// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "ext/xxhash.h" #include "Common/CPUDetect.h" #include "Common/ColorConv.h" #include "GPU/GPU.h" #include "GPU/GPUState.h" #include "GPU/Common/TextureDecoder.h" // NEON is in a separate file so that it can be compiled with a runtime check. #include "GPU/Common/TextureDecoderNEON.h" // TODO: Move some common things into here. #ifdef _M_SSE #include #if _M_SSE >= 0x401 #include #endif u32 QuickTexHashSSE2(const void *checkp, u32 size) { u32 check = 0; if (((intptr_t)checkp & 0xf) == 0 && (size & 0x3f) == 0) { __m128i cursor = _mm_set1_epi32(0); __m128i cursor2 = _mm_set_epi16(0x0001U, 0x0083U, 0x4309U, 0x4d9bU, 0xb651U, 0x4b73U, 0x9bd9U, 0xc00bU); __m128i update = _mm_set1_epi16(0x2455U); const __m128i *p = (const __m128i *)checkp; for (u32 i = 0; i < size / 16; i += 4) { __m128i chunk = _mm_mullo_epi16(_mm_load_si128(&p[i]), cursor2); cursor = _mm_add_epi16(cursor, chunk); cursor = _mm_xor_si128(cursor, _mm_load_si128(&p[i + 1])); cursor = _mm_add_epi32(cursor, _mm_load_si128(&p[i + 2])); chunk = _mm_mullo_epi16(_mm_load_si128(&p[i + 3]), cursor2); cursor = _mm_xor_si128(cursor, chunk); cursor2 = _mm_add_epi16(cursor2, update); } cursor = _mm_add_epi32(cursor, cursor2); // Add the four parts into the low i32. cursor = _mm_add_epi32(cursor, _mm_srli_si128(cursor, 8)); cursor = _mm_add_epi32(cursor, _mm_srli_si128(cursor, 4)); check = _mm_cvtsi128_si32(cursor); } else { const u32 *p = (const u32 *)checkp; for (u32 i = 0; i < size / 8; ++i) { check += *p++; check ^= *p++; } } return check; } #endif // Masks to downalign bufw to 16 bytes, and wrap at 2048. static const u32 textureAlignMask16[16] = { 0x7FF & ~(((8 * 16) / 16) - 1), //GE_TFMT_5650, 0x7FF & ~(((8 * 16) / 16) - 1), //GE_TFMT_5551, 0x7FF & ~(((8 * 16) / 16) - 1), //GE_TFMT_4444, 0x7FF & ~(((8 * 16) / 32) - 1), //GE_TFMT_8888, 0x7FF & ~(((8 * 16) / 4) - 1), //GE_TFMT_CLUT4, 0x7FF & ~(((8 * 16) / 8) - 1), //GE_TFMT_CLUT8, 0x7FF & ~(((8 * 16) / 16) - 1), //GE_TFMT_CLUT16, 0x7FF & ~(((8 * 16) / 32) - 1), //GE_TFMT_CLUT32, 0x7FF, //GE_TFMT_DXT1, 0x7FF, //GE_TFMT_DXT3, 0x7FF, //GE_TFMT_DXT5, 0, // INVALID, 0, // INVALID, 0, // INVALID, 0, // INVALID, 0, // INVALID, }; u32 GetTextureBufw(int level, u32 texaddr, GETextureFormat format) { // This is a hack to allow for us to draw the huge PPGe texture, which is always in kernel ram. if (texaddr >= PSP_GetKernelMemoryBase() && texaddr < PSP_GetKernelMemoryEnd()) return gstate.texbufwidth[level] & 0x1FFF; u32 bufw = gstate.texbufwidth[level] & textureAlignMask16[format]; if (bufw == 0 && format <= GE_TFMT_DXT5) { // If it's less than 16 bytes, use 16 bytes. bufw = (8 * 16) / textureBitsPerPixel[format]; } return bufw; } u32 QuickTexHashNonSSE(const void *checkp, u32 size) { u32 check = 0; if (((intptr_t)checkp & 0xf) == 0 && (size & 0x3f) == 0) { static const u16 cursor2_initial[8] = {0xc00bU, 0x9bd9U, 0x4b73U, 0xb651U, 0x4d9bU, 0x4309U, 0x0083U, 0x0001U}; union u32x4_u16x8 { u32 x32[4]; u16 x16[8]; }; u32x4_u16x8 cursor{}; u32x4_u16x8 cursor2; static const u16 update[8] = {0x2455U, 0x2455U, 0x2455U, 0x2455U, 0x2455U, 0x2455U, 0x2455U, 0x2455U}; for (u32 j = 0; j < 