (useHWTransform) { if (IsVRBuild()) { if (IsMultiviewSupported()) { WRITE(p, "layout(shared) uniform ProjectionMatrix { uniform mat4 u_proj_lens[2]; };\n"); } else { WRITE(p, "uniform mat4 u_proj_lens;\n"); } } WRITE(p, "uniform mat4 u_proj;\n"); *uniformMask |= DIRTY_PROJMATRIX; } if (useHWTransform) { // When transforming by hardware, we need a great deal more uniforms... // TODO: Use 4x3 matrices where possible. Though probably doesn't matter much. WRITE(p, "uniform mat4 u_world;\n"); if (IsVRBuild() && IsMultiviewSupported()) { WRITE(p, "layout(shared) uniform ViewMatrices { uniform mat4 u_view[2]; };\n"); } else { WRITE(p, "uniform mat4 u_view;\n"); } *uniformMask |= DIRTY_WORLDMATRIX | DIRTY_VIEWMATRIX; if (doTextureTransform) { WRITE(p, "uniform mediump mat4 u_texmtx;\n"); *uniformMask |= DIRTY_TEXMATRIX; } if (enableBones) { for (int i = 0; i < numBoneWeights; i++) { WRITE(p, "uniform mat4 u_bone%i;\n", i); *uniformMask |= DIRTY_BONEMATRIX0 << i; } } if (doTexture) { WRITE(p, "uniform vec4 u_uvscaleoffset;\n"); *uniformMask |= DIRTY_UVSCALEOFFSET; } if (lightUberShader) { p.C("uniform uint u_lightControl;\n"); *uniformMask |= DIRTY_LIGHT_CONTROL; } for (int i = 0; i < 4; i++) { if (lightUberShader || doLight[i] != LIGHT_OFF) { // This is needed for shade mapping WRITE(p, "uniform vec3 u_lightpos%i;\n", i); *uniformMask |= DIRTY_LIGHT0 << i; } if (lightUberShader || doLight[i] == LIGHT_FULL) { *uniformMask |= DIRTY_LIGHT0 << i; GELightType type = static_cast(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2)); GELightComputation comp = static_cast(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2)); if (lightUberShader || type != GE_LIGHTTYPE_DIRECTIONAL) WRITE(p, "uniform mediump vec3 u_lightatt%i;\n", i); if (lightUberShader || type == GE_LIGHTTYPE_SPOT || type == GE_LIGHTTYPE_UNKNOWN) { WRITE(p, "uniform mediump vec3 u_lightdir%i;\n", i); WRITE(p, "uniform mediump vec2 u_lightangle_spotCoef%i;\n", i); } WRITE(p, "uniform lowp vec3 u_lightambient%i;\n", i); WRITE(p, "uniform lowp vec3 u_lightdiffuse%i;\n", i); if (lightUberShader || comp == GE_LIGHTCOMP_BOTH) { WRITE(p, "uniform lowp vec3 u_lightspecular%i;\n", i); } } } if (enableLighting) { WRITE(p, "uniform lowp vec4 u_ambient;\n"); *uniformMask |= DIRTY_AMBIENT; if (lightUberShader || (matUpdate & 2) == 0 || !hasColor) { WRITE(p, "uniform lowp vec3 u_matdiffuse;\n"); *uniformMask |= DIRTY_MATDIFFUSE; } WRITE(p, "uniform lowp vec4 u_matspecular;\n"); // Specular coef is contained in alpha WRITE(p, "uniform lowp vec3 u_matemissive;\n"); *uniformMask |= DIRTY_MATSPECULAR | DIRTY_MATEMISSIVE; } } else { WRITE(p, "uniform lowp float u_rotation;\n"); } if (IsVRBuild()) { WRITE(p, "uniform lowp float u_scaleX;\n"); WRITE(p, "uniform lowp float u_scaleY;\n"); } if (useHWTransform || !hasColor) { WRITE(p, "uniform lowp vec4 u_matambientalpha;\n"); // matambient + matalpha *uniformMask |= DIRTY_MATAMBIENTALPHA; } WRITE(p, "uniform highp vec2 u_fogcoef;\n"); *uniformMask |= DIRTY_FOGCOEF; if (!isModeThrough) { WRITE(p, "uniform highp vec4 u_depthRange;\n"); WRITE(p, "uniform highp vec4 u_cullRangeMin;\n"); WRITE(p, "uniform highp vec4 u_cullRangeMax;\n"); *uniformMask |= DIRTY_DEPTHRANGE | DIRTY_CULLRANGE; } WRITE(p, "%s%s lowp vec4 v_color0;\n", shading, compat.varying_vs); if (lmode) { WRITE(p, "%s%s lowp vec3 v_color1;\n", shading, compat.varying_vs); } if (doTexture) { WRITE(p, "%s %s vec3 v_texcoord;\n", compat.varying_vs, highpTexcoord ? "highp" : "mediump"); } // See the fragment shader generator if (highpFog) { WRITE(p, "%s highp float v_fogdepth;\n", compat.varying_vs); } else { WRITE(p, "%s mediump float v_fogdepth;\n", compat.varying_vs); } } // See comment above this function (GenerateVertexShader). if (!isModeThrough && gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) { // Apply the projection and viewport to get the Z buffer value, floor to integer, undo the