// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "ppsspp_config.h" #if PPSSPP_ARCH(ARM64) #include #include "Common/BitSet.h" #include "Common/CPUDetect.h" #include "Common/Data/Convert/SmallDataConvert.h" #include "Core/MIPS/MIPS.h" #include "Core/MIPS/MIPSCodeUtils.h" #include "Core/MIPS/ARM64/Arm64Jit.h" #include "Core/MIPS/ARM64/Arm64RegCache.h" using namespace MIPSAnalyst; #define _RS MIPS_GET_RS(op) #define _RT MIPS_GET_RT(op) #define _RD MIPS_GET_RD(op) #define _FS MIPS_GET_FS(op) #define _FT MIPS_GET_FT(op) #define _FD MIPS_GET_FD(op) #define _SA MIPS_GET_SA(op) #define _POS ((op>> 6) & 0x1F) #define _SIZE ((op>>11) & 0x1F) #define _IMM16 (signed short)(op & 0xFFFF) #define _IMM26 (op & 0x03FFFFFF) // All functions should have CONDITIONAL_DISABLE, so we can narrow things down to a file quickly. // Currently known non working ones should have DISABLE. //#define CONDITIONAL_DISABLE(flag) { Comp_Generic(op); return; } #define CONDITIONAL_DISABLE(flag) if (jo.Disabled(JitDisable::flag)) { Comp_Generic(op); return; } #define DISABLE { Comp_Generic(op); return; } namespace MIPSComp { using namespace Arm64Gen; using namespace Arm64JitConstants; static u32 EvalOr(u32 a, u32 b) { return a | b; } static u32 EvalEor(u32 a, u32 b) { return a ^ b; } static u32 EvalAnd(u32 a, u32 b) { return a & b; } static u32 EvalAdd(u32 a, u32 b) { return a + b; } static u32 EvalSub(u32 a, u32 b) { return a - b; } void Arm64Jit::CompImmLogic(MIPSGPReg rs, MIPSGPReg rt, u32 uimm, void (ARM64XEmitter::*arith)(ARM64Reg dst, ARM64Reg src, ARM64Reg src2), bool (ARM64XEmitter::*tryArithI2R)(ARM64Reg dst, ARM64Reg src, u64 val), u32 (*eval)(u32 a, u32 b)) { if (gpr.IsImm(rs)) { gpr.SetImm(rt, (*eval)(gpr.GetImm(rs), uimm)); } else { gpr.MapDirtyIn(rt, rs); if (!(this->*tryArithI2R)(gpr.R(rt), gpr.R(rs), uimm)) { gpr.SetRegImm(SCRATCH1, uimm); (this->*arith)(gpr.R(rt), gpr.R(rs), SCRATCH1); } } } void Arm64Jit::Comp_IType(MIPSOpcode op) { CONDITIONAL_DISABLE(ALU_IMM); u32 uimm = op & 0xFFFF; s32 simm = SignExtend16ToS32(op); u32 suimm = SignExtend16ToU32(op); MIPSGPReg rt = _RT; MIPSGPReg rs = _RS; // noop, won't write to ZERO. if (rt == 0) return; switch (op >> 26) { case 8: // same as addiu? case 9: // R(rt) = R(rs) + simm; break; //addiu // Special-case for small adjustments of pointerified registers. Commonly for SP but happens for others. if (rs == rt && gpr.IsMappedAsPointer(rs) && IsImmArithmetic(simm < 0 ? -simm : simm, nullptr, nullptr)) { ARM64Reg r32 = gpr.RPtr(rs); gpr.MarkDirty(r32); ARM64Reg r = EncodeRegTo64(r32); ADDI2R(r, r, simm); } else { if (simm >= 0) { CompImmLogic(rs, rt, simm, &ARM64XEmitter::ADD, &ARM64XEmitter::TryADDI2R, &EvalAdd); } else