// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include "math/math_util.h" #include "Core/MemMap.h" #include "Core/MIPS/MIPS.h" #include "Core/MIPS/MIPSTables.h" #include "Core/MIPS/MIPSAnalyst.h" #include "Core/MIPS/MIPSCodeUtils.h" #include "Common/CPUDetect.h" #include "Core/Config.h" #include "Core/Reporting.h" #include "Core/MIPS/IR/IRFrontend.h" #include "Core/MIPS/IR/IRRegCache.h" // All functions should have CONDITIONAL_DISABLE, so we can narrow things down to a file quickly. // Currently known non working ones should have DISABLE. // #define CONDITIONAL_DISABLE { Comp_Generic(op); return; } #define CONDITIONAL_DISABLE ; #define DISABLE { Comp_Generic(op); return; } #define _RS MIPS_GET_RS(op) #define _RT MIPS_GET_RT(op) #define _RD MIPS_GET_RD(op) #define _FS MIPS_GET_FS(op) #define _FT MIPS_GET_FT(op) #define _FD MIPS_GET_FD(op) #define _SA MIPS_GET_SA(op) #define _POS ((op>> 6) & 0x1F) #define _SIZE ((op>>11) & 0x1F) #define _IMM16 (signed short)(op & 0xFFFF) #define _IMM26 (op & 0x03FFFFFF) const int vfpuBase = 32; // skip the FP registers namespace MIPSComp { static void ApplyVoffset(u8 regs[4], int count) { for (int i = 0; i < count; i++) { regs[i] = vfpuBase + voffset[regs[i]]; } } static bool IsConsecutive4(const u8 regs[4]) { return regs[1] == regs[0] + 1 && regs[2] == regs[1] + 1 && regs[3] == regs[2] + 1; } // Vector regs can overlap in all sorts of swizzled ways. // This does allow a single overlap in sregs[i]. static bool IsOverlapSafeAllowS(int dreg, int di, int sn, u8 sregs[], int tn = 0, u8 tregs[] = NULL) { for (int i = 0; i < sn; ++i) { if (sregs[i] == dreg && i != di) return false; } for (int i = 0; i < tn; ++i) { if (tregs[i] == dreg) return false; } // Hurray, no overlap, we can write directly. return true; } static bool IsOverlapSafe(int dreg, int sn, u8 sregs[], int tn = 0, u8 tregs[] = NULL) { return IsOverlapSafeAllowS(dreg, -1, sn, sregs, tn, tregs); } void IRFrontend::Comp_VPFX(MIPSOpcode op) { CONDITIONAL_DISABLE; int data = op & 0xFFFFF; int regnum = (op >> 24) & 3; switch (regnum) { case 0: // S js.prefixS = data; js.prefixSFlag = JitState::PREFIX_KNOWN_DIRTY; break; case 1: // T js.prefixT = data; js.prefixTFlag = JitState::PREFIX_KNOWN_DIRTY; break; case 2: // D js.prefixD = data; js.prefixDFlag = JitState::PREFIX_KNOWN_DIRTY; break; default: ERROR_LOG(CPU, "VPFX - bad regnum %i : data=%08x", regnum, data); break; } } static void InitRegs(u8 *vregs, int reg) { vregs[0] = reg; vregs[1] = reg + 1; vregs[2] = reg + 2; vregs[3] = reg + 3; } void IRFrontend::ApplyPrefixST(u8 *vregs, u32 prefix, VectorSize sz, int tempReg) { if (prefix == 0xE4) return; int n = GetNumVectorElements(sz); u8 origV[4]; static const float constantArray[8] = { 0.f, 1.f, 2.f, 0.5f, 3.f, 1.f / 3.f, 0.25f, 1.f / 6.f }; for (int i = 0; i < n; i++) origV[i] = vregs[i]; // Some common vector prefixes if (sz == V_Quad && IsConsecutive4(vregs)) { if (prefix == 0xF00E4) { InitRegs(vregs, tempReg); ir.Write(IROp::Vec4Neg, vregs[0], origV[0]); return; } if (prefix == 0x00FE4) { InitRegs(vregs, tempReg); ir.Write(IROp::Vec4Abs, vregs[0], origV[0]); return; } // Pure shuffle if (prefix == (prefix & 0xFF)) { InitRegs(vregs, tempReg); ir.Write(IROp::Vec4Shuffle, vregs[0], origV[0], prefix); return; } } // Alright, fall back to the generic approach. for (int i = 0; i < n; i++) { int regnum = (prefix >> (i * 2)) & 3; int abs = (prefix >> (8 + i)) & 1; int negate = (prefix >> (16 + i)) & 1; int constants = (prefix >> (12 + i)) & 1; // Unchanged, hurray. if (!constants && regnum == i && !abs && !negate) continue; // This puts the value into a temp reg, so we won't write the modified value back. vregs[i] = tempReg + i; if (!constants) { // Prefix may say "z, z, z, z" but if this is a pair, we force to x. // TODO: But some ops seem to use const 0 instead? if (regnum >= n) { WARN_LOG(CPU, "JIT: Invalid VFPU swizzle: %08x : %d / %d at PC = %08x (%s)", prefix, regnum, n, GetCompilerPC(), MIPSDisasmAt(GetCompilerPC())); regnum = 0; } if (abs) { ir.Write(IROp::FAbs, vregs[i], origV[regnum]); if (negate) ir.Write(IROp::FNeg, vregs[i], vregs[i]); } else { if (negate) ir.Write(IROp::FNeg, vregs[i], origV[regnum]); else ir.Write(IROp::FMov, vregs[i], origV[regnum]); } } else { if (negate) { ir.Write(IROp::SetConstF, vregs[i], ir.AddConstantFloat(-constantArray[regnum + (abs << 2)])); } else { ir.Write(IROp::SetConstF, vregs[i], ir.AddConstantFloat(constantArray[regnum + (abs << 2)])); } } } } void IRFrontend::GetVectorRegs(u8 regs[4], VectorSize N, int vectorReg) { ::GetVectorRegs(regs, N, vectorReg); ApplyVoffset(regs, N); } void IRFrontend::GetMatrixRegs(u8 regs[16], MatrixSize N, int matrixReg) { ::GetMatrixRegs(regs, N, matrixReg); for (int i = 0; i < GetMatrixSide(N); i++) { ApplyVoffset(regs + 4 * i, GetVectorSize(N)); } } void IRFrontend::GetVectorRegsPrefixS(u8 *regs, VectorSize sz, int vectorReg) { _assert_(js.prefixSFlag & JitState::PREFIX_KNOWN); GetVectorRegs(regs, sz, vectorReg); ApplyPrefixST(regs, js.prefixS, sz, IRVTEMP_PFX_S); } void IRFrontend::GetVectorRegsPrefixT(u8 *regs, VectorSize sz, int vectorReg) { _assert_(js.prefixTFlag & JitState::PREFIX_KNOWN); GetVectorRegs(regs, sz, vectorReg); ApplyPrefixST(regs, js.prefixT, sz, IRVTEMP_PFX_T); } void IRFrontend::GetVectorRegsPrefixD(u8 *regs, VectorSize sz, int vectorReg) { _assert_(js.prefixDFlag & JitState::PREFIX_KNOWN); GetVectorRegs(regs, sz, vectorReg); int n = GetNumVectorElements(sz); if (js.prefixD == 0) return; for (int i = 0; i < n; i++) { // Hopefully this is rare, we'll just write it into a dumping ground reg. if (js.VfpuWriteMask(i)) regs[i] = IRVTEMP_PFX_D + i; } } inline int GetDSat(int prefix, int i) { return (prefix >> (i * 2)) & 3; } // "D" prefix is really a post process. No need to allocate a temporary register (except // dummies to simulate writemask, which is done in GetVectorRegsPrefixD void IRFrontend::ApplyPrefixD(const u8 *vregs, VectorSize sz) { _assert_(js.prefixDFlag & JitState::PREFIX_KNOWN); if (!js.prefixD) return; int n = GetNumVectorElements(sz); for (int i = 0; i < n; i++) { if (js.VfpuWriteMask(i)) continue; int sat = GetDSat(js.prefixD, i); if (sat == 1) { // clamped = x < 0 ? (x > 1 ? 1 : x) : x [0, 1] ir.Write(IROp::FSat0_1, vregs[i], vregs[i]); } else if (sat == 3) { ir.Write(IROp::FSatMinus1_1, vregs[i], vregs[i]); } } } void IRFrontend::Comp_SV(MIPSOpcode op) { CONDITIONAL_DISABLE; s32 offset = (signed short)(op & 0xFFFC); int vt = ((op >> 16) & 0x1f) | ((op & 3) << 5); MIPSGPReg rs = _RS; switch (op >> 26) { case 50: //lv.s ir.Write(IROp::LoadFloat, vfpuBase + voffset[vt], rs, ir.AddConstant(offset)); break; case 58: //sv.s ir.Write(IROp::StoreFloat, vfpuBase + voffset[vt], rs, ir.AddConstant(offset)); break; default: DISABLE; } } void IRFrontend::Comp_SVQ(MIPSOpcode op) { CONDITIONAL_DISABLE; int imm = (signed short)(op & 0xFFFC); int vt = (((op >> 16) & 0x1f)) | ((op & 1) << 5); MIPSGPReg rs = _RS; u8 vregs[4]; GetVectorRegs(vregs, V_Quad, vt); switch (op >> 26) { case 54: //lv.q if (IsConsecutive4(vregs)) { ir.Write(IROp::LoadVec4, vregs[0], rs, ir.AddConstant(imm)); } else { // Let's not even bother with "vertical" loads for now. ir.Write(IROp::LoadFloat, vregs[0], rs, ir.AddConstant(imm)); ir.Write(IROp::LoadFloat, vregs[1], rs, ir.AddConstant(imm + 4)); ir.Write(IROp::LoadFloat, vregs[2], rs, ir.AddConstant(imm + 8)); ir.Write(IROp::LoadFloat, vregs[3], rs, ir.AddConstant(imm + 12)); } break; case 62: //sv.q if (IsConsecutive4(vregs)) { ir.Write(IROp::StoreVec4, vregs[0], rs, ir.AddConstant(imm)); } else { // Let's not even bother with "vertical" stores for now. ir.Write(IROp::StoreFloat, vregs[0], rs, ir.AddConstant(imm)); ir.Write(IROp::StoreFloat, vregs[1], rs, ir.AddConstant(imm + 4)); ir.Write(IROp::StoreFloat, vregs[2], rs, ir.AddConstant(imm + 8)); ir.Write(IROp::StoreFloat, vregs[3], rs, ir.AddConstant(imm + 12)); } break; default: DISABLE; break; } } void IRFrontend::Comp_VVectorInit(MIPSOpcode op) { CONDITIONAL_DISABLE; if (js.HasUnknownPrefix()) { DISABLE; } VectorSize sz = GetVecSize(op); int type = (op >> 16) & 0xF; int vd = _VD; int n = GetNumVectorElements(sz); u8 dregs[4]; GetVectorRegsPrefixD(dregs, sz, vd); if (sz == V_Quad && IsConsecutive4(dregs)) { ir.Write(IROp::Vec4Init, dregs[0], (int)(type == 6 ? Vec4Init::AllZERO : Vec4Init::AllONE)); } else { for (int i = 0; i < n; i++) { ir.Write(IROp::SetConstF, dregs[i], ir.AddConstantFloat(type == 6 ? 