// Copyright (c) 2013- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "ppsspp_config.h" #include #include #include "Common/Data/Convert/ColorConv.h" #include "Common/Profiler/Profiler.h" #include "Common/Thread/ParallelLoop.h" #include "Core/ThreadPools.h" #include "Core/Config.h" #include "Core/MemMap.h" #include "Core/Reporting.h" #include "Core/ThreadPools.h" #include "GPU/GPUState.h" #include "GPU/Common/TextureDecoder.h" #include "GPU/Software/DrawPixel.h" #include "GPU/Software/Rasterizer.h" #include "GPU/Software/Sampler.h" #include "GPU/Software/SoftGpu.h" #if defined(_M_SSE) #include #endif namespace Rasterizer { // Only OK on x64 where our stack is aligned #if defined(_M_SSE) && !PPSSPP_ARCH(X86) static inline __m128 Interpolate(const __m128 &c0, const __m128 &c1, const __m128 &c2, int w0, int w1, int w2, float wsum) { __m128 v = _mm_mul_ps(c0, _mm_cvtepi32_ps(_mm_set1_epi32(w0))); v = _mm_add_ps(v, _mm_mul_ps(c1, _mm_cvtepi32_ps(_mm_set1_epi32(w1)))); v = _mm_add_ps(v, _mm_mul_ps(c2, _mm_cvtepi32_ps(_mm_set1_epi32(w2)))); return _mm_mul_ps(v, _mm_set_ps1(wsum)); } static inline __m128i Interpolate(const __m128i &c0, const __m128i &c1, const __m128i &c2, int w0, int w1, int w2, float wsum) { return _mm_cvtps_epi32(Interpolate(_mm_cvtepi32_ps(c0), _mm_cvtepi32_ps(c1), _mm_cvtepi32_ps(c2), w0, w1, w2, wsum)); } #endif // NOTE: When not casting color0 and color1 to float vectors, this code suffers from severe overflow issues. // Not sure if that should be regarded as a bug or if casting to float is a valid fix. static inline Vec4 Interpolate(const Vec4 &c0, const Vec4 &c1, const Vec4 &c2, int w0, int w1, int w2, float wsum) { #if defined(_M_SSE) && !PPSSPP_ARCH(X86) return Vec4(Interpolate(c0.ivec, c1.ivec, c2.ivec, w0, w1, w2, wsum)); #else return ((c0.Cast() * w0 + c1.Cast() * w1 + c2.Cast() * w2) * wsum).Cast(); #endif } static inline Vec3 Interpolate(const Vec3 &c0, const Vec3 &c1, const Vec3 &c2, int w0, int w1, int w2, float wsum) { #if defined(_M_SSE) && !PPSSPP_ARCH(X86) return Vec3(Interpolate(c0.ivec, c1.ivec, c2.ivec, w0, w1, w2, wsum)); #else return ((c0.Cast() * w0 + c1.Cast() * w1 + c2.Cast() * w2) * wsum).Cast(); #endif } static inline Vec2 Interpolate(const Vec2 &c0, const Vec2 &c1, const Vec2 &c2, int w0, int w1, int w2, float wsum) { #if defined(_M_SSE) && !PPSSPP_ARCH(X86) return Vec2(Interpolate(c0.vec, c1.vec, c2.vec, w0, w1, w2, wsum)); #else return (c0 * w0 + c1 * w1 + c2 * w2) * wsum; #endif } static inline Vec4 Interpolate(const float &c0, const float &c1, const float &c2, const Vec4 &w0, const Vec4 &w1, const Vec4 &w2, const Vec4 &wsum_recip) { #if defined(_M_SSE) && !PPSSPP_ARCH(X86) __m128 v = _mm_mul_ps(w0.vec, _mm_set1_ps(c0)); v = _mm_add_ps(v, _mm_mul_ps(w1.vec, _mm_set1_ps(c1))); v = _mm_add_ps(v, _mm_mul_ps(w2.vec, _mm_set1_ps(c2))); return _mm_mul_ps(v, wsum_recip.vec); #else return (w0 * c0 + w1 * c1 + w2 * c2) * wsum_recip; #endif } static inline Vec4 Interpolate(const