if (simm < 0) { CompImmLogic(rs, rt, -simm, &ARM64XEmitter::SUB, &ARM64XEmitter::TrySUBI2R, &EvalSub); } } break; case 12: CompImmLogic(rs, rt, uimm, &ARM64XEmitter::AND, &ARM64XEmitter::TryANDI2R, &EvalAnd); break; case 13: CompImmLogic(rs, rt, uimm, &ARM64XEmitter::ORR, &ARM64XEmitter::TryORRI2R, &EvalOr); break; case 14: CompImmLogic(rs, rt, uimm, &ARM64XEmitter::EOR, &ARM64XEmitter::TryEORI2R, &EvalEor); break; case 10: // R(rt) = (s32)R(rs) < simm; break; //slti if (gpr.IsImm(rs)) { gpr.SetImm(rt, (s32)gpr.GetImm(rs) < simm ? 1 : 0); break; } else if (simm == 0) { gpr.MapDirtyIn(rt, rs); // Grab the sign bit (< 0) as 1/0. Slightly faster than a shift. UBFX(gpr.R(rt), gpr.R(rs), 31, 1); break; } gpr.MapDirtyIn(rt, rs); if (!TryCMPI2R(gpr.R(rs), (u32)simm)) { gpr.SetRegImm(SCRATCH1, simm); CMP(gpr.R(rs), SCRATCH1); } CSET(gpr.R(rt), CC_LT); break; case 11: // R(rt) = R(rs) < suimm; break; //sltiu if (gpr.IsImm(rs)) { gpr.SetImm(rt, gpr.GetImm(rs) < suimm ? 1 : 0); break; } gpr.MapDirtyIn(rt, rs); if (!TryCMPI2R(gpr.R(rs), suimm)) { gpr.SetRegImm(SCRATCH1, suimm); CMP(gpr.R(rs), SCRATCH1); } CSET(gpr.R(rt), CC_LO); break; case 15: // R(rt) = uimm << 16; //lui gpr.SetImm(rt, uimm << 16); break; default: Comp_Generic(op); break; } } void Arm64Jit::Comp_RType2(MIPSOpcode op) { CONDITIONAL_DISABLE(ALU_BIT); MIPSGPReg rs = _RS; MIPSGPReg rd = _RD; // Don't change $zr. if (rd == 0) return; switch (op & 63) { case 22: //clz if (gpr.IsImm(rs)) { u32 value = gpr.GetImm(rs); int x = 31; int count = 0; while (x >= 0 && !(value & (1 << x))) { count++; x--; } gpr.SetImm(rd, count); break; } gpr.MapDirtyIn(rd, rs); CLZ(gpr.R(rd), gpr.R(rs)); break; case 23: //clo if (gpr.IsImm(rs)) { u32 value = gpr.GetImm(rs); int x = 31; int count = 0; while (x >= 0 && (value & (1 << x))) { count++; x--; } gpr.SetImm(rd, count); break; } gpr.MapDirtyIn(rd, rs); MVN(gpr.R(rd), gpr.R(rs)); CLZ(gpr.R(rd), gpr.R(rd)); break; default: DISABLE; } } void Arm64Jit::CompType3(MIPSGPReg rd, MIPSGPReg rs, MIPSGPReg rt, void (ARM64XEmitter::*arith)(ARM64Reg dst, ARM64Reg rm, ARM64Reg rn), bool (ARM64XEmitter::*tryArithI2R)(ARM64Reg dst, ARM64Reg rm, u64 val), u32(*eval)(u32 a, u32 b), bool symmetric) { if (gpr.IsImm(rs) && gpr.IsImm(rt)) { gpr.SetImm(rd, (*eval)(gpr.GetImm(rs), gpr.GetImm(rt))); return; } // Optimize anything against zero. if (gpr.IsImm(rs) && gpr.GetImm(rs) == 0) { gpr.MapDirtyIn(rd, rt); (this->*arith)(gpr.R(rd), WZR, gpr.R(rt)); return; } if (gpr.IsImm(rt) && gpr.GetImm(rt) == 0) { gpr.MapDirtyIn(rd, rs); (this->*arith)(gpr.R(rd), gpr.R(rs), WZR); return; } if (gpr.IsImm(rt) || (gpr.IsImm(rs) && symmetric)) { MIPSGPReg lhs = gpr.IsImm(rs) ? rt : rs; MIPSGPReg rhs = gpr.IsImm(rs) ? rs : rt; u32 rhsImm = gpr.GetImm(rhs); gpr.MapDirtyIn(rd, lhs); if ((this->*tryArithI2R)(gpr.R(rd), gpr.R(lhs), rhsImm)) { return; } // If rd is rhs, we may have lost it in the MapDirtyIn(). lhs was kept. // This means the rhsImm value was never flushed to rhs, and would be garbage. if (rd == rhs) { // Luckily, it was just an imm. gpr.SetImm(rhs, rhsImm); } } // Can't do the RSB optimization on ARM64 - no RSB! // Generic solution. If it's an imm, better to flush at this point. gpr.MapDirtyInIn(rd, rs, rt); (this->*arith)(gpr.R(rd), gpr.R(rs), gpr.R(rt)); } void Arm64Jit::Comp_RType3(MIPSOpcode op) { CONDITIONAL_DISABLE(ALU); MIPSGPReg rt = _RT; MIPSGPReg rs = _RS; MIPSGPReg rd = _RD; // noop, won't write to ZERO. if (rd == 0) return; switch (op & 63) { case 10: //if (!R(rt)) R(rd) = R(rs); break; //movz gpr.MapDirtyInIn(rd, rt, rs, false); CMP(gpr.R(rt), 0); CSEL(gpr.R(rd), gpr.R(rs), gpr.R(rd), CC_EQ); break; case 11:// if (R(rt)) R(rd) = R(rs); break; //movn gpr.MapDirtyInIn(rd, rt, rs, false); CMP(gpr.R(rt), 0); CSEL(gpr.R(rd), gpr.R(rs), gpr.R(rd), CC_NEQ); break; case 32: //R(rd) = R(rs) + R(rt); break; //add case 33: //R(rd) = R(rs) + R(rt); break; //addu if (gpr.IsImm(rs) && gpr.GetImm(rs) == 0 && !gpr.IsImm(rt)) { // Special case: actually a mov, avoid arithmetic. gpr.MapDirtyIn(rd, rt); MOV(gpr.R(rd), gpr.R(rt)); } else if (gpr.IsImm(rt) && gpr.GetImm(rt) == 0 && !gpr.IsImm(rs)) { gpr.MapDirtyIn(rd, rs); MOV(gpr.R(rd), gpr.R(rs)); } else { CompType3(rd, rs, rt, &ARM64XEmitter::ADD, &ARM64XEmitter::TryADDI2R, &EvalAdd, true); } break; case 34: //R(rd) = R(rs) - R(rt); break; //sub case 35: //R(rd) = R(rs) - R(rt); break; //subu CompType3(rd, rs, rt, &ARM64XEmitter::SUB, &ARM64XEmitter::TrySUBI2R, &EvalSub, false); break; case 36: //R(rd) = R(rs) & R(rt); break; //and CompType3(rd, rs, rt, &ARM64XEmitter::AND, &ARM64XEmitter::TryANDI2R, &EvalAnd, true); break; case 37: //R(rd) = R(rs) | R(rt); break; //or CompType3(rd, rs, rt, &ARM64XEmitter::ORR, &ARM64XEmitter::TryORRI2R, &EvalOr, true); break; case 38: //R(rd) = R(rs) ^ R(rt); break; //xor/eor CompType3(rd, rs, rt, &ARM64XEmitter::EOR, &ARM64XEmitter::TryEORI2R, &EvalEor, true); break; case 39: // R(rd) = ~(R(rs) | R(rt)); break; //nor if (gpr.IsImm(rs) && gpr.IsImm(rt)) { gpr.SetImm(rd, ~(gpr.GetImm(rs) | gpr.GetImm(rt))); } else if (gpr.IsImm(rs) || gpr.IsImm(rt)) { MIPSGPReg lhs = gpr.IsImm(rs) ? rt : rs; MIPSGPReg rhs = gpr.IsImm(rs) ? rs : rt; u32 rhsImm = gpr.GetImm(rhs); if (rhsImm == 0) { gpr.MapDirtyIn(rd, lhs); MVN(gpr.R(rd), gpr.R(lhs)); } else { // Ignored, just for IsImmLogical. unsigned int n, imm_s, imm_r; if (IsImmLogical(rhsImm, 32, &n, &imm_s, &imm_r)) { // Great, we can avoid flushing a reg. gpr.MapDirtyIn(rd, lhs); ORRI2R(gpr.R(rd), gpr.R(lhs), rhsImm); } else { gpr.MapDirtyInIn(rd, rs, rt); ORR(gpr.R(rd), gpr.R(rs), gpr.R(rt)); } MVN(gpr.R(rd), gpr.R(rd)); } } else { gpr.MapDirtyInIn(rd, rs, rt); ORR(gpr.R(rd), gpr.R(rs), gpr.R(rt)); MVN(gpr.R(rd), gpr.R(rd)); } break; case 42: //R(rd) = (int)R(rs) < (int)R(rt); break; //slt if (gpr.IsImm(rs) && gpr.IsImm(rt)) { gpr.SetImm(rd, (s32)gpr.GetImm(rs) < (s32)gpr.GetImm(rt)); } else { gpr.MapDirtyInIn(rd, rs, rt); CMP(gpr.R(rs), gpr.R(rt)); CSET(gpr.R(rd), CC_LT); } break; case 43: //R(rd) = R(rs) < R(rt); break; //sltu if (gpr.IsImm(rs) && gpr.IsImm(rt)) { gpr.SetImm(rd, gpr.GetImm(rs) < gpr.GetImm(rt)); } else { gpr.MapDirtyInIn(rd, rs, rt); CMP(gpr.R(rs), gpr.R(rt)); CSET(gpr.R(rd), CC_LO); } break; case 44: //R(rd) = max(R(rs), R(rt); break; //max if (gpr.IsImm(rs) && gpr.IsImm(rt)) { gpr.SetImm(rd, std::max(gpr.GetImm(rs), gpr.GetImm(rt))); break; } gpr.MapDirtyInIn(rd, rs, rt); CMP(gpr.R(rs), gpr.R(rt)); CSEL(gpr.R(rd), gpr.R(rs), gpr.R(rt), CC_GE); break; case 45: //R(rd) = min(R(rs), R(rt)); break; //min if (gpr.IsImm(rs) && gpr.IsImm(rt)) { gpr.SetImm(rd, std::min(gpr.GetImm(rs), gpr.GetImm(rt))); break; } gpr.MapDirtyInIn(rd, rs, rt); CMP(gpr.R(rs), gpr.R(rt)); CSEL(gpr.R(rd), gpr.R(rs), gpr.R(rt), CC_LE); break; default: Comp_Generic(op); break; } } void Arm64Jit::CompShiftImm(MIPSOpcode op, Arm64Gen::ShiftType shiftType, int sa) { MIPSGPReg rd = _RD; MIPSGPReg rt = _RT; if (gpr.IsImm(rt)) { switch (shiftType) { case ST_LSL: gpr.SetImm(rd, gpr.GetImm(rt) << sa); break; case ST_LSR: gpr.SetImm(rd, gpr.GetImm(rt) >> sa); break; case ST_ASR: gpr.SetImm(rd, (int)gpr.GetImm(rt) >> sa); break; case ST_ROR: gpr.SetImm(rd, (gpr.GetImm(rt) >> sa) | (gpr.GetImm(rt) << (32 - sa))); break; default: DISABLE; } } else { gpr.MapDirtyIn(rd, rt); MOV(gpr.R(rd), gpr.R(rt), ArithOption(gpr.R(rd), shiftType, sa)); } } void Arm64Jit::CompShiftVar(MIPSOpcode op, Arm64Gen::ShiftType shiftType) { MIPSGPReg rd = _RD; MIPSGPReg rt = _RT; MIPSGPReg rs = _RS; if (gpr.IsImm(rs)) { int sa = gpr.GetImm(rs) & 0x1F; CompShiftImm(op, shiftType, sa); return; } gpr.MapDirtyInIn(rd, rs, rt); switch (shiftType) { case ST_LSL: LSLV(gpr.R(rd), gpr.R(rt), gpr.R(rs)); break; case ST_LSR: LSRV(gpr.R(rd), gpr.R(rt), gpr.R(rs)); break; case ST_ASR: ASRV(gpr.R(rd), gpr.R(rt), gpr.R(rs)); break; case ST_ROR: RORV(gpr.R(rd), gpr.R(rt), gpr.R(rs)); break; } } void Arm64Jit::Comp_ShiftType(MIPSOpcode