// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "ArmRegCache.h" #include "ArmEmitter.h" #include "ArmJit.h" #if defined(MAEMO) #include "stddef.h" #endif using namespace ArmGen; ArmRegCache::ArmRegCache(MIPSState *mips, MIPSComp::ArmJitOptions *options) : mips_(mips), options_(options) { } void ArmRegCache::Init(ARMXEmitter *emitter) { emit_ = emitter; } void ArmRegCache::Start(MIPSAnalyst::AnalysisResults &stats) { for (int i = 0; i < NUM_ARMREG; i++) { ar[i].mipsReg = -1; ar[i].isDirty = false; } for (int i = 0; i < NUM_MIPSREG; i++) { mr[i].loc = ML_MEM; mr[i].reg = INVALID_REG; mr[i].imm = -1; mr[i].spillLock = false; } } const ARMReg *ArmRegCache::GetMIPSAllocationOrder(int &count) { // Note that R0 is reserved as scratch for now. // R1 could be used as it's only used for scratch outside "regalloc space" now. // R12 is also potentially usable. // R4-R7 are registers we could use for static allocation or downcount. // R8 is used to preserve flags in nasty branches. // R9 and upwards are reserved for jit basics. if (options_->downcountInRegister) { static const ARMReg allocationOrder[] = { R2, R3, R4, R5, R6, R12, }; count = sizeof(allocationOrder) / sizeof(const int); return allocationOrder; } else { static const ARMReg allocationOrder2[] = { R2, R3, R4, R5, R6, R7, R12, }; count = sizeof(allocationOrder2) / sizeof(const int); return allocationOrder2; } } void ArmRegCache::FlushBeforeCall() { // R4-R11 are preserved. Others need flushing. FlushArmReg(R2); FlushArmReg(R3); FlushArmReg(R12); } ARMReg ArmRegCache::MapRegAsPointer(MIPSReg mipsReg) { // read-only, non-dirty. // If already mapped as a pointer, bail. if (mr[mipsReg].loc == ML_ARMREG_AS_PTR) { return mr[mipsReg].reg; } // First, make sure the register is already mapped. MapReg(mipsReg, 0); // If it's dirty, flush it. ARMReg armReg = mr[mipsReg].reg; if (ar[armReg].isDirty) { emit_->STR(armReg, CTXREG, GetMipsRegOffset(ar[armReg].mipsReg)); } // Convert to a pointer by adding the base and clearing off the top bits. // If SP, we can probably avoid the top bit clear, let's play with that later. emit_->BIC(armReg, armReg, Operand2(0xC0, 4)); // &= 0x3FFFFFFF emit_->ADD(armReg, R11, armReg); ar[armReg].isDirty = false; ar[armReg].mipsReg = mipsReg; mr[mipsReg].loc = ML_ARMREG_AS_PTR; return armReg; } bool ArmRegCache::IsMappedAsPointer(MIPSReg mipsReg) { return mr[mipsReg].loc == ML_ARMREG_AS_PTR; } // TODO: Somewhat smarter spilling - currently simply spills the first available, should do // round robin or FIFO or something. ARMReg ArmRegCache::MapReg(MIPSReg mipsReg, int mapFlags) { // Let's see if it's already mapped. If so we just need to update the dirty flag. // We don't need to check for ML_NOINIT because we assume that anyone who maps // with that flag immediately writes a "known" value to the register. if (mr[mipsReg].loc == ML_ARMREG) { ARMReg armReg = mr[mipsReg].reg; if (ar[armReg].mipsReg != mipsReg) { ERROR_LOG(JIT, "Register mapping out of sync! %i", mipsReg); } if (mapFlags & MAP_DIRTY) { ar[armReg].isDirty = true; } return (ARMReg)mr[mipsReg].reg; } else if (mr[mipsReg].loc == ML_ARMREG_AS_PTR) { // Was mapped as pointer, now we want it mapped as a value, presumably to // add or