viewport and projection. WRITE(p, "\nvec4 depthRoundZVP(vec4 v) {\n"); WRITE(p, " float z = v.z / v.w;\n"); WRITE(p, " z = z * u_depthRange.x + u_depthRange.y;\n"); WRITE(p, " z = floor(z);\n"); WRITE(p, " z = (z - u_depthRange.y) / u_depthRange.x;\n"); WRITE(p, " return vec4(v.x, v.y, z * v.w, v.w);\n"); WRITE(p, "}\n\n"); } // Hardware tessellation if (doBezier || doSpline) { *uniformMask |= DIRTY_BEZIERSPLINE; if (compat.shaderLanguage == GLSL_VULKAN) { WRITE(p, "struct TessData {\n"); WRITE(p, " vec4 pos;\n"); WRITE(p, " vec4 tex;\n"); WRITE(p, " vec4 col;\n"); WRITE(p, "};\n"); WRITE(p, "layout (std430, set = 0, binding = 6) readonly buffer s_tess_data {\n"); WRITE(p, " TessData tess_data[];\n"); WRITE(p, "};\n"); WRITE(p, "struct TessWeight {\n"); WRITE(p, " vec4 basis;\n"); WRITE(p, " vec4 deriv;\n"); WRITE(p, "};\n"); WRITE(p, "layout (std430, set = 0, binding = 7) readonly buffer s_tess_weights_u {\n"); WRITE(p, " TessWeight tess_weights_u[];\n"); WRITE(p, "};\n"); WRITE(p, "layout (std430, set = 0, binding = 8) readonly buffer s_tess_weights_v {\n"); WRITE(p, " TessWeight tess_weights_v[];\n"); WRITE(p, "};\n"); } else if (ShaderLanguageIsOpenGL(compat.shaderLanguage)) { WRITE(p, "uniform sampler2D u_tess_points;\n"); // Control Points WRITE(p, "uniform sampler2D u_tess_weights_u;\n"); WRITE(p, "uniform sampler2D u_tess_weights_v;\n"); WRITE(p, "uniform int u_spline_counts;\n"); } else if (compat.shaderLanguage == HLSL_D3D11) { WRITE(p, "struct TessData {\n"); WRITE(p, " vec3 pos; float pad1;\n"); WRITE(p, " vec2 tex; vec2 pad2;\n"); WRITE(p, " vec4 col;\n"); WRITE(p, "};\n"); WRITE(p, "StructuredBuffer tess_data : register(t0);\n"); WRITE(p, "struct TessWeight {\n"); WRITE(p, " vec4 basis;\n"); WRITE(p, " vec4 deriv;\n"); WRITE(p, "};\n"); WRITE(p, "StructuredBuffer tess_weights_u : register(t1);\n"); WRITE(p, "StructuredBuffer tess_weights_v : register(t2);\n"); } else if (compat.shaderLanguage == HLSL_D3D9) { } const char *init[3] = { "0.0, 0.0", "0.0, 0.0, 0.0", "0.0, 0.0, 0.0, 0.0" }; for (int i = 2; i <= 4; i++) { // Define 3 types vec2, vec3, vec4 WRITE(p, "vec%d tess_sample(in vec%d points[16], mat4 weights) {\n", i, i); WRITE(p, " vec%d pos = vec%d(%s);\n", i, i, init[i - 2]); for (int v = 0; v < 4; ++v) { for (int u = 0; u < 4; ++u) { WRITE(p, " pos += weights[%i][%i] * points[%i];\n", v, u, v * 4 + u); } } WRITE(p, " return pos;\n"); WRITE(p, "}\n"); } if (ShaderLanguageIsOpenGL(compat.shaderLanguage) && compat.glslVersionNumber < 130) { // For glsl version 1.10 WRITE(p, "mat4 outerProduct(vec4 u, vec4 v) {\n"); WRITE(p, " return mat4(u * v[0], u * v[1], u * v[2], u * v[3]);\n"); WRITE(p, "}\n"); } else if (compat.shaderLanguage == HLSL_D3D9 || compat.shaderLanguage == HLSL_D3D11) { WRITE(p, "mat4 outerProduct(vec4 u, vec4 v) {\n"); WRITE(p, " return mul((float4x1)v, (float1x4)u);\n"); WRITE(p, "}\n"); } WRITE(p, "struct Tess {\n"); WRITE(p, " vec3 pos;\n"); if (doTexture) WRITE(p, " vec2 tex;\n"); WRITE(p, " vec4 col;\n"); if (hasNormalTess) WRITE(p, " vec3 nrm;\n"); WRITE(p, "};\n"); if (compat.shaderLanguage == HLSL_D3D9 || compat.shaderLanguage == HLSL_D3D11) { WRITE(p, "void tessellate(in VS_IN In, out Tess tess) {\n"); WRITE(p, " vec3 position = In.position;\n"); WRITE(p, " vec3 normal = In.normal;\n"); } else { WRITE(p, "void tessellate(out Tess tess) {\n"); } WRITE(p, " ivec2 point_pos = ivec2(position.z, normal.z)%s;\n", doBezier ? " * 3" : ""); WRITE(p, " ivec2 weight_idx = ivec2(position.xy);\n"); // Load 4x4 control points WRITE(p, " vec3 _pos[16];\n"); WRITE(p, " vec2 _tex[16];\n"); WRITE(p, " vec4 _col[16];\n"); if (compat.coefsFromBuffers) { WRITE(p, " int index;\n"); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { WRITE(p, " index = (%i + point_pos.y) * int(u_spline_counts) + (%i + point_pos.x);\n", i, j); WRITE(p, " _pos[%i] = tess_data[index].pos.xyz;\n", i * 4 + j); if (doTexture && hasTexcoordTess) WRITE(p, " _tex[%i] = tess_data[index].tex.xy;\n", i * 4 + j); if (hasColorTess) WRITE(p, " _col[%i] = tess_data[index].col;\n", i * 4 + j); } } // Basis polynomials as weight coefficients WRITE(p, " vec4 basis_u = tess_weights_u[weight_idx.x].basis;\n"); WRITE(p, " vec4 basis_v = tess_weights_v[weight_idx.y].basis;\n"); WRITE(p, " mat4 basis = outerProduct(basis_u, basis_v);\n"); } else { WRITE(p, " int index_u, index_v;\n"); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { WRITE(p, " index_u = (%i + point_pos.x);\n", j); WRITE(p, " index_v = (%i + point_pos.y);\n", i); WRITE(p, " _pos[%i] = %s(u_tess_points, ivec2(index_u, index_v), 0).xyz;\n", i * 4 + j, compat.texelFetch); if (doTexture && hasTexcoordTess) WRITE(p, " _tex[%i] = %s(u_tess_points, ivec2(index_u + u_spline_counts, index_v), 0).xy;\n", i * 4 + j, compat.texelFetch); if (hasColorTess) WRITE(p, " _col[%i] = %s(u_tess_points, ivec2(index_u + u_spline_counts * 2, index_v), 0).rgba;\n", i * 4 + j, compat.texelFetch); } } // Basis polynomials as weight coefficients WRITE(p, " vec4 basis_u = %s(u_tess_weights_u, %s, 0);\n", compat.texelFetch, "ivec2(weight_idx.x * 2, 0)"); WRITE(p, " vec4 basis_v = %s(u_tess_weights_v, %s, 0);\n", compat.texelFetch, "ivec2(weight_idx.y * 2, 0)"); WRITE(p, " mat4 basis = outerProduct(basis_u, basis_v);\n"); } // Tessellate WRITE(p, " tess.pos = tess_sample(_pos, basis);\n"); if (doTexture) { if (hasTexcoordTess) WRITE(p, " tess.tex = tess_sample(_tex, basis);\n"); else WRITE(p, " tess.tex = normal.xy;\n"); } if (hasColorTess) WRITE(p, " tess.col = tess_sample(_col, basis);\n"); else WRITE(p, " tess.col = u_matambientalpha;\n"); if (hasNormalTess) { if (compat.coefsFromBuffers) { // Derivatives as weight coefficients WRITE(p, " vec4 deriv_u = tess_weights_u[weight_idx.x].deriv;\n"); WRITE(p, " vec4 deriv_v = tess_weights_v[weight_idx.y].deriv;\n"); } else { // Derivatives as weight coefficients WRITE(p, " vec4 deriv_u = %s(u_tess_weights_u, %s, 0);\n", compat.texelFetch, "ivec2(weight_idx.x * 2 + 1, 0)"); WRITE(p, " vec4 deriv_v = %s(u_tess_weights_v, %s, 0);\n", compat.texelFetch, "ivec2(weight_idx.y * 2 + 1, 0)"); } WRITE(p, " vec3 du = tess_sample(_pos, outerProduct(deriv_u, basis_v));\n"); WRITE(p, " vec3 dv = tess_sample(_pos, outerProduct(basis_u, deriv_v));\n"); WRITE(p, " tess.nrm = normalize(cross(du, dv));\n"); } WRITE(p, "}\n"); } if (useHWTransform) { WRITE(p, "vec3 normalizeOr001(vec3 v) {\n"); WRITE(p, " return length(v) == 0.0 ? vec3(0.0, 0.0, 1.0) : normalize(v);\n"); WRITE(p, "}\n"); } if (ShaderLanguageIsOpenGL(compat.shaderLanguage) || compat.shaderLanguage == GLSL_VULKAN) { WRITE(p, "void main() {\n"); } else if (compat.shaderLanguage == HLSL_D3D9 || compat.shaderLanguage == HLSL_D3D11) { WRITE(p, "VS_OUT main(VS_IN In) {\n"); WRITE(p, " VS_OUT Out;\n"); if (doTexture && hasTexcoord) { if (texCoordInVec3) { WRITE(p, " vec3 texcoord = In.texcoord;\n"); } else { WRITE(p, " vec2 texcoord = In.texcoord;\n"); } } if (hasColor) { WRITE(p, " vec4 color0 = In.color0;\n"); if (lmode && !useHWTransform) { WRITE(p, " vec3 color1 = In.color1;\n"); } } if (hasNormal) { WRITE(p, " vec3 normal = In.normal;\n"); } if (useHWTransform) { WRITE(p, " vec3 position = In.position;\n"); } else { WRITE(p, " vec4 position = In.position;\n"); } if (!useHWTransform) { WRITE(p, " float fog = In.fog;\n"); } if (enableBones) { WRITE(p, "%s", boneWeightAttrInitHLSL[numBoneWeights]); } } if (!useHWTransform) { // Simple pass-through of vertex data to fragment shader if (doTexture) { if (texCoordInVec3) { WRITE(p, " %sv_texcoord = texcoord;\n", compat.vsOutPrefix); } else { WRITE(p, " %sv_texcoord = vec3(texcoord, 1.0);\n", compat.vsOutPrefix); } } if (hasColor) { WRITE(p, " %sv_color0 = color0;\n", compat.vsOutPrefix); if (lmode) WRITE(p, " %sv_color1 = color1;\n", compat.vsOutPrefix); } else { WRITE(p, " %sv_color0 = u_matambientalpha;\n", compat.vsOutPrefix); if (lmode) WRITE(p, " %sv_color1 = splat3(0.0);\n", compat.vsOutPrefix); } WRITE(p, " %sv_fogdepth = fog;\n", compat.vsOutPrefix); if (isModeThrough) { // The proj_through matrix already has the rotation, if needed. WRITE(p, " vec4 outPos = mul(u_proj_through, vec4(position.xyz, 1.0));\n"); } else { if (compat.shaderLanguage == GLSL_VULKAN || compat.shaderLanguage == HLSL_D3D11) { // Apply rotation from the uniform. WRITE(p, " mat2 displayRotation = mat2(\n"); WRITE(p, " u_rotation == 0.0 ? 