op) { CONDITIONAL_DISABLE(ALU); MIPSGPReg rs = _RS; MIPSGPReg rd = _RD; int fd = _FD; int sa = _SA; // noop, won't write to ZERO. if (rd == 0) return; // WARNING : ROTR switch (op & 0x3f) { case 0: CompShiftImm(op, ST_LSL, sa); break; //sll case 2: CompShiftImm(op, rs == 1 ? ST_ROR : ST_LSR, sa); break; //srl case 3: CompShiftImm(op, ST_ASR, sa); break; //sra case 4: CompShiftVar(op, ST_LSL); break; //sllv case 6: CompShiftVar(op, fd == 1 ? ST_ROR : ST_LSR); break; //srlv case 7: CompShiftVar(op, ST_ASR); break; //srav default: DISABLE; break; } } void Arm64Jit::Comp_Special3(MIPSOpcode op) { CONDITIONAL_DISABLE(ALU_BIT); MIPSGPReg rs = _RS; MIPSGPReg rt = _RT; int pos = _POS; int size = _SIZE + 1; u32 mask = 0xFFFFFFFFUL >> (32 - size); // Don't change $zr. if (rt == 0) return; switch (op & 0x3f) { case 0x0: //ext if (gpr.IsImm(rs)) { gpr.SetImm(rt, (gpr.GetImm(rs) >> pos) & mask); return; } gpr.MapDirtyIn(rt, rs); UBFX(gpr.R(rt), gpr.R(rs), pos, size); break; case 0x4: //ins { u32 sourcemask = mask >> pos; u32 destmask = ~(sourcemask << pos); if (gpr.IsImm(rs)) { u32 inserted = (gpr.GetImm(rs) & sourcemask) << pos; if (gpr.IsImm(rt)) { gpr.SetImm(rt, (gpr.GetImm(rt) & destmask) | inserted); return; } // It might be nice to avoid flushing rs, but it's a little slower and // usually more instructions. Not worth it. gpr.MapDirtyIn(rt, rs, false); BFI(gpr.R(rt), gpr.R(rs), pos, size - pos); } else { gpr.MapDirtyIn(rt, rs, false); BFI(gpr.R(rt), gpr.R(rs), pos, size - pos); } } break; } } void Arm64Jit::Comp_Allegrex(MIPSOpcode op) { CONDITIONAL_DISABLE(ALU_BIT); MIPSGPReg rt = _RT; MIPSGPReg rd = _RD; // Don't change $zr. if (rd == 0) return; switch ((op >> 6) & 31) { case 16: // seb // R(rd) = SignExtend8ToU32(R(rt)); if (gpr.IsImm(rt)) { gpr.SetImm(rd, SignExtend8ToU32(gpr.GetImm(rt))); return; } gpr.MapDirtyIn(rd, rt); SXTB(gpr.R(rd), gpr.R(rt)); break; case 24: // seh if (gpr.IsImm(rt)) { gpr.SetImm(rd, SignExtend16ToU32(gpr.GetImm(rt))); return; } gpr.MapDirtyIn(rd, rt); SXTH(gpr.R(rd), gpr.R(rt)); break; case 20: //bitrev if (gpr.IsImm(rt)) { // http://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel u32 v = gpr.GetImm(rt); v = ((v >> 1) & 0x55555555) | ((v & 0x55555555) << 1); // odd<->even v = ((v >> 2) & 0x33333333) | ((v & 0x33333333) << 2); // pair<->pair v = ((v >> 4) & 0x0F0F0F0F) | ((v & 0x0F0F0F0F) << 4); // nibb<->nibb v = ((v >> 8) & 0x00FF00FF) | ((v & 0x00FF00FF) << 8); // byte<->byte v = (v >> 16) | (v << 16); // hword<->hword gpr.SetImm(rd, v); return; } gpr.MapDirtyIn(rd, rt); RBIT(gpr.R(rd), gpr.R(rt)); break; default: Comp_Generic(op); return; } } void Arm64Jit::Comp_Allegrex2(MIPSOpcode