// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. // #define SHADERLOG #if defined(_WIN32) && defined(SHADERLOG) #include "Common/CommonWindows.h" #endif #include #include #include "base/logging.h" #include "base/timeutil.h" #include "math/math_util.h" #include "math/lin/matrix4x4.h" #include "profiler/profiler.h" #include "Common/FileUtil.h" #include "Core/Config.h" #include "Core/Reporting.h" #include "GPU/Math3D.h" #include "GPU/GPUState.h" #include "GPU/ge_constants.h" #include "GPU/GLES/GLStateCache.h" #include "GPU/GLES/ShaderManager.h" #include "GPU/GLES/TransformPipeline.h" #include "UI/OnScreenDisplay.h" #include "Framebuffer.h" #include "i18n/i18n.h" Shader::Shader(const char *code, uint32_t glShaderType, bool useHWTransform) : failed_(false), useHWTransform_(useHWTransform) { PROFILE_THIS_SCOPE("shadercomp"); isFragment_ = glShaderType == GL_FRAGMENT_SHADER; source_ = code; #ifdef SHADERLOG #ifdef _WIN32 OutputDebugStringUTF8(code); #else printf("%s\n", code); #endif #endif shader = glCreateShader(glShaderType); glShaderSource(shader, 1, &code, 0); glCompileShader(shader); GLint success = 0; glGetShaderiv(shader, GL_COMPILE_STATUS, &success); if (!success) { #define MAX_INFO_LOG_SIZE 2048 GLchar infoLog[MAX_INFO_LOG_SIZE]; GLsizei len; glGetShaderInfoLog(shader, MAX_INFO_LOG_SIZE, &len, infoLog); infoLog[len] = '\0'; #ifdef ANDROID ELOG("Error in shader compilation! %s\n", infoLog); ELOG("Shader source:\n%s\n", (const char *)code); #endif ERROR_LOG(G3D, "Error in shader compilation!\n"); ERROR_LOG(G3D, "Info log: %s\n", infoLog); ERROR_LOG(G3D, "Shader source:\n%s\n", (const char *)code); Reporting::ReportMessage("Error in shader compilation: info: %s / code: %s", infoLog, (const char *)code); #ifdef SHADERLOG OutputDebugStringUTF8(infoLog); #endif failed_ = true; shader = 0; } else { DEBUG_LOG(G3D, "Compiled shader:\n%s\n", (const char *)code); } } Shader::~Shader() { if (shader) glDeleteShader(shader); } LinkedShader::LinkedShader(ShaderID VSID, Shader *vs, ShaderID FSID, Shader *fs, bool useHWTransform) : useHWTransform_(useHWTransform), program(0), dirtyUniforms(0) { PROFILE_THIS_SCOPE("shaderlink"); program = glCreateProgram(); vs_ = vs; glAttachShader(program, vs->shader); glAttachShader(program, fs->shader); // Bind attribute locations to fixed locations so that they're // the same in all shaders. We use this later to minimize the calls to // glEnableVertexAttribArray and glDisableVertexAttribArray. glBindAttribLocation(program, ATTR_POSITION, "position"); glBindAttribLocation(program, ATTR_TEXCOORD, "texcoord"); glBindAttribLocation(program, ATTR_NORMAL, "normal"); glBindAttribLocation(program, ATTR_W1, "w1"); glBindAttribLocation(program, ATTR_W2, "w2"); glBindAttribLocation(program, ATTR_COLOR0, "color0"); glBindAttribLocation(program, ATTR_COLOR1, "color1"); #if !defined(USING_GLES2) if (gstate_c.featureFlags & GPU_SUPPORTS_DUALSOURCE_BLEND) { // Dual source alpha glBindFragDataLocationIndexed(program, 0, 0, "fragColor0"); glBindFragDataLocationIndexed(program, 0, 1, "fragColor1"); } else if (gl_extensions.VersionGEThan(3, 3, 0)) { glBindFragDataLocation(program, 0, "fragColor0"); } #elif !defined(IOS) if (gl_extensions.GLES3) { if (gstate_c.featureFlags & GPU_SUPPORTS_DUALSOURCE_BLEND) { glBindFragDataLocationIndexedEXT(program, 0, 0, "fragColor0"); glBindFragDataLocationIndexedEXT(program, 0, 1, "fragColor1"); } } #endif glLinkProgram(program); GLint linkStatus = GL_FALSE; glGetProgramiv(program, GL_LINK_STATUS, &linkStatus); if (linkStatus != GL_TRUE) { GLint bufLength = 0; glGetProgramiv(program, GL_INFO_LOG_LENGTH, &bufLength); if (bufLength) { char* buf = new char[bufLength]; glGetProgramInfoLog(program, bufLength, NULL, buf); #ifdef ANDROID ELOG("Could not link program:\n %s", buf); #endif ERROR_LOG(G3D, "Could not link program:\n %s", buf); ERROR_LOG(G3D, "VS desc:\n%s\n", vs->GetShaderString(SHADER_STRING_SHORT_DESC, VSID).c_str()); ERROR_LOG(G3D, "FS desc:\n%s\n", fs->GetShaderString(SHADER_STRING_SHORT_DESC, FSID).c_str()); std::string vs_source = vs->GetShaderString(SHADER_STRING_SOURCE_CODE, VSID); std::string fs_source = fs->GetShaderString(SHADER_STRING_SOURCE_CODE, FSID); ERROR_LOG(G3D, "VS:\n%s\n", vs_source.c_str()); ERROR_LOG(G3D, "FS:\n%s\n", fs_source.c_str()); Reporting::ReportMessage("Error in shader program link: info: %s / fs: %s / vs: %s", buf, fs_source.c_str(), vs_source.c_str()); #ifdef SHADERLOG OutputDebugStringUTF8(buf); OutputDebugStringUTF8(vs_source.c_str()); OutputDebugStringUTF8(fs_source.c_str()); #endif delete [] buf; // we're dead! } // Prevent a buffer overflow. numBones = 0; return; } INFO_LOG(G3D, "Linked shader: vs %i fs %i", (int)vs->shader, (int)fs->shader); u_tex = glGetUniformLocation(program, "tex"); u_proj = glGetUniformLocation(program, "u_proj"); u_proj_through = glGetUniformLocation(program, "u_proj_through"); u_texenv = glGetUniformLocation(program, "u_texenv"); u_fogcolor = glGetUniformLocation(program, "u_fogcolor"); u_fogcoef = glGetUniformLocation(program, "u_fogcoef"); u_alphacolorref = glGetUniformLocation(program, "u_alphacolorref"); u_alphacolormask = glGetUniformLocation(program, "u_alphacolormask"); u_stencilReplaceValue = glGetUniformLocation(program, "u_stencilReplaceValue"); u_testtex = glGetUniformLocation(program, "testtex"); u_fbotex = glGetUniformLocation(program, "fbotex"); u_blendFixA = glGetUniformLocation(program, "u_blendFixA"); u_blendFixB = glGetUniformLocation(program, "u_blendFixB"); u_fbotexSize = glGetUniformLocation(program, "u_fbotexSize"); // Transform u_view = glGetUniformLocation(program, "u_view"); u_world = glGetUniformLocation(program, "u_world"); u_texmtx = glGetUniformLocation(program, "u_texmtx"); if (VSID.Bit(VS_BIT_ENABLE_BONES)) numBones = TranslateNumBones(VSID.Bits(VS_BIT_BONES, 3) + 1); else numBones = 0; u_depthRange = glGetUniformLocation(program, "u_depthRange"); #ifdef USE_BONE_ARRAY u_bone = glGetUniformLocation(program, "u_bone"); #else for (int i = 0; i < 8; i++) { char name[10]; sprintf(name, "u_bone%i", i); u_bone[i] = glGetUniformLocation(program, name); } #endif // Lighting, texturing u_ambient = glGetUniformLocation(program, "u_ambient"); u_matambientalpha = glGetUniformLocation(program, "u_matambientalpha"); u_matdiffuse = glGetUniformLocation(program, "u_matdiffuse"); u_matspecular = glGetUniformLocation(program, "u_matspecular"); u_matemissive = glGetUniformLocation(program, "u_matemissive"); u_uvscaleoffset = glGetUniformLocation(program, "u_uvscaleoffset"); u_texclamp = glGetUniformLocation(program, "u_texclamp"); u_texclampoff = glGetUniformLocation(program, "u_texclampoff"); for (int i = 0; i < 4; i++) { char temp[64]; sprintf(temp, "u_lightpos%i", i); u_lightpos[i] = glGetUniformLocation(program, temp); sprintf(temp, "u_lightdir%i", i); u_lightdir[i] = glGetUniformLocation(program, temp); sprintf(temp, "u_lightatt%i", i); u_lightatt[i] = glGetUniformLocation(program, temp); sprintf(temp, "u_lightangle%i", i); u_lightangle[i] = glGetUniformLocation(program, temp); sprintf(temp, "u_lightspotCoef%i", i); u_lightspotCoef[i] = glGetUniformLocation(program, temp); sprintf(temp, "u_lightambient%i", i); u_lightambient[i] = glGetUniformLocation(program, temp); sprintf(temp, "u_lightdiffuse%i", i); u_lightdiffuse[i] = glGetUniformLocation(program, temp); sprintf(temp, "u_lightspecular%i", i); u_lightspecular[i] = glGetUniformLocation(program, temp); } attrMask = 0; if (-1 != glGetAttribLocation(program, "position")) attrMask |= 1 << ATTR_POSITION; if (-1 != glGetAttribLocation(program, "texcoord")) attrMask |= 1 << ATTR_TEXCOORD; if (-1 != glGetAttribLocation(program, "normal")) attrMask |= 1 << ATTR_NORMAL; if (-1 != glGetAttribLocation(program, "w1")) attrMask |= 1 << ATTR_W1; if (-1 != glGetAttribLocation(program, "w2")) attrMask |= 1 << ATTR_W2; if (-1 != glGetAttribLocation(program, "color0")) attrMask |= 1 << ATTR_COLOR0; if (-1 != glGetAttribLocation(program, "color1")) attrMask |= 1 << ATTR_COLOR1; availableUniforms = 0; if (u_proj != -1) availableUniforms |= DIRTY_PROJMATRIX; if (u_proj_through != -1) availableUniforms |= DIRTY_PROJTHROUGHMATRIX; if (u_texenv != -1) availableUniforms |= DIRTY_TEXENV; if (u_alphacolorref != -1) availableUniforms |= DIRTY_ALPHACOLORREF; if (u_alphacolormask != -1) availableUniforms |= DIRTY_ALPHACOLORMASK; if (u_fogcolor != -1) availableUniforms |= DIRTY_FOGCOLOR; if (u_fogcoef != -1) availableUniforms |= DIRTY_FOGCOEF; if (u_texenv != -1) availableUniforms |= DIRTY_TEXENV; if (u_uvscaleoffset != -1) availableUniforms |= DIRTY_UVSCALEOFFSET; if (u_texclamp != -1) availableUniforms |= DIRTY_TEXCLAMP; if (u_world != -1) availableUniforms |= DIRTY_WORLDMATRIX; if (u_view != -1) availableUniforms |= DIRTY_VIEWMATRIX; if (u_texmtx != -1) availableUniforms |= DIRTY_TEXMATRIX; if (u_stencilReplaceValue != -1) availableUniforms |= DIRTY_STENCILREPLACEVALUE; if (u_blendFixA != -1 || u_blendFixB != -1 || u_fbotexSize != -1) availableUniforms |= DIRTY_SHADERBLEND; if (u_depthRange != -1) availableUniforms |= DIRTY_DEPTHRANGE; // Looping up to numBones lets us avoid checking u_bone[i] #ifdef USE_BONE_ARRAY if (u_bone != -1) { for (int i = 0; i < numBones; i++) { availableUniforms |= DIRTY_BONEMATRIX0 << i; } } #else for (int i = 0; i < numBones; i++) { if (u_bone[i] != -1) availableUniforms |= DIRTY_BONEMATRIX0 << i; } #endif if (u_ambient != -1) availableUniforms |= DIRTY_AMBIENT; if (u_matambientalpha != -1) availableUniforms |= DIRTY_MATAMBIENTALPHA; if (u_matdiffuse != -1) availableUniforms |= DIRTY_MATDIFFUSE; if (u_matemissive != -1) availableUniforms |= DIRTY_MATEMISSIVE; if (u_matspecular != -1) availableUniforms |= DIRTY_MATSPECULAR; for (int i = 0; i < 4; i++) { if (u_lightdir[i] != -1 || u_lightspecular[i] != -1 || u_lightpos[i] != -1) availableUniforms |= DIRTY_LIGHT0 << i; } glUseProgram(program); // Default uniform values glUniform1i(u_tex, 0); glUniform1i(u_fbotex, 1); glUniform1i(u_testtex, 2); // The rest, use the "dirty" mechanism. dirtyUniforms = DIRTY_ALL; } LinkedShader::~LinkedShader() { // Shaders are automatically detached by glDeleteProgram. glDeleteProgram(program); } // Utility static void SetColorUniform3(int uniform, u32 color) { const float col[3] = { ((color & 0xFF)) / 255.0f, ((color & 0xFF00) >> 8) / 255.0f, ((color & 0xFF0000) >> 16) / 255.0f }; glUniform3fv(uniform, 1, col); } static void SetColorUniform3Alpha(int uniform, u32 color, u8 alpha) { const float col[4] = { ((color & 0xFF)) / 255.0f, ((color & 0xFF00) >> 8) / 255.0f, ((color & 0xFF0000) >> 16) / 255.0f, alpha/255.0f }; glUniform4fv(uniform, 1, col); } // This passes colors unscaled (e.g. 0 - 255 not 0 - 1.) static void SetColorUniform3Alpha255(int uniform, u32 color, u8 alpha) { if (gl_extensions.gpuVendor == GPU_VENDOR_POWERVR) { const float col[4] = { (float)((color & 0xFF) >> 0) * (1.0f / 255.0f), (float)((color & 0xFF00) >> 8) * (1.0f / 255.0f), (float)((color & 0xFF0000) >> 16) * (1.0f / 255.0f), (float)alpha * (1.0f / 255.0f) }; glUniform4fv(uniform, 1, col); } else { const float col[4] = { (float)((color & 0xFF) >> 0), (float)((color & 0xFF00) >> 8), (float)((color & 0xFF0000) >> 16), (float)alpha }; glUniform4fv(uniform, 1, col); } } static void SetColorUniform3iAlpha(int uniform, u32 color, u8 alpha) { const int col[4] = { (int)((color & 0xFF) >> 0), (int)((color & 0xFF00) >> 8), (int)((color & 0xFF0000) >> 16), (int)alpha, }; glUniform4iv(uniform, 1, col); } static void SetColorUniform3ExtraFloat(int uniform, u32 color, float extra) { const float col[4] = { ((color & 0xFF)) / 255.0f, ((color & 0xFF00) >> 8) / 255.0f, ((color & 0xFF0000) >> 16) / 255.0f, extra }; glUniform4fv(uniform, 1, col); } static void SetFloat24Uniform3(int uniform, const u32 data[3]) { const u32 col[3] = { data[0] << 8, data[1] << 8, data[2] << 8 }; glUniform3fv(uniform, 1, (const GLfloat *)&col[0]); } static void SetFloatUniform4(int uniform, float data[4]) { glUniform4fv(uniform, 1, data); } static void SetMatrix4x3(int uniform, const float *m4x3) { float m4x4[16]; ConvertMatrix4x3To4x4(m4x4, m4x3); glUniformMatrix4fv(uniform, 1, GL_FALSE, m4x4); } static inline void ScaleProjMatrix(Matrix4x4 &in) { float yOffset = gstate_c.vpYOffset; if (g_Config.iRenderingMode == FB_NON_BUFFERED_MODE) { // GL upside down is a pain as usual. yOffset = -yOffset; } const Vec3 trans(gstate_c.vpXOffset, yOffset, gstate_c.vpZOffset); const Vec3 scale(gstate_c.vpWidthScale, gstate_c.vpHeightScale, gstate_c.vpDepthScale); in.translateAndScale(trans, scale); } void LinkedShader::use(const ShaderID &VSID, LinkedShader *previous) { glUseProgram(program); int enable, disable; if (previous) { enable = attrMask & ~previous->attrMask; disable = (~attrMask) & previous->attrMask; } else { enable = attrMask; disable = ~attrMask; } for (int i = 0; i < ATTR_COUNT; i++) { if (enable & (1 << i)) glEnableVertexAttribArray(i); else if (disable & (1 << i)) glDisableVertexAttribArray(i); } } void LinkedShader::stop() { for (int i = 0; i < ATTR_COUNT; i++) { if (attrMask & (1 << i)) glDisableVertexAttribArray(i); } } void LinkedShader::UpdateUniforms(u32 vertType, const ShaderID &vsid) { u32 dirty = dirtyUniforms & availableUniforms; dirtyUniforms = 0; if (!dirty) return; // Update any dirty uniforms before we draw if (dirty & DIRTY_PROJMATRIX) { Matrix4x4 flippedMatrix; memcpy(&flippedMatrix, gstate.projMatrix, 16 * sizeof(float)); bool useBufferedRendering = g_Config.iRenderingMode != FB_NON_BUFFERED_MODE; const bool invertedY = useBufferedRendering ? (gstate_c.vpHeight < 0) : (gstate_c.vpHeight > 0); if (invertedY) { flippedMatrix[1] = -flippedMatrix[1]; flippedMatrix[5] = -flippedMatrix[5]; flippedMatrix[9] = -flippedMatrix[9]; flippedMatrix[13] = -flippedMatrix[13]; } const bool invertedX = gstate_c.vpWidth < 0; if (invertedX) { flippedMatrix[0] = -flippedMatrix[0]; flippedMatrix[4] = -flippedMatrix[4]; flippedMatrix[8] = -flippedMatrix[8]; flippedMatrix[12] = -flippedMatrix[12]; } ScaleProjMatrix(flippedMatrix); glUniformMatrix4fv(u_proj, 1, GL_FALSE, flippedMatrix.m); } if (dirty & DIRTY_PROJTHROUGHMATRIX) { Matrix4x4 proj_through; bool useBufferedRendering = g_Config.iRenderingMode != FB_NON_BUFFERED_MODE; if (useBufferedRendering) { proj_through.setOrtho(0.0f, gstate_c.curRTWidth, 0.0f, gstate_c.curRTHeight, 0.0f, 1.0f); } else { proj_through.setOrtho(0.0f, gstate_c.curRTWidth, gstate_c.curRTHeight, 0.0f, 0.0f, 1.0f); } glUniformMatrix4fv(u_proj_through, 1, GL_FALSE, proj_through.getReadPtr()); } if (dirty & DIRTY_TEXENV) { SetColorUniform3(u_texenv, gstate.texenvcolor); } if (dirty & DIRTY_ALPHACOLORREF) { SetColorUniform3Alpha255(u_alphacolorref, gstate.getColorTestRef(), gstate.getAlphaTestRef() & gstate.getAlphaTestMask()); } if (dirty & DIRTY_ALPHACOLORMASK) { SetColorUniform3iAlpha(u_alphacolormask, gstate.colortestmask, gstate.getAlphaTestMask()); } if (dirty & DIRTY_FOGCOLOR) { SetColorUniform3(u_fogcolor, gstate.fogcolor); } if (dirty & DIRTY_FOGCOEF) { float fogcoef[2] = { getFloat24(gstate.fog1), getFloat24(gstate.fog2), }; if (my_isinf(fogcoef[1])) { // not really sure what a sensible value might be. fogcoef[1] = fogcoef[1] < 0.0f ? -10000.0f : 10000.0f; } else if (my_isnan(fogcoef[1])) { // Workaround for https://github.com/hrydgard/ppsspp/issues/5384#issuecomment-38365988 // Just put the fog far away at a large finite distance. // Infinities and NaNs are rather unpredictable in shaders on many GPUs // so it's best to just make it a sane calculation. fogcoef[0] = 100000.0f; fogcoef[1] = 1.0f; } #ifndef MOBILE_DEVICE else if (my_isnanorinf(fogcoef[1]) || my_isnanorinf(fogcoef[0])) { ERROR_LOG_REPORT_ONCE(fognan, G3D, "Unhandled fog NaN/INF combo: %f %f", fogcoef[0], fogcoef[1]); } #endif glUniform2fv(u_fogcoef, 1, fogcoef); } // Texturing // If this dirty check is changed to true, Frontier Gate Boost works in texcoord speedhack mode. // This means that it's not a flushing issue. // It uses GE_TEXMAP_TEXTURE_MATRIX with GE_PROJMAP_UV a lot. // Can't figure out why it doesn't dirty at the right points though... if (dirty & DIRTY_UVSCALEOFFSET) { const float invW = 1.0f / (float)gstate_c.curTextureWidth; const float invH = 1.0f / (float)gstate_c.curTextureHeight; const int w = gstate.getTextureWidth(0); const int h = gstate.getTextureHeight(0); const