0.0f : 1.0f)); } } ApplyPrefixD(dregs, sz); } void IRFrontend::Comp_VIdt(MIPSOpcode op) { CONDITIONAL_DISABLE; if (js.HasUnknownPrefix()) { DISABLE; } int vd = _VD; VectorSize sz = GetVecSize(op); u8 dregs[4]; GetVectorRegsPrefixD(dregs, sz, vd); if (sz == 4 && IsConsecutive4(dregs)) { int row = vd & 3; Vec4Init init = Vec4Init((int)Vec4Init::Set_1000 + row); ir.Write(IROp::Vec4Init, dregs[0], (int)init); } else { switch (sz) { case V_Pair: ir.Write(IROp::SetConstF, dregs[0], ir.AddConstantFloat((vd & 1) == 0 ? 1.0f : 0.0f)); ir.Write(IROp::SetConstF, dregs[1], ir.AddConstantFloat((vd & 1) == 1 ? 1.0f : 0.0f)); break; case V_Quad: ir.Write(IROp::SetConstF, dregs[0], ir.AddConstantFloat((vd & 3) == 0 ? 1.0f : 0.0f)); ir.Write(IROp::SetConstF, dregs[1], ir.AddConstantFloat((vd & 3) == 1 ? 1.0f : 0.0f)); ir.Write(IROp::SetConstF, dregs[2], ir.AddConstantFloat((vd & 3) == 2 ? 1.0f : 0.0f)); ir.Write(IROp::SetConstF, dregs[3], ir.AddConstantFloat((vd & 3) == 3 ? 1.0f : 0.0f)); break; default: DISABLE; } } ApplyPrefixD(dregs, sz); } void IRFrontend::Comp_VMatrixInit(MIPSOpcode op) { CONDITIONAL_DISABLE; MatrixSize sz = GetMtxSize(op); if (sz != M_4x4) { DISABLE; } // Not really about trying here, it will work if enabled. VectorSize vsz = GetVectorSize(sz); u8 vecs[4]; int vd = _VD; if (IsMatrixTransposed(vd)) { // All outputs are transpositionally symmetric, so should be fine. vd = TransposeMatrixReg(vd); } GetMatrixColumns(vd, M_4x4, vecs); for (int i = 0; i < 4; i++) { u8 vec[4]; GetVectorRegs(vec, vsz, vecs[i]); // As they are columns, they will be nicely consecutive. Vec4Init init; switch ((op >> 16) & 0xF) { case 3: init = Vec4Init((int)Vec4Init::Set_1000 + i); break; case 6: init = Vec4Init::AllZERO; break; case 7: init = Vec4Init::AllONE; break; default: return; } ir.Write(IROp::Vec4Init, vec[0], (int)init); } return; } void IRFrontend::Comp_VHdp(MIPSOpcode op) { CONDITIONAL_DISABLE; if (js.HasUnknownPrefix()) { DISABLE; } int vd = _VD; int vs = _VS; int vt = _VT; VectorSize sz = GetVecSize(op); // TODO: Force read one of them into regs? probably not. u8 sregs[4], tregs[4], dregs[1]; GetVectorRegsPrefixS(sregs, sz, vs); GetVectorRegsPrefixT(tregs, sz, vt); GetVectorRegsPrefixD(dregs, V_Single, vd); ir.Write(IROp::FMul, IRVTEMP_0, sregs[0], tregs[0]); int n = GetNumVectorElements(sz); for (int i = 1; i < n; i++) { // sum += s[i]*t[i]; if (i == n - 1) { ir.Write(IROp::FAdd, IRVTEMP_0, IRVTEMP_0, tregs[i]); } else { ir.Write(IROp::FMul, IRVTEMP_0 + 1, sregs[i], tregs[i]); ir.Write(IROp::FAdd, IRVTEMP_0, IRVTEMP_0, IRVTEMP_0 + 1); } } ir.Write(IROp::FMov, dregs[0], IRVTEMP_0); ApplyPrefixD(dregs, V_Single); } static const float MEMORY_ALIGNED16(vavg_table[4]) = { 1.0f, 1.0f / 2.0f, 1.0f / 3.0f, 1.0f / 4.0f }; void IRFrontend::Comp_Vhoriz(MIPSOpcode op) { CONDITIONAL_DISABLE; if (js.HasUnknownPrefix()) DISABLE; VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); u8 sregs[4], dregs[1]; GetVectorRegsPrefixS(sregs, sz, _VS); GetVectorRegsPrefixD(dregs, V_Single, _VD); // We have to start at +0.000 in case any values are -0.000. ir.Write(IROp::SetConstF, IRVTEMP_0, ir.AddConstantFloat(0.0f)); for (int i = 0; i < n; ++i) { ir.Write(IROp::FAdd, IRVTEMP_0, IRVTEMP_0, sregs[i]); } switch ((op >> 16) & 31) { case 6: // vfad ir.Write(IROp::FMov, dregs[0], IRVTEMP_0); break; case 7: // vavg ir.Write(IROp::SetConstF, IRVTEMP_0 + 1, ir.AddConstantFloat(vavg_table[n - 1])); ir.Write(IROp::FMul, dregs[0], IRVTEMP_0, IRVTEMP_0 + 1); break; } ApplyPrefixD(dregs, V_Single); } void IRFrontend::Comp_VDot(MIPSOpcode op) { CONDITIONAL_DISABLE; if (js.HasUnknownPrefix()) { DISABLE; } int vd = _VD; int vs = _VS; int vt = _VT; VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); // TODO: Force read one of them into regs? probably not. u8 sregs[4], tregs[4], dregs[1]; GetVectorRegsPrefixS(sregs, sz, vs); GetVectorRegsPrefixT(tregs, sz, vt); GetVectorRegsPrefixD(dregs, V_Single, vd); if (sz == V_Quad && IsConsecutive4(sregs) && IsConsecutive4(tregs) && IsOverlapSafe(dregs[0], n, sregs, n, tregs)) { ir.Write(IROp::Vec4Dot, dregs[0], sregs[0], tregs[0]); ApplyPrefixD(dregs, V_Single); return; } int temp0 = IRVTEMP_0; int temp1 = IRVTEMP_0 + 1; ir.Write(IROp::FMul, temp0, sregs[0], tregs[0]); for (int i = 1; i < n; i++) { ir.Write(IROp::FMul, temp1, sregs[i], tregs[i]); ir.Write(IROp::FAdd, i == (n - 1) ? dregs[0] : temp0, temp0, temp1); } ApplyPrefixD(dregs, V_Single); } void IRFrontend::Comp_VecDo3(MIPSOpcode