1.0 : (u_rotation == 2.0 ? -1.0 : 0.0), u_rotation == 1.0 ? 1.0 : (u_rotation == 3.0 ? -1.0 : 0.0),\n"); WRITE(p, " u_rotation == 3.0 ? 1.0 : (u_rotation == 1.0 ? -1.0 : 0.0), u_rotation == 0.0 ? 1.0 : (u_rotation == 2.0 ? -1.0 : 0.0)\n"); WRITE(p, " );\n"); WRITE(p, " vec4 pos = position;\n"); WRITE(p, " pos.xy = mul(displayRotation, pos.xy);\n"); } else { WRITE(p, " vec4 pos = position;\n"); } // The viewport is used in this case, so need to compensate for that. if (gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) { WRITE(p, " vec4 outPos = depthRoundZVP(pos);\n"); } else { WRITE(p, " vec4 outPos = pos;\n"); } } } else { // Step 1: World Transform / Skinning if (!enableBones) { if (doBezier || doSpline) { // Hardware tessellation WRITE(p, " Tess tess;\n"); if (compat.shaderLanguage == HLSL_D3D9 || compat.shaderLanguage == HLSL_D3D11) { WRITE(p, " tessellate(In, tess);\n"); } else { WRITE(p, " tessellate(tess);\n"); } WRITE(p, " vec3 worldpos = mul(vec4(tess.pos.xyz, 1.0), u_world).xyz;\n"); if (hasNormalTess) { WRITE(p, " mediump vec3 worldnormal = normalizeOr001(mul(vec4(%stess.nrm, 0.0), u_world).xyz);\n", flipNormalTess ? "-" : ""); } else { WRITE(p, " mediump vec3 worldnormal = vec3(0.0, 0.0, 1.0);\n"); } } else { // No skinning, just standard T&L. WRITE(p, " vec3 worldpos = mul(vec4(position, 1.0), u_world).xyz;\n"); if (hasNormal) WRITE(p, " mediump vec3 worldnormal = normalizeOr001(mul(vec4(%snormal, 0.0), u_world).xyz);\n", flipNormal ? "-" : ""); else WRITE(p, " mediump vec3 worldnormal = vec3(0.0, 0.0, 1.0);\n"); } } else { static const char *rescale[4] = {"", " * 1.9921875", " * 1.999969482421875", ""}; // 2*127.5f/128.f, 2*32767.5f/32768.f, 1.0f}; const char *factor = rescale[boneWeightScale]; static const char * const boneWeightAttr[8] = { "w1.x", "w1.y", "w1.z", "w1.w", "w2.x", "w2.y", "w2.z", "w2.w", }; const char *boneMatrix = compat.forceMatrix4x4 ? "mat4" : "mat3x4"; // Uncomment this to screw up bone shaders to check the vertex shader software fallback // WRITE(p, "THIS SHOULD ERROR! #error"); if (numBoneWeights == 1 && ShaderLanguageIsOpenGL(compat.shaderLanguage)) WRITE(p, " %s skinMatrix = mul(w1, u_bone0)", boneMatrix); else WRITE(p, " %s skinMatrix = mul(w1.x, u_bone0)", boneMatrix); for (int i = 1; i < numBoneWeights; i++) { const char *weightAttr = boneWeightAttr[i]; // workaround for "cant do .x of scalar" issue. if (ShaderLanguageIsOpenGL(compat.shaderLanguage)) { if (numBoneWeights == 1 && i == 0) weightAttr = "w1"; if (numBoneWeights == 5 && i == 4) weightAttr = "w2"; } WRITE(p, " + mul(%s, u_bone%i)", weightAttr, i); } WRITE(p, ";\n"); WRITE(p, " vec3 skinnedpos = mul(vec4(position, 1.0), skinMatrix).xyz%s;\n", factor); WRITE(p, " vec3 worldpos = mul(vec4(skinnedpos, 1.0), u_world).xyz;\n"); if (hasNormal) { WRITE(p, " mediump vec3 skinnednormal = mul(vec4(%snormal, 0.0), skinMatrix).xyz%s;\n", flipNormal ? "-" : "", factor); } else { WRITE(p, " mediump vec3 skinnednormal = mul(vec4(0.0, 0.0, %s1.0, 0.0), skinMatrix).xyz%s;\n", flipNormal ? "-" : "", factor); } WRITE(p, " mediump vec3 worldnormal = normalizeOr001(mul(vec4(skinnednormal, 0.0), u_world).xyz);\n"); } std::string matrixPostfix; if (IsVRBuild() && IsMultiviewSupported()) { matrixPostfix = "[gl_ViewID_OVR]"; } WRITE(p, " vec4 viewPos = vec4(mul(vec4(worldpos, 1.0), u_view%s).xyz, 1.0);\n", matrixPostfix.c_str()); // Final view and projection transforms. if (gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) { if (IsVRBuild()) { WRITE(p, " vec4 outPos = depthRoundZVP(mul(u_proj_lens%s, viewPos));\n", matrixPostfix.c_str()); WRITE(p, " vec4 orgPos = depthRoundZVP(mul(u_proj, viewPos));\n"); } else { WRITE(p, " vec4 outPos = depthRoundZVP(mul(u_proj, viewPos));\n"); } } else { if (IsVRBuild()) { WRITE(p, " vec4 outPos = mul(u_proj_lens%s, viewPos);\n", matrixPostfix.c_str()); WRITE(p, " vec4 orgPos = mul(u_proj, viewPos);\n"); } else { WRITE(p, " vec4 outPos = mul(u_proj, viewPos);\n"); } } // TODO: Declare variables for dots for shade mapping if needed. const char *srcCol = "color0"; if (doBezier || doSpline) { // TODO: Probably, should use hasColorTess but FF4 has a problem with drawing the background. srcCol = "tess.col"; } if (lightUberShader && hasColor) { p.F(" vec4 ambientColor = ((u_lightControl & (1u << 20u)) != 0u) ? %s : u_matambientalpha;\n", srcCol); if (enableLighting) { p.F(" vec3 diffuseColor = ((u_lightControl & (1u << 21u)) != 0u) ? %s.rgb : u_matdiffuse;\n", srcCol); p.F(" vec3 specularColor = ((u_lightControl & (1u << 22u)) != 0u) ? %s.rgb : u_matspecular.rgb;\n", srcCol); } } else { // This path also takes care of the lightUberShader && !hasColor path, because all comparisons fail. p.F(" vec4 ambientColor = %s;\n", (matUpdate & 1) && hasColor ? srcCol : "u_matambientalpha"); if (enableLighting) { p.F(" vec3 diffuseColor = %s.rgb;\n", (matUpdate & 2) && hasColor ? srcCol : "u_matdiffuse"); p.F(" vec3 specularColor = %s.rgb;\n", (matUpdate & 4) && hasColor ? srcCol : "u_matspecular"); } } bool diffuseIsZero = true; bool specularIsZero = true; bool distanceNeeded = false; bool anySpots = false; if (enableLighting) { p.C(" lowp vec4 lightSum0 = u_ambient * ambientColor + vec4(u_matemissive, 0.0);\n"); for (int i = 0; i < 4; i++) { GELightType type = static_cast(id.Bits(VS_BIT_LIGHT0_TYPE + 4*i, 2)); GELightComputation comp = static_cast(id.Bits(VS_BIT_LIGHT0_COMP + 4*i, 2)); if (doLight[i] != LIGHT_FULL) continue; diffuseIsZero = false; if (comp == GE_LIGHTCOMP_BOTH) specularIsZero = false; if (type != GE_LIGHTTYPE_DIRECTIONAL) distanceNeeded = true; if (type == GE_LIGHTTYPE_SPOT || type == GE_LIGHTTYPE_UNKNOWN) anySpots = true; } if (lightUberShader) { anySpots = true; diffuseIsZero = false; specularIsZero = false; distanceNeeded = true; } if (!specularIsZero) { WRITE(p, " lowp vec3 lightSum1 = splat3(0.0);\n"); } if (!diffuseIsZero) { WRITE(p, " vec3 toLight;\n"); WRITE(p, " lowp vec3 diffuse;\n"); } if (distanceNeeded) { WRITE(p, " float distance;\n"); WRITE(p, " lowp float lightScale;\n"); } WRITE(p, " mediump float ldot;\n"); if (anySpots) { WRITE(p, " lowp float angle;\n"); } } if (lightUberShader) { // TODO: Actually loop in the shader. For now, we write it all out. // Will need to change how the data is stored to loop efficiently. // u_lightControl is computed in PackLightControlBits(). for (int i = 0; i < 4; i++) { p.F(" if ((u_lightControl & %du) != 0u) { \n", 1 << i); p.F(" uint comp = (u_lightControl >> %d) & 3u;\n", 4 + 4 * i); p.F(" uint type = (u_lightControl >> %d) & 3u;\n", 4 + 4 * i + 2); p.C(" if (type == 0u) {\n"); // GE_LIGHTTYPE_DIRECTIONAL p.F(" toLight = u_lightpos%d;\n", i); p.C(" } else {\n"); p.F(" toLight = u_lightpos%d - worldpos;\n", i); p.F(" distance = length(toLight);\n", i); p.F(" toLight /= distance;\n", i); p.C(" }\n"); p.C(" ldot = dot(toLight, worldnormal);\n"); p.C(" if (comp == 2u) {\n"); // GE_LIGHTCOMP_ONLYPOWDIFFUSE p.C(" if (u_matspecular.a <= 0.0) {\n"); p.C(" ldot = 1.0;\n"); p.C(" } else {\n"); p.C(" ldot = pow(max(ldot, 0.0), u_matspecular.a);\n"); p.C(" }\n"); p.C(" }\n"); p.C(" switch (type) {\n"); // Attenuation p.C(" case 1u:\n"); // GE_LIGHTTYPE_POINT p.F(" lightScale = clamp(1.0 / dot(u_lightatt%i, vec3(1.0, distance, distance*distance)), 0.0, 1.0);\n", i); p.C(" break;\n"); p.C(" case 2u:\n"); // GE_LIGHTTYPE_SPOT p.F(" angle = length(u_lightdir%i) == 0.0 ? 