float widthFactor = (float)w * invW; const float heightFactor = (float)h * invH; static const float rescale[4] = {1.0f, 2*127.5f/128.f, 2*32767.5f/32768.f, 1.0f}; const float factor = rescale[(vertType & GE_VTYPE_TC_MASK) >> GE_VTYPE_TC_SHIFT]; float uvscaleoff[4]; switch (gstate.getUVGenMode()) { case GE_TEXMAP_TEXTURE_COORDS: // Not sure what GE_TEXMAP_UNKNOWN is, but seen in Riviera. Treating the same as GE_TEXMAP_TEXTURE_COORDS works. case GE_TEXMAP_UNKNOWN: if (g_Config.bPrescaleUV) { // We are here but are prescaling UV in the decoder? Let's do the same as in the other case // except consider *Scale and *Off to be 1 and 0. uvscaleoff[0] = widthFactor; uvscaleoff[1] = heightFactor; uvscaleoff[2] = 0.0f; uvscaleoff[3] = 0.0f; } else { uvscaleoff[0] = gstate_c.uv.uScale * factor * widthFactor; uvscaleoff[1] = gstate_c.uv.vScale * factor * heightFactor; uvscaleoff[2] = gstate_c.uv.uOff * widthFactor; uvscaleoff[3] = gstate_c.uv.vOff * heightFactor; } break; // These two work the same whether or not we prescale UV. case GE_TEXMAP_TEXTURE_MATRIX: // We cannot bake the UV coord scale factor in here, as we apply a matrix multiplication // before this is applied, and the matrix multiplication may contain translation. In this case // the translation will be scaled which breaks faces in Hexyz Force for example. // So I've gone back to applying the scale factor in the shader. uvscaleoff[0] = widthFactor; uvscaleoff[1] = heightFactor; uvscaleoff[2] = 0.0f; uvscaleoff[3] = 0.0f; break; case GE_TEXMAP_ENVIRONMENT_MAP: // In this mode we only use uvscaleoff to scale to the texture size. uvscaleoff[0] = widthFactor; uvscaleoff[1] = heightFactor; uvscaleoff[2] = 0.0f; uvscaleoff[3] = 0.0f; break; default: ERROR_LOG_REPORT(G3D, "Unexpected UV gen mode: %d", gstate.getUVGenMode()); } glUniform4fv(u_uvscaleoffset, 1, uvscaleoff); } if ((dirty & DIRTY_TEXCLAMP) && u_texclamp != -1) { const float invW = 1.0f / (float)gstate_c.curTextureWidth; const float invH = 1.0f / (float)gstate_c.curTextureHeight; const int w = gstate.getTextureWidth(0); const int h = gstate.getTextureHeight(0); const float widthFactor = (float)w * invW; const float heightFactor = (float)h * invH; // First wrap xy, then half texel xy (for clamp.) const float texclamp[4] = { widthFactor, heightFactor, invW * 0.5f, invH * 0.5f, }; const float texclampoff[2] = { gstate_c.curTextureXOffset * invW, gstate_c.curTextureYOffset * invH, }; glUniform4fv(u_texclamp, 1, texclamp); if (u_texclampoff != -1) { glUniform2fv(u_texclampoff, 1, texclampoff); } } // Transform if (dirty & DIRTY_WORLDMATRIX) { SetMatrix4x3(u_world, gstate.worldMatrix); } if (dirty & DIRTY_VIEWMATRIX) { SetMatrix4x3(u_view, gstate.viewMatrix); } if (dirty & DIRTY_TEXMATRIX) { SetMatrix4x3(u_texmtx, gstate.tgenMatrix); } if ((dirty & DIRTY_DEPTHRANGE) && u_depthRange != -1) { float viewZScale = gstate.getViewportZScale(); float viewZCenter = gstate.getViewportZCenter(); float viewZInvScale; // We had to scale and translate Z to account for our clamped Z range. // Therefore, we also need to reverse this to round properly. // // Example: scale = 65535.0, center = 0.0 // Resulting range = -65535 to 65535, clamped to [0, 65535] // gstate_c.vpDepthScale = 2.0f // gstate_c.vpZOffset = -1.0f // // The projection already accounts for those, so we need to reverse them. // // Additionally, OpenGL uses a range from [-1, 1]. So we multiply by scale and add the center. viewZScale *= (1.0f / gstate_c.vpDepthScale); viewZCenter -= 65535.0f * (gstate_c.vpZOffset); if (viewZScale != 0.0) { viewZInvScale = 1.0f / viewZScale; } else { viewZInvScale = 0.0; } float data[4] = { viewZScale, viewZCenter, viewZCenter, viewZInvScale }; SetFloatUniform4(u_depthRange, data); } if (dirty & DIRTY_STENCILREPLACEVALUE) { glUniform1f(u_stencilReplaceValue, (float)gstate.getStencilTestRef() * (1.0f / 255.0f)); } // TODO: Could even set all bones in one go if they're all dirty. #ifdef USE_BONE_ARRAY if (u_bone != -1) { float allBones[8 * 16]; bool allDirty = true; for (int i = 0; i < numBones; i++) { if (dirty & (DIRTY_BONEMATRIX0 << i)) { ConvertMatrix4x3To4x4(allBones + 16 * i, gstate.boneMatrix + 12 * i); } else { allDirty = false; } } if (allDirty) { // Set them all with one call glUniformMatrix4fv(u_bone, numBones, GL_FALSE, allBones); } else { // Set them one by one. Could try to coalesce two in a row etc but too lazy. for (int i = 0; i < numBones; i++) { if (dirty & (DIRTY_BONEMATRIX0 << i)) { glUniformMatrix4fv(u_bone + i, 1, GL_FALSE, allBones + 16 * i); } } } } #else float bonetemp[16]; for (int i = 0; i < numBones; i++) { if (dirty & (DIRTY_BONEMATRIX0 << i)) { ConvertMatrix4x3To4x4(bonetemp, gstate.boneMatrix + 12 * i); glUniformMatrix4fv(u_bone[i], 1, GL_FALSE, bonetemp); } } #endif if (dirty & DIRTY_SHADERBLEND) { if (u_blendFixA != -1) { SetColorUniform3(u_blendFixA, gstate.getFixA()); } if (u_blendFixB != -1) { SetColorUniform3(u_blendFixB, gstate.getFixB()); } const float fbotexSize[2] = { 1.0f / (float)gstate_c.curRTRenderWidth, 1.0f / (float)gstate_c.curRTRenderHeight, }; if (u_fbotexSize != -1) { glUniform2fv(u_fbotexSize, 1, fbotexSize); } } // Lighting if (dirty & DIRTY_AMBIENT) { SetColorUniform3Alpha(u_ambient, gstate.ambientcolor, gstate.getAmbientA()); } if (dirty & DIRTY_MATAMBIENTALPHA) { SetColorUniform3Alpha(u_matambientalpha, gstate.materialambient, gstate.getMaterialAmbientA()); } if (dirty & DIRTY_MATDIFFUSE) { SetColorUniform3(u_matdiffuse, gstate.materialdiffuse); } if (dirty & DIRTY_MATEMISSIVE) { SetColorUniform3(u_matemissive, gstate.materialemissive); } if (dirty & DIRTY_MATSPECULAR) { SetColorUniform3ExtraFloat(u_matspecular, gstate.materialspecular, getFloat24(gstate.materialspecularcoef)); } for (int i = 0; i < 4; i++) { if (dirty & (DIRTY_LIGHT0 << i)) { if (gstate.isDirectionalLight(i)) { // Prenormalize float x = getFloat24(gstate.lpos[i * 3 + 0]); float y = getFloat24(gstate.lpos[i * 3 + 1]); float z = getFloat24(gstate.lpos[i * 3 + 2]); float len = sqrtf(x*x + y*y + z*z); if (len == 0.0f) len = 1.0f; else len = 1.0f / len; float vec[3] = { x * len, y * len, z * len }; glUniform3fv(u_lightpos[i], 1, vec); } else { SetFloat24Uniform3(u_lightpos[i], &gstate.lpos[i * 3]); } if (u_lightdir[i] != -1) SetFloat24Uniform3(u_lightdir[i], &gstate.ldir[i * 3]); if (u_lightatt[i] != -1) SetFloat24Uniform3(u_lightatt[i], &gstate.latt[i * 3]); if (u_lightangle[i] != -1) glUniform1f(u_lightangle[i], getFloat24(gstate.lcutoff[i])); if (u_lightspotCoef[i] != -1) glUniform1f(u_lightspotCoef[i], getFloat24(gstate.lconv[i])); if (u_lightambient[i] != -1) SetColorUniform3(u_lightambient[i], gstate.lcolor[i * 3]); if (u_lightdiffuse[i] != -1) SetColorUniform3(u_lightdiffuse[i], gstate.lcolor[i * 3 + 1]); if (u_lightspecular[i] != -1) SetColorUniform3(u_lightspecular[i], gstate.lcolor[i * 3 + 2]); } } } ShaderManager::ShaderManager() : lastShader_(nullptr), globalDirty_(0xFFFFFFFF), shaderSwitchDirty_(0), diskCacheDirty_(false) { codeBuffer_ = new char[16384]; lastFSID_.set_invalid(); lastVSID_.set_invalid(); } ShaderManager::~ShaderManager() { delete [] codeBuffer_; } void ShaderManager::Clear() { DirtyLastShader(); for (auto iter = linkedShaderCache_.begin(); iter != linkedShaderCache_.end(); ++iter) { delete iter->ls; } for (auto iter = fsCache_.begin(); iter != fsCache_.end(); ++iter) { delete iter->second; } for (auto iter = vsCache_.begin(); iter != vsCache_.end(); ++iter) { delete iter->second; } linkedShaderCache_.clear(); fsCache_.clear(); vsCache_.clear(); globalDirty_ = 0xFFFFFFFF; lastFSID_.set_invalid(); lastVSID_.set_invalid(); DirtyShader(); } void ShaderManager::ClearCache(bool deleteThem) { // TODO: Recreate all from the diskcache when we come back. Clear(); } void ShaderManager::DirtyShader() { // Forget the last shader ID lastFSID_.set_invalid(); lastVSID_.set_invalid(); DirtyLastShader(); globalDirty_ = 0xFFFFFFFF; shaderSwitchDirty_ = 0; } void ShaderManager::DirtyLastShader() { // disables vertex arrays if (lastShader_) lastShader_->stop(); lastShader_ = nullptr; lastVShaderSame_ = false; } Shader *ShaderManager::CompileFragmentShader(ShaderID