op) { CONDITIONAL_DISABLE; if (js.HasUnknownPrefix()) DISABLE; // Check that we can support the ops, and prepare temporary values for ops that need it. bool allowSIMD = true; switch (op >> 26) { case 24: //VFPU0 switch ((op >> 23) & 7) { case 0: // d[i] = s[i] + t[i]; break; //vadd case 1: // d[i] = s[i] - t[i]; break; //vsub case 7: // d[i] = s[i] / t[i]; break; //vdiv break; default: DISABLE; } break; case 25: //VFPU1 switch ((op >> 23) & 7) { case 0: // d[i] = s[i] * t[i]; break; //vmul break; default: DISABLE; } break; case 27: //VFPU3 switch ((op >> 23) & 7) { case 2: // vmin case 3: // vmax allowSIMD = false; break; case 6: // vsge case 7: // vslt allowSIMD = false; break; default: DISABLE; } break; default: DISABLE; break; } VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); u8 sregs[4], tregs[4], dregs[4]; GetVectorRegsPrefixS(sregs, sz, _VS); GetVectorRegsPrefixT(tregs, sz, _VT); GetVectorRegsPrefixD(dregs, sz, _VD); u8 tempregs[4]; bool usingTemps = false; for (int i = 0; i < n; i++) { if (!IsOverlapSafe(dregs[i], n, sregs, n, tregs)) { tempregs[i] = IRVTEMP_0 + i; usingTemps = true; } else { tempregs[i] = dregs[i]; } } if (allowSIMD && sz == V_Quad && !usingTemps && IsConsecutive4(dregs) && IsConsecutive4(sregs) && IsConsecutive4(tregs)) { IROp opFunc = IROp::Nop; switch (op >> 26) { case 24: //VFPU0 switch ((op >> 23) & 7) { case 0: // d[i] = s[i] + t[i]; break; //vadd opFunc = IROp::Vec4Add; break; case 1: // d[i] = s[i] - t[i]; break; //vsub opFunc = IROp::Vec4Sub; break; case 7: // d[i] = s[i] / t[i]; break; //vdiv opFunc = IROp::Vec4Div; break; } break; case 25: //VFPU1 switch ((op >> 23) & 7) { case 0: // d[i] = s[i] * t[i]; break; //vmul opFunc = IROp::Vec4Mul; break; } break; case 27: //VFPU3 switch ((op >> 23) & 7) { case 2: // vmin case 3: // vmax case 6: // vsge case 7: // vslt DISABLE; break; } break; } if (opFunc != IROp::Nop) { ir.Write(opFunc, dregs[0], sregs[0], tregs[0]); } else { DISABLE; } ApplyPrefixD(dregs, sz); return; } for (int i = 0; i < n; ++i) { switch (op >> 26) { case 24: //VFPU0 switch ((op >> 23) & 7) { case 0: // d[i] = s[i] + t[i]; break; //vadd ir.Write(IROp::FAdd, tempregs[i], sregs[i], tregs[i]); break; case 1: // d[i] = s[i] - t[i]; break; //vsub ir.Write(IROp::FSub, tempregs[i], sregs[i], tregs[i]); break; case 7: // d[i] = s[i] / t[i]; break; //vdiv ir.Write(IROp::FDiv, tempregs[i], sregs[i], tregs[i]); break; } break; case 25: //VFPU1 switch ((op >> 23) & 7) { case 0: // d[i] = s[i] * t[i]; break; //vmul ir.Write(IROp::FMul, tempregs[i], sregs[i], tregs[i]); break; } break; case 27: //VFPU3 switch ((op >> 23) & 7) { case 2: // vmin ir.Write(IROp::FMin, tempregs[i], sregs[i], tregs[i]); break; case 3: // vmax ir.Write(IROp::FMax, tempregs[i], sregs[i], tregs[i]); break; case 6: // vsge case 7: // vslt DISABLE; break; } break; } } for (int i = 0; i < n; i++) { if (dregs[i] != tempregs[i]) { ir.Write(IROp::FMov, dregs[i], tempregs[i]); } } ApplyPrefixD(dregs, sz); } void IRFrontend::Comp_VV2Op(MIPSOpcode op) { CONDITIONAL_DISABLE; if (js.HasUnknownPrefix()) DISABLE; int vs = _VS; int vd = _VD; // Pre-processing: Eliminate silly no-op VMOVs, common in Wipeout Pure if (((op >> 16) & 0x1f) == 0 && vs == vd && js.HasNoPrefix()) { return; } VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); u8 sregs[4], dregs[4]; GetVectorRegsPrefixS(sregs, sz, vs); GetVectorRegsPrefixD(dregs, sz, vd); bool usingTemps = false; u8 tempregs[4]; for (int i = 0; i < n; ++i) { if (!IsOverlapSafe(dregs[i], n, sregs)) { usingTemps = true; tempregs[i] = IRVTEMP_0 + i; } else { tempregs[i] = dregs[i]; } } bool canSIMD = false; // Some can be SIMD'd. switch ((op >> 16) & 0x1f) { case 0: // vmov canSIMD = true; break; } if (canSIMD && !usingTemps && IsConsecutive4(sregs) && IsConsecutive4(dregs)) { switch ((op >> 16) & 0x1f) { case 0: // vmov ir.Write(IROp::Vec4Mov, dregs[0], sregs[0]); break; } ApplyPrefixD(dregs, sz); return; } for (int i = 0; i < n; ++i) { switch ((op >> 16) & 0x1f) { case 0: // d[i] = s[i]; break; //vmov // Probably for swizzle. ir.Write(IROp::FMov, tempregs[i], sregs[i]); break; case 1: // d[i] = fabsf(s[i]); break; //vabs ir.Write(IROp::FAbs, tempregs[i], sregs[i]); break; case 2: // d[i] = -s[i]; break; //vneg ir.Write(IROp::FNeg, tempregs[i], sregs[i]); break; case 4: // if (s[i] < 