#pragma once // VulkanRenderManager takes the role that a GL driver does of sequencing and optimizing render passes. // Only draws and binds are handled here, resource creation and allocations are handled as normal - // that's the nice thing with Vulkan. #include #include #include #include #include #include "Common/Vulkan/VulkanContext.h" #include "math/dataconv.h" #include "thin3d/DataFormat.h" #include "thin3d/VulkanQueueRunner.h" // Simple independent framebuffer image. Gets its own allocation, we don't have that many framebuffers so it's fine // to let them have individual non-pooled allocations. Until it's not fine. We'll see. struct VKRImage { VkImage image; VkImageView imageView; VkDeviceMemory memory; VkImageLayout layout; VkFormat format; }; void CreateImage(VulkanContext *vulkan, VkCommandBuffer cmd, VKRImage &img, int width, int height, VkFormat format, VkImageLayout initialLayout, bool color); class VKRFramebuffer { public: VKRFramebuffer(VulkanContext *vk, VkCommandBuffer initCmd, VkRenderPass renderPass, int _width, int _height) : vulkan_(vk) { refcount_ = 1; width = _width; height = _height; CreateImage(vulkan_, initCmd, color, width, height, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, true); CreateImage(vulkan_, initCmd, depth, width, height, vulkan_->GetDeviceInfo().preferredDepthStencilFormat, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, false); VkFramebufferCreateInfo fbci{ VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO }; VkImageView views[2]{}; fbci.renderPass = renderPass; fbci.attachmentCount = 2; fbci.pAttachments = views; views[0] = color.imageView; views[1] = depth.imageView; fbci.width = width; fbci.height = height; fbci.layers = 1; vkCreateFramebuffer(vulkan_->GetDevice(), &fbci, nullptr, &framebuf); } ~VKRFramebuffer() { vulkan_->Delete().QueueDeleteImage(color.image); vulkan_->Delete().QueueDeleteImage(depth.image); vulkan_->Delete().QueueDeleteImageView(color.imageView); vulkan_->Delete().QueueDeleteImageView(depth.imageView); vulkan_->Delete().QueueDeleteDeviceMemory(color.memory); vulkan_->Delete().QueueDeleteDeviceMemory(depth.memory); vulkan_->Delete().QueueDeleteFramebuffer(framebuf); } void AddRef() { refcount_++; } bool Release(); int numShadows = 1; // TODO: Support this. VkFramebuffer framebuf = VK_NULL_HANDLE; VKRImage color{}; VKRImage depth{}; int width = 0; int height = 0; private: VulkanContext *vulkan_; std::atomic refcount_; }; enum class VKRRunType { END, SYNC, }; class VulkanRenderManager { public: VulkanRenderManager(VulkanContext *vulkan); ~VulkanRenderManager(); void ThreadFunc(); // Makes sure that the GPU has caught up enough that we can start writing buffers of this frame again. void BeginFrame(); // Can run on a different thread! void Finish(); void Run(int frame); // Zaps queued up commands. Use if you know there's a risk you've queued up stuff that has already been deleted. Can happen during in-game shutdown. void Wipe(); void BindFramebufferAsRenderTarget(VKRFramebuffer *fb, VKRRenderPassAction color, VKRRenderPassAction depth, uint32_t clearColor, float clearDepth, uint8_t clearStencil); VkImageView BindFramebufferAsTexture(VKRFramebuffer *fb, int binding, int aspectBit, int attachment); void CopyFramebufferToMemorySync(VKRFramebuffer *src, int aspectBits, int x, int y, int w, int h, Draw::DataFormat destFormat, uint8_t *pixels, int pixelStride); void CopyImageToMemorySync(VkImage image, int mipLevel, int x, int y, int w, int h, Draw::DataFormat destFormat, uint8_t *pixels, int pixelStride); void CopyFramebuffer(VKRFramebuffer *src, VkRect2D srcRect, VKRFramebuffer *dst, VkOffset2D dstPos, int aspectMask); void BlitFramebuffer(VKRFramebuffer *src, VkRect2D srcRect, VKRFramebuffer *dst, VkRect2D dstRect, int aspectMask, VkFilter filter); void BindPipeline(VkPipeline pipeline) { _dbg_assert_(G3D, curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER); VkRenderData data{ VKRRenderCommand::BIND_PIPELINE }; data.pipeline.pipeline = pipeline; curRenderStep_->commands.push_back(data); } void SetViewport(const VkViewport &vp) { _dbg_assert_(G3D, curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER); VkRenderData data{ VKRRenderCommand::VIEWPORT }; data.viewport.vp = vp; curRenderStep_->commands.push_back(data); } void SetScissor(const VkRect2D &rc) { _dbg_assert_(G3D, curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER); VkRenderData data{ VKRRenderCommand::SCISSOR }; data.scissor.scissor = rc; curRenderStep_->commands.push_back(data); } void SetStencilParams(uint8_t writeMask, uint8_t compareMask, uint8_t refValue) { _dbg_assert_(G3D, curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER); VkRenderData data{ VKRRenderCommand::STENCIL }; data.stencil.stencilWriteMask = writeMask; data.stencil.stencilCompareMask = compareMask; data.stencil.stencilRef = refValue; curRenderStep_->commands.push_back(data); } void SetBlendFactor(float color[4]) { _dbg_assert_(G3D, curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER); VkRenderData data{ VKRRenderCommand::BLEND }; CopyFloat4(data.blendColor.color, color); curRenderStep_->commands.push_back(data); } void PushConstants(VkPipelineLayout pipelineLayout, VkShaderStageFlags stages, int offset, int size, void *constants) { _dbg_assert_(G3D, curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER); assert(size + offset < 32); VkRenderData data{ VKRRenderCommand::PUSH_CONSTANTS }; data.push.pipelineLayout = pipelineLayout; data.push.stages = stages; data.push.offset = offset; data.push.size = size; memcpy(data.push.data, constants, size); curRenderStep_->commands.push_back(data); } void Clear(uint32_t clearColor, float clearZ, int clearStencil, int clearMask); void Draw(VkPipelineLayout layout, VkDescriptorSet descSet, int numUboOffsets, const uint32_t *uboOffsets, VkBuffer vbuffer, int voffset, int count) { _dbg_assert_(G3D, curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER); VkRenderData data{ VKRRenderCommand::DRAW }; data.draw.count = count; data.draw.pipelineLayout = layout; data.draw.ds = descSet; data.draw.vbuffer = vbuffer; data.draw.voffset = voffset; data.draw.numUboOffsets = numUboOffsets; for (int i = 0; i < numUboOffsets; i++) data.draw.uboOffsets[i] = uboOffsets[i]; curRenderStep_->commands.push_back(data); curRenderStep_->render.numDraws++; } void DrawIndexed(VkPipelineLayout layout, VkDescriptorSet descSet, int numUboOffsets, const uint32_t *uboOffsets, VkBuffer vbuffer, int voffset, VkBuffer ibuffer, int ioffset, int count, int numInstances, VkIndexType indexType) { _dbg_assert_(G3D, curRenderStep_ && curRenderStep_->stepType == VKRStepType::RENDER); VkRenderData data{ VKRRenderCommand::DRAW_INDEXED }; data.drawIndexed.count = count; data.drawIndexed.instances = numInstances; data.drawIndexed.pipelineLayout = layout; data.drawIndexed.ds = descSet; data.drawIndexed.vbuffer = vbuffer; data.drawIndexed.voffset = voffset; data.drawIndexed.ibuffer = ibuffer; data.drawIndexed.ioffset = ioffset; data.drawIndexed.numUboOffsets = numUboOffsets; for (int i = 0; i < numUboOffsets; i++) data.drawIndexed.uboOffsets[i] = uboOffsets[i]; data.drawIndexed.indexType = indexType; curRenderStep_->commands.push_back(data); curRenderStep_->render.numDraws++; } VkCommandBuffer GetInitCmd(); VkRenderPass GetRenderPass(int pass) const { return queueRunner_.GetRenderPass(pass); } VkRenderPass GetBackbufferRenderPass() const { return queueRunner_.GetBackbufferRenderPass(); } VkRenderPass GetCompatibleRenderPass() const { if (curRenderStep_ && curRenderStep_->render.framebuffer != nullptr) { return queueRunner_.GetRenderPass(0); } else { return queueRunner_.GetBackbufferRenderPass(); } } void CreateBackbuffers(); void DestroyBackbuffers(); private: void InitBackbufferFramebuffers(int width, int height); void InitDepthStencilBuffer(VkCommandBuffer cmd); // Used for non-buffered rendering. void BeginSubmitFrame(int frame); void EndSubmitFrame(int frame); void Submit(int frame, bool triggerFence); // Bad for performance but sometimes necessary for synchronous CPU readbacks (screenshots and whatnot). void FlushSync(); void EndSyncFrame(int frame); void StopThread(bool shutdown); // Permanent objects VkSemaphore acquireSemaphore_; VkSemaphore renderingCompleteSemaphore_; // Per-frame data, round-robin so we can overlap submission with execution of the previous frame. struct FrameData { std::mutex push_mutex; std::condition_variable push_condVar; std::mutex pull_mutex; std::condition_variable pull_condVar; bool readyForFence = true; bool readyForRun = false; bool skipSwap = false; VKRRunType type = VKRRunType::END; VkFence fence; // These are on different threads so need separate pools. VkCommandPool cmdPoolInit; VkCommandPool cmdPoolMain; VkCommandBuffer initCmd; VkCommandBuffer mainCmd; bool hasInitCommands = false; std::vector steps; // Swapchain. bool hasBegun = false; uint32_t curSwapchainImage = -1; }; FrameData frameData_[VulkanContext::MAX_INFLIGHT_FRAMES]; // Submission time state int curWidth_; int curHeight_; bool insideFrame_ = false; VKRStep *curRenderStep_ = nullptr; std::vector steps_; // Execution time state bool run_ = true; VulkanContext *vulkan_; std::thread thread_; std::mutex mutex_; int threadInitFrame_ = 0; VulkanQueueRunner queueRunner_; // Swap chain management struct SwapchainImageData { VkImage image; VkImageView view; }; std::vector framebuffers_; std::vector swapchainImages_; uint32_t swapchainImageCount_; struct DepthBufferInfo { VkFormat format = VK_FORMAT_UNDEFINED; VkImage image = VK_NULL_HANDLE; VkDeviceMemory mem = VK_NULL_HANDLE; VkImageView view = VK_NULL_HANDLE; }; DepthBufferInfo depth_; };