0.0 : dot(normalize(u_lightdir%i), toLight);\n", i, i); p.F(" if (angle >= u_lightangle_spotCoef%i.x) {\n", i); p.F(" lightScale = clamp(1.0 / dot(u_lightatt%i, vec3(1.0, distance, distance*distance)), 0.0, 1.0) * (u_lightangle_spotCoef%i.y <= 0.0 ? 1.0 : pow(angle, u_lightangle_spotCoef%i.y));\n", i, i, i); p.C(" } else {\n"); p.C(" lightScale = 0.0;\n"); p.C(" }\n"); p.C(" break;\n"); p.C(" default:\n"); // GE_LIGHTTYPE_DIRECTIONAL p.C(" lightScale = 1.0;\n"); p.C(" break;\n"); p.C(" }\n"); p.F(" diffuse = (u_lightdiffuse%i * diffuseColor) * max(ldot, 0.0);\n", i); p.C(" if (comp == 1u) {\n"); // do specular p.C(" if (ldot >= 0.0) {\n"); p.C(" ldot = dot(normalize(toLight + vec3(0.0, 0.0, 1.0)), worldnormal);\n"); p.C(" if (u_matspecular.a <= 0.0) {\n"); p.C(" ldot = 1.0;\n"); p.C(" } else {\n"); p.C(" ldot = pow(max(ldot, 0.0), u_matspecular.a);\n"); p.C(" }\n"); p.C(" if (ldot > 0.0)\n"); p.F(" lightSum1 += u_lightspecular%i * specularColor * ldot * lightScale;\n", i); p.C(" }\n"); p.C(" }\n"); p.F(" lightSum0.rgb += (u_lightambient%i * ambientColor.rgb + diffuse) * lightScale;\n", i); p.C(" }\n"); } } else { // Calculate lights if needed. If shade mapping is enabled, lights may need to be // at least partially calculated. for (int i = 0; i < 4; i++) { if (doLight[i] != LIGHT_FULL) continue; GELightType type = static_cast(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2)); GELightComputation comp = static_cast(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2)); if (type == GE_LIGHTTYPE_DIRECTIONAL) { // We prenormalize light positions for directional lights. p.F(" toLight = u_lightpos%i;\n", i); } else { p.F(" toLight = u_lightpos%i - worldpos;\n", i); p.C(" distance = length(toLight);\n"); p.C(" toLight /= distance;\n"); } bool doSpecular = comp == GE_LIGHTCOMP_BOTH; bool poweredDiffuse = comp == GE_LIGHTCOMP_ONLYPOWDIFFUSE; p.C(" ldot = dot(toLight, worldnormal);\n"); if (poweredDiffuse) { // pow(0.0, 0.0) may be undefined, but the PSP seems to treat it as 1.0. // Seen in Tales of the World: Radiant Mythology (#2424.) p.C(" if (u_matspecular.a <= 0.0) {\n"); p.C(" ldot = 1.0;\n"); p.C(" } else {\n"); p.C(" ldot = pow(max(ldot, 0.0), u_matspecular.a);\n"); p.C(" }\n"); } const char *timesLightScale = " * lightScale"; // Attenuation switch (type) { case GE_LIGHTTYPE_DIRECTIONAL: timesLightScale = ""; break; case GE_LIGHTTYPE_POINT: p.F(" lightScale = clamp(1.0 / dot(u_lightatt%i, vec3(1.0, distance, distance*distance)), 0.0, 1.0);\n", i); break; case GE_LIGHTTYPE_SPOT: case GE_LIGHTTYPE_UNKNOWN: p.F(" angle = length(u_lightdir%i) == 0.0 ? 0.0 : dot(normalize(u_lightdir%i), toLight);\n", i, i); p.F(" if (angle >= u_lightangle_spotCoef%i.x) {\n", i); p.F(" lightScale = clamp(1.0 / dot(u_lightatt%i, vec3(1.0, distance, distance*distance)), 0.0, 1.0) * (u_lightangle_spotCoef%i.y <= 0.0 ? 1.0 : pow(angle, u_lightangle_spotCoef%i.y));\n", i, i, i); p.C(" } else {\n"); p.C(" lightScale = 0.0;\n"); p.C(" }\n"); break; default: // ILLEGAL break; } p.F(" diffuse = (u_lightdiffuse%i * diffuseColor) * max(ldot, 0.0);\n", i); if (doSpecular) { p.C(" if (ldot >= 0.0) {\n"); p.C(" ldot = dot(normalize(toLight + vec3(0.0, 0.0, 1.0)), worldnormal);\n"); p.C(" if (u_matspecular.a <= 0.0) {\n"); p.C(" ldot = 1.0;\n"); p.C(" } else {\n"); p.C(" ldot = pow(max(ldot, 0.0), u_matspecular.a);\n"); p.C(" }\n"); p.C(" if (ldot > 0.0)\n"); p.F(" lightSum1 += u_lightspecular%i * specularColor * ldot %s;\n", i, timesLightScale); p.C(" }\n"); } p.F(" lightSum0.rgb += (u_lightambient%i * ambientColor.rgb + diffuse)%s;\n", i, timesLightScale); } } if (enableLighting) { // Sum up ambient, emissive here. if (lmode) { WRITE(p, " %sv_color0 = clamp(lightSum0, 0.0, 1.0);\n", compat.vsOutPrefix); // v_color1 only exists when lmode = 1. if (specularIsZero) { WRITE(p, " %sv_color1 = splat3(0.0);\n", compat.vsOutPrefix); } else { WRITE(p, " %sv_color1 = clamp(lightSum1, 0.0, 1.0);\n", compat.vsOutPrefix); } } else { if (specularIsZero) { WRITE(p, " %sv_color0 = clamp(lightSum0, 0.0, 1.0);\n", compat.vsOutPrefix); } else { WRITE(p, " %sv_color0 = clamp(clamp(lightSum0, 0.0, 1.0) + vec4(lightSum1, 0.0), 0.0, 1.0);\n", compat.vsOutPrefix); } } } else { // Lighting doesn't affect color. if (hasColor) { if (doBezier || doSpline) WRITE(p, " %sv_color0 = tess.col;\n", compat.vsOutPrefix); else WRITE(p, " %sv_color0 = color0;\n", compat.vsOutPrefix); } else { WRITE(p, " %sv_color0 = u_matambientalpha;\n", compat.vsOutPrefix); if (bugs.Has(Draw::Bugs::MALI_CONSTANT_LOAD_BUG) && g_Config.bVendorBugChecksEnabled) { WRITE(p, " %sv_color0.r += 0.000001;\n", compat.vsOutPrefix); } } if (lmode) WRITE(p, " %sv_color1 = splat3(0.0);\n", compat.vsOutPrefix); } bool scaleUV = !isModeThrough && (uvGenMode == GE_TEXMAP_TEXTURE_COORDS || uvGenMode == GE_TEXMAP_UNKNOWN); // Step 3: UV generation if (doTexture) { switch (uvGenMode) { case GE_TEXMAP_TEXTURE_COORDS: // Scale-offset. Easy. case GE_TEXMAP_UNKNOWN: // Not sure what this is, but Riviera uses it. Treating as coords works. if (scaleUV) { if (hasTexcoord) { if (doBezier || doSpline) WRITE(p, " %sv_texcoord = vec3(tess.tex.xy * u_uvscaleoffset.xy + u_uvscaleoffset.zw, 0.0);\n", compat.vsOutPrefix); else WRITE(p, " %sv_texcoord = vec3(texcoord.xy * u_uvscaleoffset.xy, 0.0);\n", compat.vsOutPrefix); } else { WRITE(p, " %sv_texcoord = splat3(0.0);\n", compat.vsOutPrefix); } } else { if (hasTexcoord) { if (doBezier || doSpline) WRITE(p, " %sv_texcoord = vec3(tess.tex.xy * u_uvscaleoffset.xy + u_uvscaleoffset.zw, 0.0);\n", compat.vsOutPrefix); else WRITE(p, " %sv_texcoord = vec3(texcoord.xy * u_uvscaleoffset.xy + u_uvscaleoffset.zw, 0.0);\n", compat.vsOutPrefix); } else { WRITE(p, " %sv_texcoord = vec3(u_uvscaleoffset.zw, 0.0);\n", compat.vsOutPrefix); } } break; case GE_TEXMAP_TEXTURE_MATRIX: // Projection mapping. { std::string temp_tc; switch (uvProjMode) { case GE_PROJMAP_POSITION: // Use model space XYZ as source if (doBezier || doSpline) temp_tc = "vec4(tess.pos, 1.0)"; else temp_tc = "vec4(position, 1.0)"; break; case GE_PROJMAP_UV: // Use unscaled UV as source { // prescale is false here. if (hasTexcoord) { if (doBezier || doSpline) temp_tc = "vec4(tess.tex.xy, 0.0, 1.0)"; else temp_tc = "vec4(texcoord.xy, 0.0, 1.0)"; } else { temp_tc = "vec4(0.0, 0.0, 0.0, 1.0)"; } } break; case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized transformed normal as source if ((doBezier || doSpline) && hasNormalTess) temp_tc = StringFromFormat("length(tess.nrm) == 0.0 ? vec4(0.0, 0.0, 0.0, 1.0) : vec4(normalize(%stess.nrm), 1.0)", flipNormalTess ? "-" : ""); else if (hasNormal) temp_tc = StringFromFormat("length(normal) == 0.0 ? vec4(0.0, 0.0, 0.0, 1.0) : vec4(normalize(%snormal), 1.0)", flipNormal ? "-" : ""); else temp_tc = "vec4(0.0, 0.0, 1.0, 1.0)"; break; case GE_PROJMAP_NORMAL: // Use non-normalized transformed normal as source if ((doBezier || doSpline) && hasNormalTess) temp_tc = flipNormalTess ? "vec4(-tess.nrm, 1.0)" : "vec4(tess.nrm, 1.0)"; else if (hasNormal) temp_tc = flipNormal ? "vec4(-normal, 1.0)" : "vec4(normal, 1.0)"; else temp_tc = "vec4(0.0, 0.0, 1.0, 1.0)"; break; } // Transform by texture matrix. XYZ as we are doing projection mapping. WRITE(p, " %sv_texcoord = mul(%s, u_texmtx).xyz * vec3(u_uvscaleoffset.xy, 1.0);\n", compat.vsOutPrefix, temp_tc.c_str()); } break; case GE_TEXMAP_ENVIRONMENT_MAP: // Shade mapping - use dots from light sources. { std::string lightFactor0 = StringFromFormat("(length(u_lightpos%i) == 0.0 ? worldnormal.z : dot(normalize(u_lightpos%i), worldnormal))", ls0, ls0); std::string lightFactor1 = StringFromFormat("(length(u_lightpos%i) == 0.0 ? worldnormal.z : dot(normalize(u_lightpos%i), worldnormal))", ls1, ls1); WRITE(p, " %sv_texcoord = vec3(u_uvscaleoffset.xy * vec2(1.0 + %s, 1.0 + %s) * 0.5, 