0) d[i] = 0; else {if(s[i] > 1.0f) d[i] = 1.0f; else d[i] = s[i];} break; // vsat0 ir.Write(IROp::FSat0_1, tempregs[i], sregs[i]); break; case 5: // if (s[i] < -1.0f) d[i] = -1.0f; else {if(s[i] > 1.0f) d[i] = 1.0f; else d[i] = s[i];} break; // vsat1 ir.Write(IROp::FSatMinus1_1, tempregs[i], sregs[i]); break; case 16: // d[i] = 1.0f / s[i]; break; //vrcp ir.Write(IROp::FRecip, tempregs[i], sregs[i]); break; case 17: // d[i] = 1.0f / sqrtf(s[i]); break; //vrsq ir.Write(IROp::FRSqrt, tempregs[i], sregs[i]); break; case 18: // d[i] = sinf((float)M_PI_2 * s[i]); break; //vsin ir.Write(IROp::FSin, tempregs[i], sregs[i]); break; case 19: // d[i] = cosf((float)M_PI_2 * s[i]); break; //vcos ir.Write(IROp::FCos, tempregs[i], sregs[i]); break; case 20: // d[i] = powf(2.0f, s[i]); break; //vexp2 DISABLE; break; case 21: // d[i] = logf(s[i])/log(2.0f); break; //vlog2 DISABLE; break; case 22: // d[i] = sqrtf(s[i]); break; //vsqrt ir.Write(IROp::FSqrt, tempregs[i], sregs[i]); break; case 23: // d[i] = asinf(s[i]) / M_PI_2; break; //vasin ir.Write(IROp::FAsin, tempregs[i], sregs[i]); break; case 24: // d[i] = -1.0f / s[i]; break; // vnrcp ir.Write(IROp::FRecip, tempregs[i], sregs[i]); ir.Write(IROp::FNeg, tempregs[i], tempregs[i]); break; case 26: // d[i] = -sinf((float)M_PI_2 * s[i]); break; // vnsin ir.Write(IROp::FSin, tempregs[i], sregs[i]); ir.Write(IROp::FNeg, tempregs[i], tempregs[i]); break; case 28: // d[i] = 1.0f / expf(s[i] * (float)M_LOG2E); break; // vrexp2 default: DISABLE; break; } } for (int i = 0; i < n; i++) { if (dregs[i] != tempregs[i]) { ir.Write(IROp::FMov, dregs[i], tempregs[i]); } } ApplyPrefixD(dregs, sz); } void IRFrontend::Comp_Vi2f(MIPSOpcode op) { CONDITIONAL_DISABLE; if (js.HasUnknownPrefix()) { DISABLE; } VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); int imm = (op >> 16) & 0x1f; const float mult = 1.0f / (float)(1UL << imm); u8 sregs[4], dregs[4]; GetVectorRegsPrefixS(sregs, sz, _VS); GetVectorRegsPrefixD(dregs, sz, _VD); u8 tempregs[4]; for (int i = 0; i < n; ++i) { if (!IsOverlapSafe(dregs[i], n, sregs)) { tempregs[i] = IRVTEMP_PFX_T + i; // Need IRVTEMP_0 for the scaling factor } else { tempregs[i] = dregs[i]; } } if (mult != 1.0f) ir.Write(IROp::SetConstF, IRVTEMP_0, ir.AddConstantFloat(mult)); // TODO: Use the SCVTF with builtin scaling where possible. for (int i = 0; i < n; i++) { ir.Write(IROp::FCvtSW, tempregs[i], sregs[i]); } if (mult != 1.0f) { for (int i = 0; i < n; i++) { ir.Write(IROp::FMul, tempregs[i], tempregs[i], IRVTEMP_0); } } for (int i = 0; i < n; ++i) { if (dregs[i] != tempregs[i]) { ir.Write(IROp::FMov, dregs[i], tempregs[i]); } } ApplyPrefixD(dregs, sz); } void IRFrontend::Comp_Vh2f(MIPSOpcode op) { DISABLE; } void IRFrontend::Comp_Vf2i(MIPSOpcode op) { DISABLE; } void IRFrontend::Comp_Mftv(MIPSOpcode op) { CONDITIONAL_DISABLE; int imm = op & 0xFF; MIPSGPReg rt = _RT; switch ((op >> 21) & 0x1f) { case 3: //mfv / mfvc // rt = 0, imm = 255 appears to be used as a CPU interlock by some games. if (rt != MIPS_REG_ZERO) { if (imm < 128) { //R(rt) = VI(imm); ir.Write(IROp::FMovToGPR, rt, vfpuBase + voffset[imm]); } else { switch (imm - 128) { case VFPU_CTRL_DPREFIX: case VFPU_CTRL_SPREFIX: case VFPU_CTRL_TPREFIX: FlushPrefixV(); break; } if (imm - 128 < 16) { ir.Write(IROp::VfpuCtrlToReg, rt, imm - 128); } else { DISABLE; } } } break; case 7: // mtv if (imm < 128) { ir.Write(IROp::FMovFromGPR, vfpuBase + voffset[imm], rt); } else if ((imm - 128) < 16) { ir.Write(IROp::SetCtrlVFPU, imm - 128, rt); } else { DISABLE; } break; default: DISABLE; } // This op is marked not to auto-eat prefix so we must do it manually. EatPrefix(); } // Good above void IRFrontend::Comp_Vmfvc(MIPSOpcode op) { CONDITIONAL_DISABLE; int vs = _VS; int imm = op & 0xFF; if (imm >= 128 && imm < 128 + VFPU_CTRL_MAX) { //if (imm - 128 == VFPU_CTRL_CC) { // gpr.MapReg(MIPS_REG_VFPUCC, 0); // fp.FMOV(fpr.V(vs), gpr.R(MIPS_REG_VFPUCC)); // } else { ir.Write(IROp::VfpuCtrlToReg, IRTEMP_0, imm - 128); ir.Write(IROp::FMovFromGPR, vfpuBase + voffset[vs], IRTEMP_0); } } void IRFrontend::Comp_Vmtvc(MIPSOpcode op) { CONDITIONAL_DISABLE; int vs = _VS; int imm = op & 0xFF; if (imm >= 128 && imm < 128 + VFPU_CTRL_MAX) { ir.Write(IROp::SetCtrlVFPUFReg, imm - 128, vfpuBase + voffset[vs]); if (imm - 128 == VFPU_CTRL_SPREFIX) { js.prefixSFlag = JitState::PREFIX_UNKNOWN; } else if (imm - 128 == VFPU_CTRL_TPREFIX) { js.prefixTFlag = JitState::PREFIX_UNKNOWN; } else if (imm - 128 == VFPU_CTRL_DPREFIX) { js.prefixDFlag = JitState::PREFIX_UNKNOWN; } } } void IRFrontend::Comp_Vmmov(MIPSOpcode op) { CONDITIONAL_DISABLE; int vs = _VS; int vd = _VD; // This probably ignores prefixes for all sane intents and purposes. if (vs == vd) { // A lot of these no-op matrix moves in Wipeout... Just drop the instruction entirely. return; } MatrixSize sz = GetMtxSize(op); if (sz != M_4x4) { DISABLE; } int n = GetMatrixSide(sz); u8 sregs[16], dregs[16]; GetMatrixRegs(sregs, sz, vs); GetMatrixRegs(dregs, sz, vd); // Rough overlap check. switch (GetMatrixOverlap(vs, vd, sz)) { case OVERLAP_EQUAL: // In-place transpose DISABLE; case OVERLAP_PARTIAL: DISABLE; case OVERLAP_NONE: default: break; } if (IsMatrixTransposed(vd) == IsMatrixTransposed(vs) && sz == M_4x4) { // Untranspose both matrices if (IsMatrixTransposed(vd)) { vd = TransposeMatrixReg(vd); vs = TransposeMatrixReg(vs); } // Get the columns u8 scols[4], dcols[4]; GetMatrixColumns(vs, sz, scols); GetMatrixColumns(vd, sz, dcols); for (int i = 0; i < 4; i++) { u8 svec[4], dvec[4]; GetVectorRegs(svec, GetVectorSize(sz), scols[i]); GetVectorRegs(dvec, GetVectorSize(sz), dcols[i]); ir.Write(IROp::Vec4Mov, dvec[0], svec[0]); } return; } for (int a = 0; a < n; a++) { for (int b = 0; b < n; b++) { ir.Write(IROp::FMov, dregs[a * 4 + b], sregs[a * 4 + b]); } } } void IRFrontend::Comp_Vmscl(MIPSOpcode op) { DISABLE; // TODO: Tricky, can transpose } void IRFrontend::Comp_VScl(MIPSOpcode op) { CONDITIONAL_DISABLE; if (js.HasUnknownPrefix()) { DISABLE; } VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); int vs = _VS; int vd = _VD; int vt = _VT; u8 sregs[4], dregs[4], treg; GetVectorRegsPrefixS(sregs, sz, vs); // TODO: Prefixes seem strange... GetVectorRegsPrefixT(&treg, V_Single, vt); GetVectorRegsPrefixD(dregs, sz, vd); bool overlap = false; // For prefixes to work, we just have to ensure that none of the output registers spill // and that there's no overlap. u8 tempregs[4]; memcpy(tempregs, dregs, sizeof(tempregs)); for (int i = 0; i < n; ++i) { // Conservative, can be improved if (treg == dregs[i] || !IsOverlapSafe(dregs[i], n, sregs)) { // Need to use temp regs tempregs[i] = IRVTEMP_0 + i; overlap = true; } } if (n == 4 && IsConsecutive4(sregs) && IsConsecutive4(dregs)) { if (!overlap || (vs == vd && IsOverlapSafe(treg, n, dregs))) { ir.Write(IROp::Vec4Scale, dregs[0], sregs[0], treg); ApplyPrefixD(dregs, sz); return; } } for (int i = 0; i < n; i++) { ir.Write(IROp::FMul, tempregs[i], sregs[i], treg); } for (int i = 0; i < n; i++) { // All must be mapped for prefixes to work. if (dregs[i] != tempregs[i]) { ir.Write(IROp::FMov, dregs[i], tempregs[i]); } } ApplyPrefixD(dregs, sz); } /* // Capital = straight, lower case = transposed // 8 possibilities: ABC 2 ABc missing AbC 1 Abc 1 aBC = ACB 2 + swap aBc = AcB 1 + swap abC = ACb missing abc = Acb 1 + swap */ // This may or may not be a win when using the IR interpreter... // Many more instructions to interpret. void IRFrontend::Comp_Vmmul(MIPSOpcode op) { CONDITIONAL_DISABLE; if (js.HasUnknownPrefix()) { DISABLE; } MatrixSize sz = GetMtxSize(op); int n = GetMatrixSide(sz); int vs = _VS; int vd = _VD; int vt = _VT; MatrixOverlapType soverlap = GetMatrixOverlap(vs, vd, sz); MatrixOverlapType toverlap = GetMatrixOverlap(vt, vd, sz); // A very common arrangment. Rearrange to something we can handle. if (IsMatrixTransposed(vd)) { // Matrix identity says (At * Bt) = (B * A)t // D = S * T // Dt = (S * T)t = (Tt * St) vd = TransposeMatrixReg(vd); std::swap(vs, vt); } u8 sregs[16], tregs[16], dregs[16]; GetMatrixRegs(sregs, sz, vs); GetMatrixRegs(tregs, sz, vt); GetMatrixRegs(dregs, sz, vd); if (soverlap || toverlap) { DISABLE; } // dregs are always consecutive, thanks to our transpose trick. // However, not sure this is always worth it. if (sz == M_4x4 && IsConsecutive4(dregs)) { // TODO: The interpreter would like proper matrix ops better. Can generate those, and // expand them like this as needed on "real" architectures. int s0 = IRVTEMP_0; int s1 = IRVTEMP_PFX_T; if (!IsConsecutive4(sregs)) { // METHOD 1: Handles AbC and Abc for (int j = 0; j < 4; j++) { ir.Write(IROp::Vec4Scale, s0, sregs[0], tregs[j * 4]); for (int i = 1; i < 4; i++) { ir.Write(IROp::Vec4Scale, s1, sregs[i], tregs[j * 4 + i]); ir.Write(IROp::Vec4Add, s0, s0, s1); } ir.Write(IROp::Vec4Mov, dregs[j * 4], s0); } return; } else if (IsConsecutive4(tregs)) { // METHOD 2: Handles ABC only. Not efficient on CPUs that don't do fast dots. // Dots only work if tregs are consecutive. // TODO: Skip this and resort to method one and transpose the output? for (int j = 0; j < 4; j++) { for (int i = 0; i < 4; i++) { ir.Write(IROp::Vec4Dot, s0 + i, sregs[i], tregs[j * 4]); } ir.Write(IROp::Vec4Mov, dregs[j * 4], s0); } return; } else { // ABc - s consecutive, t not. // Tekken uses this. // logBlocks = 1; } } // Fallback. Expands a LOT int temp0 = IRVTEMP_0; int temp1 = IRVTEMP_0 + 1; for (int a = 0; a < n; a++) { for (int b = 0; b < n; b++) { ir.Write(IROp::FMul, temp0, sregs[b * 4], tregs[a * 4]); for (int c = 1; c < n; c++) { ir.Write(IROp::FMul, temp1, sregs[b * 4 + c], tregs[a * 4 + c]); ir.Write(IROp::FAdd, (c == n - 1) ? dregs[a * 4 + b] : temp0, temp0, temp1); } } } } void IRFrontend::Comp_Vtfm(MIPSOpcode op) { CONDITIONAL_DISABLE; if (js.HasUnknownPrefix()) { DISABLE; } VectorSize sz = GetVecSize(op); MatrixSize msz = GetMtxSize(op); int n = GetNumVectorElements(sz); int ins = (op >> 23) & 7; bool homogenous = false; if (n == ins) { n++; sz = (VectorSize)((int)(sz)+1); msz = (MatrixSize)((int)(msz)+1); homogenous = true; } // Otherwise, n should already be ins + 1. else if (n != ins + 1) { DISABLE; } u8 sregs[16], dregs[4], tregs[4]; GetMatrixRegs(sregs, msz, _VS); GetVectorRegs(tregs, sz, _VT); GetVectorRegs(dregs, sz, _VD); // SIMD-optimized implementations - if sregs[0..3] is consecutive, the rest are too. if (msz == M_4x4 && IsConsecutive4(sregs)) { int s0 = IRVTEMP_0; int s1 = IRVTEMP_PFX_T; // For this algorithm, we don't care if tregs are consecutive or not, // they are accessed one at a time. This handles homogenous transforms correctly, as well. ir.Write(IROp::Vec4Scale, s0, sregs[0], tregs[0]); for (int i = 1; i < 4; i++) { if (!homogenous || (i != n - 1)) { ir.Write(IROp::Vec4Scale, s1, sregs[i * 4], tregs[i]); ir.Write(IROp::Vec4Add, s0, s0, s1); } else { ir.Write(IROp::Vec4Add, s0, s0, sregs[i * 4]); } } if (IsConsecutive4(dregs)) { ir.Write(IROp::Vec4Mov, dregs[0], s0); } else { for (int i = 0; i < 4; i++) { ir.Write(IROp::FMov, dregs[i], s0 + i); } } return; } else if (msz == M_4x4 && !IsConsecutive4(sregs)) { int s0 = IRVTEMP_0; int s1 = IRVTEMP_PFX_S; // Doesn't make complete sense to me why this works.... ir.Write(IROp::Vec4Scale, s0, sregs[0], tregs[0]); for (int i = 1; i < 4; i++) { if (!homogenous || (i != n - 1)) { ir.Write(IROp::Vec4Scale, s1, sregs[i], tregs[i]); ir.Write(IROp::Vec4Add, s0, s0, s1); } else { ir.Write(IROp::Vec4Add, s0, s0, sregs[i]); } } if (IsConsecutive4(dregs)) { ir.Write(IROp::Vec4Mov, dregs[0], s0); } else { for (int i = 0; i < 4; i++) { ir.Write(IROp::FMov, dregs[i], s0 + i); } } return; } // TODO: test overlap, optimize. u8 tempregs[4]; int s0 = IRVTEMP_0; int temp1 = IRVTEMP_0 + 1; for (int i = 0; i < n; i++) { ir.Write(IROp::FMul, s0, sregs[i * 4], tregs[0]); for (int k = 1; k < n; k++) { if (!homogenous || k != n - 1) { ir.Write(IROp::FMul, temp1, sregs[i * 4 + k], tregs[k]); ir.Write(IROp::FAdd, s0, s0, temp1); } else { ir.Write(IROp::FAdd, s0, s0, sregs[i * 4 + k]); } } int temp = IRVTEMP_PFX_T + i; ir.Write(IROp::FMov, temp, s0); tempregs[i] = temp; } for (int i = 0; i < n; i++) { if (tempregs[i] != dregs[i]) ir.Write(IROp::FMov, dregs[i], tempregs[i]); } } void IRFrontend::Comp_VCrs(MIPSOpcode op) { DISABLE; } void IRFrontend::Comp_VDet(MIPSOpcode op) { DISABLE; } void IRFrontend::Comp_Vi2x(MIPSOpcode op) { DISABLE; } void IRFrontend::Comp_Vx2i(MIPSOpcode op) { DISABLE; } void IRFrontend::Comp_VCrossQuat(MIPSOpcode op) { CONDITIONAL_DISABLE; if (js.HasUnknownPrefix()) DISABLE; VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); u8 sregs[4], tregs[4], dregs[4]; GetVectorRegs(sregs, sz, _VS); GetVectorRegs(tregs, sz, _VT); GetVectorRegs(dregs, sz, _VD); u8 tempregs[4]; for (int i = 0; i < n; ++i) { if (!IsOverlapSafe(dregs[i], n, sregs, n, tregs)) { tempregs[i] = IRVTEMP_PFX_T + i; // using IRTEMP0 for other things } else { tempregs[i] = dregs[i]; } } if (sz == V_Triple) { int