8; ++j) { cursor2.x16[j] = cursor2_initial[j]; } const u32x4_u16x8 *p = (const u32x4_u16x8 *)checkp; for (u32 i = 0; i < size / 16; i += 4) { for (u32 j = 0; j < 8; ++j) { const u16 temp = p[i + 0].x16[j] * cursor2.x16[j]; cursor.x16[j] += temp; } for (u32 j = 0; j < 4; ++j) { cursor.x32[j] ^= p[i + 1].x32[j]; cursor.x32[j] += p[i + 2].x32[j]; } for (u32 j = 0; j < 8; ++j) { const u16 temp = p[i + 3].x16[j] * cursor2.x16[j]; cursor.x16[j] ^= temp; } for (u32 j = 0; j < 8; ++j) { cursor2.x16[j] += update[j]; } } for (u32 j = 0; j < 4; ++j) { cursor.x32[j] += cursor2.x32[j]; } check = cursor.x32[0] + cursor.x32[1] + cursor.x32[2] + cursor.x32[3]; } else { const u32 *p = (const u32 *)checkp; for (u32 i = 0; i < size / 8; ++i) { check += *p++; check ^= *p++; } } return check; } #if !PPSSPP_ARCH(ARM64) && !defined(_M_SSE) static u32 QuickTexHashBasic(const void *checkp, u32 size) { #if PPSSPP_ARCH(ARM) && defined(__GNUC__) __builtin_prefetch(checkp, 0, 0); u32 check; asm volatile ( // Let's change size to the end address. "add %1, %1, %2\n" "mov r6, #0\n" ".align 2\n" // If we have zero sized input, we'll return garbage. Oh well, shouldn't happen. "QuickTexHashBasic_next:\n" "ldmia %2!, {r2-r5}\n" "add r6, r6, r2\n" "eor r6, r6, r3\n" "cmp %2, %1\n" "add r6, r6, r4\n" "eor r6, r6, r5\n" "blo QuickTexHashBasic_next\n" ".align 2\n" "QuickTexHashBasic_done:\n" "mov %0, r6\n" : "=r"(check) : "r"(size), "r"(checkp) : "r2", "r3", "r4", "r5", "r6" ); #else u32 check = 0; const u32 size_u32 = size / 4; const u32 *p = (const u32 *)checkp; for (u32 i = 0; i < size_u32; i += 4) { check += p[i + 0]; check ^= p[i + 1]; check += p[i + 2]; check ^= p[i + 3]; } #endif return check; } #endif void DoSwizzleTex16(const u32 *ysrcp, u8 *texptr, int bxc, int byc, u32 pitch) { // ysrcp is in 32-bits, so this is convenient. const u32 pitchBy32 = pitch >> 2; #ifdef _M_SSE if (((uintptr_t)ysrcp & 0xF) == 0 && (pitch & 0xF) == 0) { __m128i *dest = (__m128i *)texptr; // The pitch parameter is in bytes, so shift down for 128-bit. // Note: it's always aligned to 16 bytes, so this is safe. const u32 pitchBy128 = pitch >> 4; for (int by = 0; by < byc; by++) { const __m128i *xsrc = (const __m128i *)ysrcp; for (int bx = 0; bx < bxc; bx++) { const __m128i *src = xsrc; for (int n = 0; n < 2; n++) { // Textures are always 16-byte aligned so this is fine. __m128i temp1 = _mm_load_si128(src); src += pitchBy128; __m128i temp2 = _mm_load_si128(src); src += pitchBy128; __m128i temp3 = _mm_load_si128(src); src += pitchBy128; __m128i temp4 = _mm_load_si128(src); src += pitchBy128; _mm_store_si128(dest, temp1); _mm_store_si128(dest + 1, temp2); _mm_store_si128(dest + 2, temp3); _mm_store_si128(dest + 3, temp4); dest += 4; } xsrc++; } ysrcp += pitchBy32 * 8; } } else #endif { u32 *dest = (u32 *)texptr; for (int by = 0; by < byc; by++) { const u32 *xsrc = ysrcp; for (int bx = 0; bx < bxc; bx++) { const u32 *src = xsrc; for (int n = 0; n < 8; n++) { memcpy(dest, src, 16); src += pitchBy32; dest += 4; } xsrc += 4; } ysrcp += pitchBy32 * 8; } } } void DoUnswizzleTex16Basic(const u8 *texptr, u32 *ydestp, int bxc, int byc, u32 pitch) { // ydestp is in 32-bits, so this is convenient. const u32 pitchBy32 = pitch >> 2; #ifdef _M_SSE if (((uintptr_t)ydestp & 0xF) == 0 && (pitch & 0xF) == 0) { const __m128i *src = (const __m128i *)texptr; // The pitch parameter is in bytes, so shift down for 128-bit. // Note: it's always aligned to 16 bytes, so this is safe. const u32 pitchBy128 = pitch >> 4; for (int by = 0; by < byc; by++) { __m128i *xdest = (__m128i *)ydestp; for (int bx = 0; bx < bxc; bx++) { __m128i *dest = xdest; for (int n = 0; n < 2; n++) { // Textures are always 16-byte aligned so this is fine. __m128i temp1 = _mm_load_si128(src); __m128i temp2 = _mm_load_si128(src + 1); __m128i temp3 = _mm_load_si128(src + 2); __m128i temp4 = _mm_load_si128(src + 3); _mm_store_si128(dest, temp1); dest += pitchBy128; _mm_store_si128(dest, temp2); dest += pitchBy128; _mm_store_si128(dest, temp3); dest += pitchBy128; _mm_store_si128(dest, temp4); dest += pitchBy128; src += 4; } xdest++; } ydestp += pitchBy32 * 8; } } else #endif { const u32 *src = (const u32 *)texptr; for (int by = 0; by < byc; by++) { u32 *xdest = ydestp; for (int bx = 0; bx < bxc; bx++) { u32 *dest = xdest; for (int n = 0; n < 8; n++) { memcpy(dest, src, 16); dest += pitchBy32; src += 4; } xdest += 4; } ydestp += pitchBy32 * 8; } } } #if !PPSSPP_ARCH(ARM64) && !defined(_M_SSE) QuickTexHashFunc DoQuickTexHash = &QuickTexHashBasic; QuickTexHashFunc StableQuickTexHash = &QuickTexHashNonSSE; UnswizzleTex16Func DoUnswizzleTex16 = &DoUnswizzleTex16Basic; ReliableHash32Func DoReliableHash32 = &XXH32; ReliableHash64Func DoReliableHash64 = &XXH64; #endif // This has to be done after CPUDetect has done its magic. void SetupTextureDecoder() { #if PPSSPP_ARCH(ARM_NEON) && !PPSSPP_ARCH(ARM64) if (cpu_info.bNEON) { DoQuickTexHash = &QuickTexHashNEON; StableQuickTexHash = &QuickTexHashNEON; DoUnswizzleTex16 = &DoUnswizzleTex16NEON; #if !PPSSPP_PLATFORM(IOS) // Not sure if this is safe on iOS, it's had issues with xxhash. DoReliableHash32 = &ReliableHash32NEON; #endif } #endif } // S3TC / DXT Decoder class DXTDecoder { public: inline void DecodeColors(const DXT1Block *src, bool ignore1bitAlpha); inline void DecodeAlphaDXT5(const DXT5Block *src); inline void WriteColorsDXT1(u32 *dst, const DXT1Block *src, int pitch, int height); inline void WriteColorsDXT3(u32 *dst, const DXT3Block *src, int pitch, int height); inline void WriteColorsDXT5(u32 *dst, const DXT5Block *src, int pitch, int height); protected: u32 colors_[4]; u8 alpha_[8]; }; static inline u32 makecol(int r, int g, int b, int a) { return (a << 24) | (r << 16) | (g << 8) | b; } static inline int mix_2_3(int c1, int c2) { return (c1 + c1 + c2) / 3; } // This could probably be done faster by decoding two or four blocks at a time with SSE/NEON. void DXTDecoder::DecodeColors(const DXT1Block *src, bool ignore1bitAlpha) { u16 c1 = src->color1; u16 c2 = src->color2; int red1 = (c1 << 3) & 0xF8; int red2 = (c2 << 3) & 0xF8; int green1 = (c1 >> 3) & 0xFC; int green2 = (c2 >> 3) & 0xFC; int blue1 = (c1 >> 8) & 0xF8; int blue2 = (c2 >> 8) & 0xF8; // Keep alpha zero for non-DXT1 to skip masking the colors. int alpha = ignore1bitAlpha ? 