1.0);\n", compat.vsOutPrefix, lightFactor0.c_str(), lightFactor1.c_str()); } break; default: // ILLEGAL break; } } // Compute fogdepth WRITE(p, " %sv_fogdepth = (viewPos.z + u_fogcoef.x) * u_fogcoef.y;\n", compat.vsOutPrefix); } if (clipClampedDepth) { // This should clip against minz, but only when it's above zero. if (ShaderLanguageIsOpenGL(compat.shaderLanguage)) { // On OpenGL/GLES, these values account for the -1 -> 1 range. WRITE(p, " if (u_depthRange.y - u_depthRange.x >= 1.0) {\n"); WRITE(p, " %sgl_ClipDistance%s = outPos.w + outPos.z;\n", compat.vsOutPrefix, clipClampedDepthSuffix); } else { // Everywhere else, it's 0 -> 1, simpler. WRITE(p, " if (u_depthRange.y >= 1.0) {\n"); WRITE(p, " %sgl_ClipDistance%s = outPos.z;\n", compat.vsOutPrefix, clipClampedDepthSuffix); } // This is similar, but for maxz when it's below 65535.0. -1/0 don't matter here. WRITE(p, " } else if (u_depthRange.x + u_depthRange.y <= 65534.0) {\n"); WRITE(p, " %sgl_ClipDistance%s = outPos.w - outPos.z;\n", compat.vsOutPrefix, clipClampedDepthSuffix); WRITE(p, " } else {\n"); WRITE(p, " %sgl_ClipDistance%s = 0.0;\n", compat.vsOutPrefix, clipClampedDepthSuffix); WRITE(p, " }\n"); } if (vertexRangeCulling && !IsVRBuild()) { WRITE(p, " vec3 projPos = outPos.xyz / outPos.w;\n"); WRITE(p, " float projZ = (projPos.z - u_depthRange.z) * u_depthRange.w;\n"); if (!bugs.Has(Draw::Bugs::BROKEN_NAN_IN_CONDITIONAL)) { // Vertex range culling doesn't happen when Z clips, note sign of w is important. WRITE(p, " if (u_cullRangeMin.w <= 0.0 || projZ * outPos.w > -outPos.w) {\n"); const char *outMin = "projPos.x < u_cullRangeMin.x || projPos.y < u_cullRangeMin.y"; const char *outMax = "projPos.x > u_cullRangeMax.x || projPos.y > u_cullRangeMax.y"; WRITE(p, " if ((%s) || (%s)) {\n", outMin, outMax); WRITE(p, " outPos.xyzw = u_cullRangeMax.wwww;\n"); WRITE(p, " }\n"); WRITE(p, " }\n"); WRITE(p, " if (u_cullRangeMin.w <= 0.0) {\n"); WRITE(p, " if (projPos.z < u_cullRangeMin.z || projPos.z > u_cullRangeMax.z) {\n"); WRITE(p, " outPos.xyzw = u_cullRangeMax.wwww;\n"); WRITE(p, " }\n"); WRITE(p, " }\n"); } const char *cull0 = compat.shaderLanguage == HLSL_D3D11 ? ".x" : "[0]"; const char *cull1 = compat.shaderLanguage == HLSL_D3D11 ? ".y" : "[1]"; if (gstate_c.Supports(GPU_SUPPORTS_CLIP_DISTANCE)) { // TODO: Ignore triangles from GE_PRIM_RECTANGLES in transform mode, which should not clip to neg z. WRITE(p, " %sgl_ClipDistance%s = projZ * outPos.w + outPos.w;\n", compat.vsOutPrefix, vertexRangeClipSuffix); } if (gstate_c.Supports(GPU_SUPPORTS_CULL_DISTANCE)) { // Cull any triangle fully outside in the same direction when depth clamp enabled. WRITE(p, " if (u_cullRangeMin.w > 0.0) {\n"); WRITE(p, " %sgl_CullDistance%s = projPos.z - u_cullRangeMin.z;\n", compat.vsOutPrefix, cull0); WRITE(p, " %sgl_CullDistance%s = u_cullRangeMax.z - projPos.z;\n", compat.vsOutPrefix, cull1); WRITE(p, " } else {\n"); WRITE(p, " %sgl_CullDistance%s = 0.0;\n", compat.vsOutPrefix, cull0); WRITE(p, " %sgl_CullDistance%s = 0.0;\n", compat.vsOutPrefix, cull1); WRITE(p, " }\n"); } } // We've named the output gl_Position in HLSL as well. WRITE(p, " %sgl_Position = outPos;\n", compat.vsOutPrefix); if (IsVRBuild()) { // Z correction for the depth buffer if (useHWTransform) { WRITE(p, " %sgl_Position.z = orgPos.z / abs(orgPos.w) * abs(outPos.w);\n", compat.vsOutPrefix); } // HUD scaling WRITE(p, " if ((u_scaleX < 0.99) || (u_scaleY < 0.99)) {\n"); WRITE(p, " %sgl_Position.x *= u_scaleX;\n", compat.vsOutPrefix); WRITE(p, " %sgl_Position.y *= u_scaleY;\n", compat.vsOutPrefix); WRITE(p, " }\n"); } if (needsZWHack) { // See comment in thin3d_vulkan.cpp. WRITE(p, " if (%sgl_Position.z == %sgl_Position.w) %sgl_Position.z *= 0.999999;\n", compat.vsOutPrefix, compat.vsOutPrefix, compat.vsOutPrefix); } if (compat.shaderLanguage == HLSL_D3D11 || compat.shaderLanguage == HLSL_D3D9) { WRITE(p, " return Out;\n"); } WRITE(p, "}\n"); return true; }