temp0 = IRVTEMP_0; int temp1 = IRVTEMP_0 + 1; // Compute X ir.Write(IROp::FMul, temp0, sregs[1], tregs[2]); ir.Write(IROp::FMul, temp1, sregs[2], tregs[1]); ir.Write(IROp::FSub, tempregs[0], temp0, temp1); // Compute Y ir.Write(IROp::FMul, temp0, sregs[2], tregs[0]); ir.Write(IROp::FMul, temp1, sregs[0], tregs[2]); ir.Write(IROp::FSub, tempregs[1], temp0, temp1); // Compute Z ir.Write(IROp::FMul, temp0, sregs[0], tregs[1]); ir.Write(IROp::FMul, temp1, sregs[1], tregs[0]); ir.Write(IROp::FSub, tempregs[2], temp0, temp1); } else if (sz == V_Quad) { DISABLE; } for (int i = 0; i < n; i++) { if (tempregs[i] != dregs[i]) ir.Write(IROp::FMov, dregs[i], tempregs[i]); } // No D prefix supported } void IRFrontend::Comp_Vcmp(MIPSOpcode op) { CONDITIONAL_DISABLE; if (js.HasUnknownPrefix()) DISABLE; VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); u8 sregs[4], tregs[4]; GetVectorRegsPrefixS(sregs, sz, _VS); GetVectorRegsPrefixT(tregs, sz, _VT); VCondition cond = (VCondition)(op & 0xF); int mask = 0; for (int i = 0; i < n; i++) { ir.Write(IROp::FCmpVfpuBit, cond | (i << 4), sregs[i], tregs[i]); mask |= (1 << i); } ir.Write(IROp::FCmpVfpuAggregate, mask); } void IRFrontend::Comp_Vcmov(MIPSOpcode op) { CONDITIONAL_DISABLE; if (js.HasUnknownPrefix()) { DISABLE; } // logBlocks = 1; VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); u8 sregs[4], dregs[4]; GetVectorRegsPrefixS(sregs, sz, _VS); GetVectorRegsPrefixD(dregs, sz, _VD); int tf = (op >> 19) & 1; int imm3 = (op >> 16) & 7; for (int i = 0; i < n; ++i) { // Simplification: Disable if overlap unsafe if (!IsOverlapSafeAllowS(dregs[i], i, n, sregs)) { DISABLE; } } if (imm3 < 6) { // Test one bit of CC. This bit decides whether none or all subregisters are copied. for (int i = 0; i < n; i++) { ir.Write(IROp::FCmovVfpuCC, dregs[i], sregs[i], (imm3) | ((!tf) << 7)); } } else { // Look at the bottom four bits of CC to individually decide if the subregisters should be copied. for (int i = 0; i < n; i++) { ir.Write(IROp::FCmovVfpuCC, dregs[i], sregs[i], (i) | ((!tf) << 7)); } } ApplyPrefixD(dregs, sz); } void IRFrontend::Comp_Viim(MIPSOpcode op) { CONDITIONAL_DISABLE; if (js.HasUnknownPrefix()) DISABLE; s32 imm = (s32)(s16)(u16)(op & 0xFFFF); u8 dreg; GetVectorRegsPrefixD(&dreg, V_Single, _VT); ir.Write(IROp::SetConstF, dreg, ir.AddConstantFloat((float)imm)); ApplyPrefixD(&dreg, V_Single); } void IRFrontend::Comp_Vfim(MIPSOpcode op) { CONDITIONAL_DISABLE; if (js.HasUnknownPrefix()) DISABLE; FP16 half; half.u = op & 0xFFFF; FP32 fval = half_to_float_fast5(half); u8 dreg; GetVectorRegsPrefixD(&dreg, V_Single, _VT); ir.Write(IROp::SetConstF, dreg, ir.AddConstantFloat(fval.f)); ApplyPrefixD(&dreg, V_Single); } void IRFrontend::Comp_Vcst(MIPSOpcode op) { CONDITIONAL_DISABLE; if (js.HasUnknownPrefix()) DISABLE; int conNum = (op >> 16) & 0x1f; int vd = _VD; VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); u8 dregs[4]; GetVectorRegsPrefixD(dregs, sz, _VD); for (int i = 0; i < n; i++) { ir.Write(IROp::SetConstF, dregs[i], ir.AddConstantFloat(cst_constants[conNum])); } ApplyPrefixD(dregs, sz); } // Very heavily used by FF:CC. Should be replaced by a fast approximation instead of // calling the math library. void IRFrontend::Comp_VRot(MIPSOpcode op) { DISABLE; } void IRFrontend::Comp_Vsgn(MIPSOpcode op) { DISABLE; } void IRFrontend::Comp_Vocp(MIPSOpcode op) { CONDITIONAL_DISABLE; if (js.HasUnknownPrefix()) { DISABLE; } VectorSize sz = GetVecSize(op); int n = GetNumVectorElements(sz); u8 sregs[4], dregs[4]; // Actually, not sure that this instruction accepts an S prefix. We don't apply it in the // interpreter. But whatever. GetVectorRegsPrefixS(sregs, sz, _VS); GetVectorRegsPrefixD(dregs, sz, _VD); u8 tempregs[4]; for (int i = 0; i < n; ++i) { if (!IsOverlapSafe(dregs[i], n, sregs)) { tempregs[i] = IRVTEMP_PFX_T + i; // using IRTEMP0 for other things } else { tempregs[i] = dregs[i]; } } ir.Write(IROp::SetConstF, IRVTEMP_0, ir.AddConstantFloat(1.0f)); for (int i = 0; i < n; ++i) { ir.Write(IROp::FSub, tempregs[i], IRVTEMP_0, sregs[i]); } for (int i = 0; i < n; ++i) { if (dregs[i] != tempregs[i]) { ir.Write(IROp::FMov, dregs[i], tempregs[i]); } } ApplyPrefixD(dregs, sz); } void IRFrontend::Comp_ColorConv(MIPSOpcode op) { DISABLE; } void IRFrontend::Comp_Vbfy(MIPSOpcode op) { DISABLE; } }