subtract stuff to it. Later we could allow such things but for now // let's just convert back to a register value by reloading from the backing storage. ARMReg armReg = mr[mipsReg].reg; emit_->LDR(armReg, CTXREG, GetMipsRegOffset(mipsReg)); mr[mipsReg].loc = ML_ARMREG; if (mapFlags & MAP_DIRTY) { ar[armReg].isDirty = true; } return (ARMReg)mr[mipsReg].reg; } // Okay, not mapped, so we need to allocate an ARM register. int allocCount; const ARMReg *allocOrder = GetMIPSAllocationOrder(allocCount); allocate: for (int i = 0; i < allocCount; i++) { int reg = allocOrder[i]; if (ar[reg].mipsReg == -1) { // That means it's free. Grab it, and load the value into it (if requested). ar[reg].isDirty = (mapFlags & MAP_DIRTY) ? true : false; if (!(mapFlags & MAP_NOINIT)) { if (mipsReg == 0) { // If we get a request to load the zero register, at least we won't spend // time on a memory access... emit_->MOV((ARMReg)reg, 0); } else { if (mr[mipsReg].loc == ML_MEM) { emit_->LDR((ARMReg)reg, CTXREG, GetMipsRegOffset(mipsReg)); } else if (mr[mipsReg].loc == ML_IMM) { emit_->MOVI2R((ARMReg)reg, mr[mipsReg].imm); ar[reg].isDirty = true; // IMM is always dirty. } } } ar[reg].mipsReg = mipsReg; mr[mipsReg].loc = ML_ARMREG; mr[mipsReg].reg = (ARMReg)reg; return (ARMReg)reg; } } // Still nothing. Let's spill a reg and goto 10. // TODO: Use age or something to choose which register to spill? // TODO: Spill dirty regs first? or opposite? int bestToSpill = -1; for (int i = 0; i < allocCount; i++) { int reg = allocOrder[i]; if (ar[reg].mipsReg != -1 && mr[ar[reg].mipsReg].spillLock) continue; bestToSpill = reg; break; } if (bestToSpill != -1) { // ERROR_LOG(JIT, "Out of registers at PC %08x - spills register %i.", mips_->pc, bestToSpill); FlushArmReg((ARMReg)bestToSpill); goto allocate; } // Uh oh, we have all them spilllocked.... ERROR_LOG(JIT, "Out of spillable registers at PC %08x!!!", mips_->pc); return INVALID_REG; } void ArmRegCache::MapInIn(MIPSReg rd, MIPSReg rs) { SpillLock(rd, rs); MapReg(rd); MapReg(rs); ReleaseSpillLocks(); } void ArmRegCache::MapDirtyIn(MIPSReg rd, MIPSReg rs, bool avoidLoad) { SpillLock(rd, rs); bool load = !avoidLoad || rd == rs; MapReg(rd, MAP_DIRTY | (load ? 0 : MAP_NOINIT)); MapReg(rs); ReleaseSpillLocks(); } void ArmRegCache::MapDirtyInIn(MIPSReg rd, MIPSReg rs, MIPSReg rt, bool avoidLoad) { SpillLock(rd, rs, rt); bool load = !avoidLoad || (rd == rs || rd == rt); MapReg(rd, MAP_DIRTY | (load ? 0 : MAP_NOINIT)); MapReg(rt); MapReg(rs); ReleaseSpillLocks(); } void ArmRegCache::MapDirtyDirtyInIn(MIPSReg rd1, MIPSReg rd2, MIPSReg rs, MIPSReg rt, bool avoidLoad) { SpillLock(rd1, rd2, rs, rt); bool load1 = !avoidLoad || (rd1 == rs || rd1 == rt); bool load2 = !avoidLoad || (rd2 == rs || rd2 == rt); MapReg(rd1, MAP_DIRTY | (load1 ? 0 : MAP_NOINIT)); MapReg(rd2, MAP_DIRTY | (load2 ? 