0 : 255; colors_[0] = makecol(red1, green1, blue1, alpha); colors_[1] = makecol(red2, green2, blue2, alpha); if (c1 > c2) { colors_[2] = makecol(mix_2_3(red1, red2), mix_2_3(green1, green2), mix_2_3(blue1, blue2), alpha); colors_[3] = makecol(mix_2_3(red2, red1), mix_2_3(green2, green1), mix_2_3(blue2, blue1), alpha); } else { // Average - these are always left shifted, so no need to worry about ties. int red3 = (red1 + red2) / 2; int green3 = (green1 + green2) / 2; int blue3 = (blue1 + blue2) / 2; colors_[2] = makecol(red3, green3, blue3, alpha); colors_[3] = makecol(0, 0, 0, 0); } } static inline u8 lerp8(const DXT5Block *src, int n) { // These weights translate alpha1/alpha2 to fixed 8.8 point, pre-divided by 7. int weight1 = ((7 - n) << 8) / 7; int weight2 = (n << 8) / 7; return (u8)((src->alpha1 * weight1 + src->alpha2 * weight2 + 255) >> 8); } static inline u8 lerp6(const DXT5Block *src, int n) { int weight1 = ((5 - n) << 8) / 5; int weight2 = (n << 8) / 5; return (u8)((src->alpha1 * weight1 + src->alpha2 * weight2 + 255) >> 8); } void DXTDecoder::DecodeAlphaDXT5(const DXT5Block *src) { // TODO: Check if alpha is still not 100% correct. alpha_[0] = src->alpha1; alpha_[1] = src->alpha2; if (alpha_[0] > alpha_[1]) { alpha_[2] = lerp8(src, 1); alpha_[3] = lerp8(src, 2); alpha_[4] = lerp8(src, 3); alpha_[5] = lerp8(src, 4); alpha_[6] = lerp8(src, 5); alpha_[7] = lerp8(src, 6); } else { alpha_[2] = lerp6(src, 1); alpha_[3] = lerp6(src, 2); alpha_[4] = lerp6(src, 3); alpha_[5] = lerp6(src, 4); alpha_[6] = 0; alpha_[7] = 255; } } void DXTDecoder::WriteColorsDXT1(u32 *dst, const DXT1Block *src, int pitch, int height) { for (int y = 0; y < height; y++) { int colordata = src->lines[y]; for (int x = 0; x < 4; x++) { dst[x] = colors_[colordata & 3]; colordata >>= 2; } dst += pitch; } } void DXTDecoder::WriteColorsDXT3(u32 *dst, const DXT3Block *src, int pitch, int height) { for (int y = 0; y < height; y++) { int colordata = src->color.lines[y]; u32 alphadata = src->alphaLines[y]; for (int x = 0; x < 4; x++) { dst[x] = colors_[colordata & 3] | (alphadata << 28); colordata >>= 2; alphadata >>= 4; } dst += pitch; } } void DXTDecoder::WriteColorsDXT5(u32 *dst, const DXT5Block *src, int pitch, int height) { // 48 bits, 3 bit index per pixel, 12 bits per line. u64 alphadata = ((u64)(u16)src->alphadata1 << 32) | (u32)src->alphadata2; for (int y = 0; y < height; y++) { int colordata = src->color.lines[y]; for (int x = 0; x < 4; x++) { dst[x] = colors_[colordata & 3] | (alpha_[alphadata & 7] << 24); colordata >>= 2; alphadata >>= 3; } dst += pitch; } } // This could probably be done faster by decoding two or four blocks at a time with SSE/NEON. void DecodeDXT1Block(u32 *dst, const DXT1Block *src, int pitch, int height, bool ignore1bitAlpha) { DXTDecoder dxt; dxt.DecodeColors(src, ignore1bitAlpha); dxt.WriteColorsDXT1(dst, src, pitch, height); } void DecodeDXT3Block(u32 *dst, const DXT3Block *src, int pitch, int height) { DXTDecoder dxt; dxt.DecodeColors(&src->color, true); dxt.WriteColorsDXT3(dst, src, pitch, height); } // The alpha channel is not 100% correct void DecodeDXT5Block(u32 *dst, const DXT5Block *src, int pitch, int height) { DXTDecoder dxt; dxt.DecodeColors(&src->color, true); dxt.DecodeAlphaDXT5(src); dxt.WriteColorsDXT5(dst, src, pitch, height); } #ifdef _M_SSE static inline u32 CombineSSEBitsToDWORD(const __m128i &v) { __m128i temp; temp = _mm_or_si128(v, _mm_srli_si128(v, 8)); temp = _mm_or_si128(temp, _mm_srli_si128(temp, 4)); return _mm_cvtsi128_si32(temp); } CheckAlphaResult CheckAlphaRGBA8888SSE2(const u32 *pixelData, int stride, int w, int h) { const __m128i mask = _mm_set1_epi32(0xFF000000); const __m128i *p = (const __m128i *)pixelData; const int w4 = w / 4; const int stride4 = stride / 4; __m128i bits = mask; for (int y = 0; y < h; ++y) { for (int i = 0; i < w4; ++i) { const __m128i a = _mm_load_si128(&p[i]); bits = _mm_and_si128(bits, a); } __m128i result = _mm_xor_si128(bits, mask); if (CombineSSEBitsToDWORD(result) != 0) { return CHECKALPHA_ANY; } p += stride4; } return CHECKALPHA_FULL; } CheckAlphaResult CheckAlphaABGR4444SSE2(const u32 *pixelData, int stride, int w, int h) { const __m128i mask = _mm_set1_epi16((short)0x000F); const __m128i *p = (const __m128i *)pixelData; const int w8 = w / 8; const int stride8 = stride / 8; __m128i bits = mask; for (int y = 0; y < h; ++y) { for (int i = 0; i < w8; ++i) { const __m128i a = _mm_load_si128(&p[i]); bits = _mm_and_si128(bits, a); } __m128i result = _mm_xor_si128(bits, mask); if (CombineSSEBitsToDWORD(result) != 0) { return CHECKALPHA_ANY; } p += stride8; } return CHECKALPHA_FULL; } CheckAlphaResult CheckAlphaABGR1555SSE2(const u32 *pixelData, int stride, int w, int h) { const __m128i mask = _mm_set1_epi16((short)0x0001); const __m128i *p = (const __m128i *)pixelData; const int w8 = w / 8; const int stride8 = stride / 8; __m128i bits = mask; for (int y = 0; y < h; ++y) { for (int i = 0; i < w8; ++i) { const __m128i a = _mm_load_si128(&p[i]); bits = _mm_and_si128(bits, a); } __m128i result = _mm_xor_si128(bits, mask); if (CombineSSEBitsToDWORD(result) != 0) { return CHECKALPHA_ANY; } p += stride8; } return CHECKALPHA_FULL; } CheckAlphaResult CheckAlphaRGBA4444SSE2(const u32 *pixelData, int stride, int w, int h) { const __m128i mask = _mm_set1_epi16((short)0xF000); const __m128i *p = (const __m128i *)pixelData; const int w8 = w / 8; const int stride8 = stride / 8; __m128i bits = mask; for (int y = 0; y < h; ++y) { for (int i = 0; i < w8; ++i) { const __m128i a = _mm_load_si128(&p[i]); bits = _mm_and_si128(bits, a); } __m128i result = _mm_xor_si128(bits, mask); if (CombineSSEBitsToDWORD(result) != 0) { return CHECKALPHA_ANY; } p += stride8; } return CHECKALPHA_FULL; } CheckAlphaResult CheckAlphaRGBA5551SSE2(const u32 *pixelData, int stride, int w, int h) { const __m128i mask = _mm_set1_epi16((short)0x8000); const __m128i *p = (const __m128i *)pixelData; const int w8 = w / 8; const int stride8 = stride / 8; __m128i bits = mask; for (int y = 0; y < h; ++y) { for (int i = 0; i < w8; ++i) { const __m128i a = _mm_load_si128(&p[i]); bits = _mm_and_si128(bits, a); } __m128i result = _mm_xor_si128(bits, mask); if (CombineSSEBitsToDWORD(result) != 0) { return CHECKALPHA_ANY; } p += stride8; } return CHECKALPHA_FULL; } #endif CheckAlphaResult CheckAlphaRGBA8888Basic(const u32 *pixelData, int stride, int w, int h) { // Use SIMD if aligned to 16 bytes / 4 pixels (almost always the case.) if ((w & 3) == 0 && (stride & 3) == 0) { #ifdef _M_SSE return CheckAlphaRGBA8888SSE2(pixelData, stride, w, h); #elif PPSSPP_ARCH(ARM_NEON) if (cpu_info.bNEON) { return CheckAlphaRGBA8888NEON(pixelData, stride, w, h); } #endif } const u32 *p = pixelData; for (int y = 0; y < h; ++y) { u32 bits = 0xFF000000; for (int i = 0; i < w; ++i) { bits &= p[i]; } if (bits != 0xFF000000) { // We're done, we hit non-full alpha. return CHECKALPHA_ANY; } p += stride; } return CHECKALPHA_FULL; } CheckAlphaResult CheckAlphaABGR4444Basic(const u32 *pixelData, int stride, int w, int h) { // Use SIMD if aligned to 16 bytes / 8 pixels (usually the case.) if ((w & 7) == 0 && (stride & 7) == 0) { #ifdef _M_SSE return CheckAlphaABGR4444SSE2(pixelData, stride, w, h); #elif PPSSPP_ARCH(ARM_NEON) if (cpu_info.bNEON) { return CheckAlphaABGR4444NEON(pixelData, stride, w, h); } #endif } const u32 *p = pixelData; const int w2 = (w + 1) / 2; const int stride2 = (stride + 1) / 2; for (int y = 0; y < h; ++y) { u32 bits = 0x000F000F; for (int i = 0; i < w2; ++i) { bits &= p[i]; } if (bits != 0x000F000F) { // We're done, we hit non-full alpha. return CHECKALPHA_ANY; } p += stride2; } return CHECKALPHA_FULL; } CheckAlphaResult CheckAlphaABGR1555Basic(const u32 *pixelData, int stride, int w, int h) { // Use SIMD if aligned to 16 bytes / 8 pixels (usually the case.) if ((w & 7) == 0 && (stride & 7) == 0) { #ifdef _M_SSE return CheckAlphaABGR1555SSE2(pixelData, stride, w, h); #elif PPSSPP_ARCH(ARM_NEON) if (cpu_info.bNEON) { return CheckAlphaABGR1555NEON(pixelData, stride, w, h); } #endif } const u32 *p = pixelData; const int w2 = (w + 1) / 2; const int stride2 = (stride + 1) / 2; for (int y = 0; y < h; ++y) { u32 bits = 0x00010001; for (int i = 0; i < w2; ++i) { bits &= p[i]; } if (bits != 0x00010001) { return CHECKALPHA_ANY; } p += stride2; } return CHECKALPHA_FULL; } CheckAlphaResult CheckAlphaRGBA4444Basic(const u32 *pixelData, int stride, int w, int h) { // Use SSE if aligned to 16 bytes / 8 pixels (usually the case.) if ((w & 7) == 0 && (stride & 7) == 0) { #ifdef _M_SSE return CheckAlphaRGBA4444SSE2(pixelData, stride, w, h); #elif PPSSPP_ARCH(ARM_NEON) if (cpu_info.bNEON) { return CheckAlphaRGBA4444NEON(pixelData, stride, w, h); } #endif } const u32 *p = pixelData; const int w2 = (w + 1) / 2; const int stride2 = (stride + 1) / 2; for (int y = 0; y < h; ++y) { u32 bits = 0xF000F000; for (int i = 0; i < w2; ++i) { bits &= p[i]; } if (bits != 0xF000F000) { // We're done, we hit non-full alpha. return CHECKALPHA_ANY; } p += stride2; } return CHECKALPHA_FULL; } CheckAlphaResult CheckAlphaRGBA5551Basic(const u32 *pixelData, int stride, int w, int h) { // Use SSE if aligned to 16 bytes / 8 pixels (usually the case.) if ((w & 7) == 0 && (stride & 7) == 0) { #ifdef _M_SSE return CheckAlphaRGBA5551SSE2(pixelData, stride, w, h); #elif PPSSPP_ARCH(ARM_NEON) if (cpu_info.bNEON) { return CheckAlphaRGBA5551NEON(pixelData, stride, w, h); } #endif } const u32 *p = pixelData; const int w2 = (w + 1) / 2; const int stride2 = (stride + 1) / 2; for (int y = 0; y < h; ++y) { u32 bits = 0x80008000; for (int i = 0; i < w2; ++i) { bits &= p[i]; } if (bits != 0x80008000) { return CHECKALPHA_ANY; } p += stride2; } return CHECKALPHA_FULL; }