op) { CONDITIONAL_DISABLE(ALU_BIT); MIPSGPReg rt = _RT; MIPSGPReg rd = _RD; // Don't change $zr. if (rd == 0) return; switch (op & 0x3ff) { case 0xA0: //wsbh if (gpr.IsImm(rt)) { gpr.SetImm(rd, ((gpr.GetImm(rt) & 0xFF00FF00) >> 8) | ((gpr.GetImm(rt) & 0x00FF00FF) << 8)); } else { gpr.MapDirtyIn(rd, rt); REV16(gpr.R(rd), gpr.R(rt)); } break; case 0xE0: //wsbw if (gpr.IsImm(rt)) { gpr.SetImm(rd, swap32(gpr.GetImm(rt))); } else { gpr.MapDirtyIn(rd, rt); REV32(gpr.R(rd), gpr.R(rt)); } break; default: Comp_Generic(op); break; } } void Arm64Jit::Comp_MulDivType(MIPSOpcode op) { CONDITIONAL_DISABLE(MULDIV); MIPSGPReg rt = _RT; MIPSGPReg rs = _RS; MIPSGPReg rd = _RD; // Note that in all cases below, LO is actually mapped to HI:LO. // That is, the host reg is 64 bits and has HI at the top. // HI is not mappable. switch (op & 63) { case 16: // R(rd) = HI; //mfhi // LO and HI are in the same reg. if (gpr.IsImm(MIPS_REG_LO)) { gpr.SetImm(rd, gpr.GetImm(MIPS_REG_LO) >> 32); break; } gpr.MapDirtyIn(rd, MIPS_REG_LO); UBFX(EncodeRegTo64(gpr.R(rd)), EncodeRegTo64(gpr.R(MIPS_REG_LO)), 32, 32); break; case 17: // HI = R(rs); //mthi if (gpr.IsImm(rs) && gpr.IsImm(MIPS_REG_LO)) { gpr.SetImm(MIPS_REG_LO, (gpr.GetImm(rs) << 32) | (gpr.GetImm(MIPS_REG_LO) & 0xFFFFFFFFULL)); break; } gpr.MapDirtyIn(MIPS_REG_LO, rs, false); BFI(EncodeRegTo64(gpr.R(MIPS_REG_LO)), EncodeRegTo64(gpr.R(rs)), 32, 32); break; case 18: // R(rd) = LO; break; //mflo if (gpr.IsImm(MIPS_REG_LO)) { gpr.SetImm(rd, gpr.GetImm(MIPS_REG_LO) & 0xFFFFFFFFULL); break; } gpr.MapDirtyIn(rd, MIPS_REG_LO); MOV(gpr.R(rd), gpr.R(MIPS_REG_LO)); break; case 19: // LO = R(rs); break; //mtlo if (gpr.IsImm(rs) && gpr.IsImm(MIPS_REG_LO)) { gpr.SetImm(MIPS_REG_LO, gpr.GetImm(rs) | (gpr.GetImm(MIPS_REG_LO) & ~0xFFFFFFFFULL)); break; } gpr.MapDirtyIn(MIPS_REG_LO, rs, false); BFI(EncodeRegTo64(gpr.R(MIPS_REG_LO)), EncodeRegTo64(gpr.R(rs)), 0, 32); break; case 24: //mult (the most popular one). lo,hi = signed mul (rs * rt) if (gpr.IsImm(rs) && gpr.IsImm(rt)) { s64 result = (s64)(s32)gpr.GetImm(rs) * (s64)(s32)gpr.GetImm(rt); gpr.SetImm(MIPS_REG_LO, (u64)result); break; } gpr.MapDirtyInIn(MIPS_REG_LO, rs, rt); SMULL(EncodeRegTo64(gpr.R(MIPS_REG_LO)), gpr.R(rs), gpr.R(rt)); break; case 25: //multu (2nd) lo,hi = unsigned mul (rs * rt) if (gpr.IsImm(rs) && gpr.IsImm(rt)) { u64 resultBits = (u64)gpr.GetImm(rs) * (u64)gpr.GetImm(rt); gpr.SetImm(MIPS_REG_LO, resultBits); break; } gpr.MapDirtyInIn(MIPS_REG_LO, rs, rt); // In case of pointerification, let's use UMULL. UMULL(EncodeRegTo64(gpr.R(MIPS_REG_LO)), gpr.R(rs), gpr.R(rt)); break; case 26: //div { // TODO: Does this handle