0 : MAP_NOINIT)); MapReg(rt); MapReg(rs); ReleaseSpillLocks(); } void ArmRegCache::FlushArmReg(ARMReg r) { if (ar[r].mipsReg == -1) { // Nothing to do, reg not mapped. return; } if (ar[r].mipsReg != -1) { if (ar[r].isDirty && mr[ar[r].mipsReg].loc == ML_ARMREG) emit_->STR(r, CTXREG, GetMipsRegOffset(ar[r].mipsReg)); // IMMs won't be in an ARM reg. mr[ar[r].mipsReg].loc = ML_MEM; mr[ar[r].mipsReg].reg = INVALID_REG; mr[ar[r].mipsReg].imm = 0; } else { ERROR_LOG(JIT, "Dirty but no mipsreg?"); } ar[r].isDirty = false; ar[r].mipsReg = -1; } void ArmRegCache::DiscardR(MIPSReg mipsReg) { if (mr[mipsReg].loc == ML_ARMREG || mr[mipsReg].loc == ML_ARMREG_AS_PTR) { ARMReg armReg = mr[mipsReg].reg; ar[armReg].isDirty = false; ar[armReg].mipsReg = -1; mr[mipsReg].reg = INVALID_REG; mr[mipsReg].loc = ML_MEM; mr[mipsReg].imm = 0; } } void ArmRegCache::FlushR(MIPSReg r) { switch (mr[r].loc) { case ML_IMM: // IMM is always "dirty". if (r != 0) { emit_->MOVI2R(R0, mr[r].imm); emit_->STR(R0, CTXREG, GetMipsRegOffset(r)); } break; case ML_ARMREG: if (mr[r].reg == INVALID_REG) { ERROR_LOG(JIT, "FlushMipsReg: MipsReg had bad ArmReg"); } if (ar[mr[r].reg].isDirty) { if (r != 0) { emit_->STR((ARMReg)mr[r].reg, CTXREG, GetMipsRegOffset(r)); } ar[mr[r].reg].isDirty = false; } ar[mr[r].reg].mipsReg = -1; break; case ML_ARMREG_AS_PTR: // Never dirty. if (ar[mr[r].reg].isDirty) { ERROR_LOG(JIT, "ARMREG_AS_PTR cannot be dirty (yet)"); } ar[mr[r].reg].mipsReg = -1; break; case ML_MEM: // Already there, nothing to do. break; default: //BAD break; } mr[r].loc = ML_MEM; mr[r].reg = INVALID_REG; mr[r].imm = 0; } void ArmRegCache::FlushAll() { for (int i = 0; i < NUM_MIPSREG; i++) { FlushR(i); } // Sanity check for (int i = 0; i < NUM_ARMREG; i++) { if (ar[i].mipsReg != -1) { ERROR_LOG(JIT, "Flush fail: ar[%i].mipsReg=%i", i, ar[i].mipsReg); } } } void ArmRegCache::SetImm(MIPSReg r, u32 immVal) { if (r == 0) ERROR_LOG(JIT, "Trying to set immediate %08x to r0", immVal); // Zap existing value if cached in a reg if (mr[r].loc == ML_ARMREG || mr[r].loc == ML_ARMREG_AS_PTR) { ar[mr[r].reg].mipsReg = -1; ar[mr[r].reg].isDirty = false; } mr[r].loc = ML_IMM; mr[r].imm = immVal; mr[r].reg = INVALID_REG; } bool ArmRegCache::IsImm(MIPSReg r) const { if (r == 0) return true; return mr[r].loc == ML_IMM; } u32 ArmRegCache::GetImm(MIPSReg r) const { if (r == 0) return 0; if (mr[r].loc != ML_IMM) { ERROR_LOG(JIT, "Trying to get imm from non-imm register %i", r); } return mr[r].imm; } int ArmRegCache::GetMipsRegOffset(MIPSReg r) { if (r < 32) return r * 4; switch (r) { case MIPSREG_HI: return offsetof(MIPSState, hi); case MIPSREG_LO: return offsetof(MIPSState, lo); } ERROR_LOG(JIT, "bad mips register %i", r); return 0; // or what? } void ArmRegCache::SpillLock(MIPSReg r1, MIPSReg r2, MIPSReg r3, MIPSReg r4) { mr[r1].spillLock = true; if (r2 != -1) mr[r2].spillLock = true; if (r3 != -1) mr[r3].spillLock = true; if (r4 != -1) mr[r4].spillLock = true; } void ArmRegCache::ReleaseSpillLocks() { for (int i = 0; i < NUM_MIPSREG; i++) { mr[i].spillLock = false; } } void ArmRegCache::ReleaseSpillLock(MIPSReg reg) { mr[reg].spillLock = false; } ARMReg ArmRegCache::R(int mipsReg) { if (mr[mipsReg].loc == ML_ARMREG) { return (ARMReg)mr[mipsReg].reg; } else { ERROR_LOG(JIT, "Reg %i not in arm reg. compilerPC = %08x", mipsReg, compilerPC_); return INVALID_REG; // BAAAD } } ARMReg ArmRegCache::RPtr(int mipsReg) { if (mr[mipsReg].loc == ML_ARMREG_AS_PTR) { return (ARMReg)mr[mipsReg].reg; } else { ERROR_LOG(JIT, "Reg %i not in arm reg as pointer. compilerPC = %08x", mipsReg, compilerPC_); return INVALID_REG; // BAAAD } }