FSID) { if (!GenerateFragmentShader(FSID, codeBuffer_)) { return nullptr; } return new Shader(codeBuffer_, GL_FRAGMENT_SHADER, false); } Shader *ShaderManager::CompileVertexShader(ShaderID VSID) { bool useHWTransform = VSID.Bit(VS_BIT_USE_HW_TRANSFORM); GenerateVertexShader(VSID, codeBuffer_); return new Shader(codeBuffer_, GL_VERTEX_SHADER, useHWTransform); } Shader *ShaderManager::ApplyVertexShader(int prim, u32 vertType, ShaderID *VSID) { if (globalDirty_) { if (lastShader_) lastShader_->dirtyUniforms |= globalDirty_; shaderSwitchDirty_ |= globalDirty_; globalDirty_ = 0; } bool useHWTransform = CanUseHardwareTransform(prim); ComputeVertexShaderID(VSID, vertType, useHWTransform); // Just update uniforms if this is the same shader as last time. if (lastShader_ != 0 && *VSID == lastVSID_) { lastVShaderSame_ = true; return lastShader_->vs_; // Already all set. } else { lastVShaderSame_ = false; } lastVSID_ = *VSID; VSCache::iterator vsIter = vsCache_.find(*VSID); Shader *vs; if (vsIter == vsCache_.end()) { // Vertex shader not in cache. Let's compile it. vs = CompileVertexShader(*VSID); if (vs->Failed()) { I18NCategory *gr = GetI18NCategory("Graphics"); ERROR_LOG(G3D, "Shader compilation failed, falling back to software transform"); osm.Show(gr->T("hardware transform error - falling back to software"), 2.5f, 0xFF3030FF, -1, true); delete vs; // TODO: Look for existing shader with the appropriate ID, use that instead of generating a new one - however, need to make sure // that that shader ID is not used when computing the linked shader ID below, because then IDs won't match // next time and we'll do this over and over... // Can still work with software transform. ShaderID vsidTemp; ComputeVertexShaderID(&vsidTemp, vertType, false); GenerateVertexShader(vsidTemp, codeBuffer_); vs = new Shader(codeBuffer_, GL_VERTEX_SHADER, false); } vsCache_[*VSID] = vs; diskCacheDirty_ = true; } else { vs = vsIter->second; } return vs; } LinkedShader *ShaderManager::ApplyFragmentShader(ShaderID VSID, Shader *vs, u32 vertType, int prim) { ShaderID FSID; ComputeFragmentShaderID(&FSID); if (lastVShaderSame_ && FSID == lastFSID_) { lastShader_->UpdateUniforms(vertType, VSID); return lastShader_; } lastFSID_ = FSID; FSCache::iterator fsIter = fsCache_.find(FSID); Shader *fs; if (fsIter == fsCache_.end()) { // Fragment shader not in cache. Let's compile it. fs = CompileFragmentShader(FSID); fsCache_[FSID] = fs; diskCacheDirty_ = true; } else { fs = fsIter->second; } // Okay, we have both shaders. Let's see if there's a linked one. LinkedShader *ls = nullptr; u32 switchDirty = shaderSwitchDirty_; for (auto iter = linkedShaderCache_.begin(); iter != linkedShaderCache_.end(); ++iter) { // Deferred dirtying! Let's see if we can make this even more clever later. iter->ls->dirtyUniforms |= switchDirty; if (iter->vs == vs && iter->fs == fs) { ls = iter->ls; } } shaderSwitchDirty_ = 0; if (ls == nullptr) { // Check if we can link these. ls = new LinkedShader(VSID, vs, FSID, fs, vs->UseHWTransform()); ls->use(VSID, lastShader_); const LinkedShaderCacheEntry entry(vs, fs, ls); linkedShaderCache_.push_back(entry); } else { ls->use(VSID, lastShader_); } ls->UpdateUniforms(vertType, VSID); lastShader_ = ls; return ls; } std::string Shader::GetShaderString(DebugShaderStringType type, ShaderID id) const { switch (type) { case SHADER_STRING_SOURCE_CODE: return source_; case SHADER_STRING_SHORT_DESC: return isFragment_ ? FragmentShaderDesc(id) : VertexShaderDesc(id); default: return "N/A"; } } std::vector ShaderManager::DebugGetShaderIDs(DebugShaderType type) { std::string id; std::vector ids; switch (type) { case SHADER_TYPE_VERTEX: { for (auto iter : vsCache_) { iter.first.ToString(&id); ids.push_back(id); } } break; case SHADER_TYPE_FRAGMENT: { for (auto iter : fsCache_) { iter.first.ToString(&id); ids.push_back(id); } } break; default: break; } return ids; } std::string ShaderManager::DebugGetShaderString(std::string id, DebugShaderType type, DebugShaderStringType stringType) { ShaderID shaderId; shaderId.FromString(id); switch (type) { case