INT_MAX, 0, etc. correctly? gpr.MapDirtyInIn(MIPS_REG_LO, rs, rt); SDIV(gpr.R(MIPS_REG_LO), gpr.R(rs), gpr.R(rt)); MSUB(SCRATCH1, gpr.R(rt), gpr.R(MIPS_REG_LO), gpr.R(rs)); CMPI2R(gpr.R(rt), 0); FixupBranch skipZero = B(CC_NEQ); // HI set properly already, we just need to set LO. MOVI2R(gpr.R(MIPS_REG_LO), -1); CMPI2R(gpr.R(rs), 0); FixupBranch moreThan16Bit = B(CC_GE); MOVI2R(gpr.R(MIPS_REG_LO), 1); SetJumpTarget(moreThan16Bit); SetJumpTarget(skipZero); BFI(EncodeRegTo64(gpr.R(MIPS_REG_LO)), SCRATCH1_64, 32, 32); break; } case 27: //divu // Do we have a known power-of-two denominator? Yes, this happens. if (gpr.IsImm(rt) && (gpr.GetImm(rt) & (gpr.GetImm(rt) - 1)) == 0 && gpr.GetImm(rt) != 0) { u32 denominator = gpr.GetImm(rt); gpr.MapDirtyIn(MIPS_REG_LO, rs); // Remainder is just an AND, neat. ANDI2R(SCRATCH1, gpr.R(rs), denominator - 1, SCRATCH1); int shift = 0; while (denominator != 0) { ++shift; denominator >>= 1; } // The shift value is one too much for the divide by the same value. if (shift > 1) { LSR(gpr.R(MIPS_REG_LO), gpr.R(rs), shift - 1); } else { MOV(gpr.R(MIPS_REG_LO), gpr.R(rs)); } BFI(EncodeRegTo64(gpr.R(MIPS_REG_LO)), SCRATCH1_64, 32, 32); } else { // TODO: Does this handle INT_MAX, 0, etc. correctly? gpr.MapDirtyInIn(MIPS_REG_LO, rs, rt); UDIV(gpr.R(MIPS_REG_LO), gpr.R(rs), gpr.R(rt)); MSUB(SCRATCH1, gpr.R(rt), gpr.R(MIPS_REG_LO), gpr.R(rs)); CMPI2R(gpr.R(rt), 0); FixupBranch skipZero = B(CC_NEQ); // HI set properly, we just need to set LO. MOVI2R(SCRATCH2, 0xFFFF); MOVI2R(gpr.R(MIPS_REG_LO), -1); CMP(gpr.R(rs), SCRATCH2); FixupBranch moreThan16Bit = B(CC_HI); MOV(gpr.R(MIPS_REG_LO), SCRATCH2); SetJumpTarget(moreThan16Bit); SetJumpTarget(skipZero); BFI(EncodeRegTo64(gpr.R(MIPS_REG_LO)), SCRATCH1_64, 32, 32); } break; case 28: //madd { gpr.MapDirtyInIn(MIPS_REG_LO, rs, rt, false); ARM64Reg lo64 = EncodeRegTo64(gpr.R(MIPS_REG_LO)); SMADDL(lo64, gpr.R(rs), gpr.R(rt), lo64); // Operands are backwards in the emitter! } break; case 29: //maddu { gpr.MapDirtyInIn(MIPS_REG_LO, rs, rt, false); ARM64Reg lo64 = EncodeRegTo64(gpr.R(MIPS_REG_LO)); UMADDL(lo64, gpr.R(rs), gpr.R(rt), lo64); // Operands are backwards in the emitter! } break; case 46: // msub { gpr.MapDirtyInIn(MIPS_REG_LO, rs, rt, false); ARM64Reg lo64 = EncodeRegTo64(gpr.R(MIPS_REG_LO)); SMSUBL(lo64, gpr.R(rs), gpr.R(rt), lo64); // Operands are backwards in the emitter! } break; case 47: // msubu { gpr.MapDirtyInIn(MIPS_REG_LO, rs, rt, false); ARM64Reg lo64 = EncodeRegTo64(gpr.R(MIPS_REG_LO)); UMSUBL(lo64, gpr.R(rs), gpr.R(rt), lo64); // Operands are backwards in the emitter! break; } default: DISABLE; } } } #endif // PPSSPP_ARCH(ARM64)