SHADER_TYPE_VERTEX: { auto iter = vsCache_.find(shaderId); if (iter == vsCache_.end()) { return ""; } return iter->second->GetShaderString(stringType, iter->first); } case SHADER_TYPE_FRAGMENT: { auto iter = fsCache_.find(shaderId); if (iter == fsCache_.end()) { return ""; } return iter->second->GetShaderString(stringType, iter->first); } default: return "N/A"; } } // Shader pseudo-cache. // // We simply store the IDs of the shaders used during gameplay. On next startup of // the same game, we simply compile all the shaders from the start, so we don't have to // compile them on the fly later. Ideally we would store the actual compiled shaders // rather than just their IDs, but OpenGL does not support this, except for a few obscure // vendor-specific extensions. // // If things like GPU supported features have changed since the last time, we discard the cache // as sometimes these features might have an effect on the ID bits. #define CACHE_HEADER_MAGIC 0x83277592 #define CACHE_VERSION 1 struct CacheHeader { uint32_t magic; uint32_t version; uint32_t featureFlags; uint32_t reserved; int numVertexShaders; int numFragmentShaders; int numLinkedPrograms; }; void ShaderManager::LoadAndPrecompile(const std::string &filename) { FILE *f = File::OpenCFile(filename, "rb"); if (!f) { return; } CacheHeader header; if (fread(&header, 1, sizeof(header), f) != sizeof(header)) { fclose(f); return; } if (header.magic != CACHE_HEADER_MAGIC || header.version != CACHE_VERSION || header.featureFlags != gstate_c.featureFlags) { fclose(f); return; } time_update(); double start = time_now_d(); for (int i = 0; i < header.numVertexShaders; i++) { ShaderID id; fread(&id, 1, sizeof(id), f); Shader *vs = CompileVertexShader(id); if (vs->Failed()) { // Give up on using the cache, just bail. We can't safely create the fallback shaders here // without trying to deduce the vertType from the VSID. ERROR_LOG(G3D, "Failed to compile a vertex shader loading from cache. Skipping rest of shader cache."); delete vs; fclose(f); return; } vsCache_[id] = vs; } for (int i = 0; i < header.numFragmentShaders; i++) { ShaderID id; fread(&id, 1, sizeof(id), f); fsCache_[id] = CompileFragmentShader(id); } for (int i = 0; i < header.numLinkedPrograms; i++) { ShaderID vsid, fsid; fread(&vsid, 1, sizeof(vsid), f); fread(&fsid, 1, sizeof(fsid), f); Shader *vs = vsCache_[vsid]; Shader *fs = fsCache_[fsid]; LinkedShader *ls = new LinkedShader(vsid, vs, fsid, fs, vs->UseHWTransform()); LinkedShaderCacheEntry entry(vs, fs, ls); linkedShaderCache_.push_back(entry); } fclose(f); time_update(); double end = time_now_d(); NOTICE_LOG(G3D, "Compiled and linked %d programs (%d vertex, %d fragment) in %0.1f milliseconds", header.numLinkedPrograms, header.numVertexShaders, header.numFragmentShaders, 1000 * (end - start)); NOTICE_LOG(G3D, "Loaded the shader cache from '%s'", filename.c_str()); diskCacheDirty_ = false; } void ShaderManager::Save(const std::string &filename) { if (!diskCacheDirty_) { return; } if (linkedShaderCache_.empty()) { return; } INFO_LOG(G3D, "Saving the shader cache to '%s'", filename.c_str()); FILE *f = File::OpenCFile(filename, "wb"); if (!f) { // Can't save, give up for now. diskCacheDirty_ = false; return; } CacheHeader header; header.magic = CACHE_HEADER_MAGIC; header.version = CACHE_VERSION; header.reserved = 0; header.featureFlags = gstate_c.featureFlags; header.numVertexShaders = NumVertexShaders(); header.numFragmentShaders = NumFragmentShaders(); header.numLinkedPrograms = NumPrograms(); fwrite(&header, 1, sizeof(header), f); for (auto iter : vsCache_) { ShaderID id = iter.first; fwrite(&id, 1, sizeof(id), f); } for (auto iter : fsCache_) { ShaderID id = iter.first; fwrite(&id, 1, sizeof(id), f); } for (auto iter : linkedShaderCache_) { ShaderID vsid, fsid; for (auto iter2 : vsCache_) { if (iter.vs == iter2.second) vsid = iter2.first; } for (auto iter2 : fsCache_) { if (iter.fs == iter2.second) fsid = iter2.first; } fwrite(&vsid, 1, sizeof(vsid), f); fwrite(&fsid, 1, sizeof(fsid), f); } fclose(f); diskCacheDirty_ = false; }