float &c0, const float &c1, const float &c2, const Vec4 &w0, const Vec4 &w1, const Vec4 &w2, const Vec4 &wsum_recip) { return Interpolate(c0, c1, c2, w0.Cast(), w1.Cast(), w2.Cast(), wsum_recip); } static inline u8 ClampFogDepth(float fogdepth) { union FloatBits { float f; u32 u; }; FloatBits f; f.f = fogdepth; u32 exp = f.u >> 23; if ((f.u & 0x80000000) != 0 || exp <= 126 - 8) return 0; if (exp > 126) return 255; u32 mantissa = (f.u & 0x007FFFFF) | 0x00800000; return mantissa >> (16 + 126 - exp); } static inline int ClampUV(int v, int height) { if (v >= height - 1) return height - 1; else if (v < 0) return 0; return v; } static inline int WrapUV(int v, int height) { return v & (height - 1); } template static inline void ApplyTexelClamp(int out_u[N], int out_v[N], const int u[N], const int v[N], int width, int height) { if (gstate.isTexCoordClampedS()) { for (int i = 0; i < N; ++i) { out_u[i] = ClampUV(u[i], width); } } else { for (int i = 0; i < N; ++i) { out_u[i] = WrapUV(u[i], width); } } if (gstate.isTexCoordClampedT()) { for (int i = 0; i < N; ++i) { out_v[i] = ClampUV(v[i], height); } } else { for (int i = 0; i < N; ++i) { out_v[i] = WrapUV(v[i], height); } } } static inline void GetTexelCoordinates(int level, float s, float t, int &out_u, int &out_v, int x, int y) { int width = gstate.getTextureWidth(level); int height = gstate.getTextureHeight(level); int base_u = (int)(s * width * 256.0f) + 12 - x; int base_v = (int)(t * height * 256.0f) + 12 - y; base_u >>= 8; base_v >>= 8; ApplyTexelClamp<1>(&out_u, &out_v, &base_u, &base_v, width, height); } static inline void GetTextureCoordinates(const VertexData& v0, const VertexData& v1, const float p, float &s, float &t) { // All UV gen modes, by the time they get here, behave the same. // TODO: What happens if vertex has no texture coordinates? // Note that for environment mapping, texture coordinates have been calculated during lighting float q0 = 1.f / v0.clippos.w; float q1 = 1.f / v1.clippos.w; float wq0 = p * q0; float wq1 = (1.0f - p) * q1; float q_recip = 1.0f / (wq0 + wq1); s = (v0.texturecoords.s() * wq0 + v1.texturecoords.s() * wq1) * q_recip; t = (v0.texturecoords.t() * wq0 + v1.texturecoords.t() * wq1) * q_recip; } static inline void GetTextureCoordinates(const VertexData &v0, const VertexData &v1, const VertexData &v2, const Vec4 &w0, const Vec4 &w1, const Vec4 &w2, const Vec4 &wsum_recip, Vec4 &s, Vec4 &t) { // All UV gen modes, by the time they get here, behave the same. // TODO: What happens if vertex has no texture coordinates? // Note that for environment mapping, texture coordinates have been calculated during lighting. float q0 = 1.f / v0.clippos.w; float q1 = 1.f / v1.clippos.w; float q2 = 1.f / v2.clippos.w; Vec4 wq0 = w0.Cast() * q0; Vec4 wq1 = w1.Cast() * q1; Vec4 wq2 = w2.Cast() * q2; Vec4 q_recip = (wq0 + wq1 + wq2).Reciprocal(); s = Interpolate(v0.texturecoords.s(), v1.texturecoords.s(), v2.texturecoords.s(), wq0, wq1, wq2, q_recip); t = Interpolate(v0.texturecoords.t(), v1.texturecoords.t(), v2.texturecoords.t(), wq0, wq1, wq2, q_recip); } static inline void SetPixelDepth(int x, int y, u16 value) { depthbuf.Set16(x, y, gstate.DepthBufStride(), value); } static inline u8 GetPixelStencil(GEBufferFormat fmt, int x, int y) { if (fmt == GE_FORMAT_565) { // Always treated as 0 for comparison purposes. return 0; } else if (fmt == GE_FORMAT_5551) { return ((fb.Get16(x, y, gstate.FrameBufStride()) & 0x8000) != 0) ? 0xFF : 0; } else if (fmt == GE_FORMAT_4444) { return Convert4To8(fb.Get16(x, y, gstate.FrameBufStride()) >> 12); } else { return fb.Get32(x, y, gstate.FrameBufStride()) >> 24; } } static inline bool IsRightSideOrFlatBottomLine(const Vec2& vertex, const Vec2& line1, const Vec2& line2) { if (line1.y == line2.y) { // just check if vertex is above us => bottom line parallel to x-axis return vertex.y < line1.y; } else { // check if vertex is on our left => right side return vertex.x < line1.x + (line2.x - line1.x) * (vertex.y - line1.y) / (line2.y - line1.y); } } Vec4IntResult SOFTRAST_CALL GetTextureFunctionOutput(Vec4IntArg prim_color_in, Vec4IntArg texcolor_in) { const Vec4 prim_color = prim_color_in; const Vec4 texcolor = texcolor_in; Vec3 out_rgb; int out_a; bool rgba = gstate.isTextureAlphaUsed(); switch (gstate.getTextureFunction()) { case GE_TEXFUNC_MODULATE: { #if defined(_M_SSE) // Modulate weights slightly on the tex color, by adding one to prim and dividing by 256. const __m128i p = _mm_slli_epi16(_mm_packs_epi32(prim_color.ivec, prim_color.ivec), 4); const __m128i pboost = _mm_add_epi16(p, _mm_set1_epi16(1 << 4)); __m128i t = _mm_slli_epi16(_mm_packs_epi32(texcolor.ivec, texcolor.ivec), 4); if (gstate.isColorDoublingEnabled()) { const __m128i amask = _mm_set_epi16(-1, 0, 0, 0, -1, 0, 0, 0); const __m128i a = _mm_and_si128(t, amask); const __m128i rgb = _mm_andnot_si128(amask, t); t = _mm_or_si128(_mm_slli_epi16(rgb, 1), a); } const __m128i b = _mm_mulhi_epi16(pboost, t); out_rgb.ivec = _mm_unpacklo_epi16(b, _mm_setzero_si128()); if (rgba) { return ToVec4IntResult(Vec4(out_rgb.ivec)); } else { out_a = prim_color.a(); } #else if (gstate.isColorDoublingEnabled()) { out_rgb = ((prim_color.rgb() + Vec3::AssignToAll(1)) * texcolor.rgb() * 2) / 256; } else { out_rgb = (prim_color.rgb() + Vec3::AssignToAll(1)) * texcolor.rgb() / 256; } out_a = (rgba) ? ((prim_color.a() + 1) * texcolor.a() / 256) : prim_color.a(); #endif break; } case GE_TEXFUNC_DECAL: { if (rgba) { int t = texcolor.a(); int invt = 255 - t; // Both colors are boosted here, making the alpha have more weight. Vec3 one = Vec3::AssignToAll(1); out_rgb = ((prim_color.rgb() + one) * invt + (texcolor.rgb() + one) * t); // Keep the bits of accuracy when doubling. if (gstate.isColorDoublingEnabled()) out_rgb /= 128; else out_rgb /= 256; } else { out_rgb = texcolor.rgb(); } out_a = prim_color.a(); break; } case GE_TEXFUNC_BLEND: { const Vec3 const255(255, 255, 255); const Vec3 texenv(gstate.getTextureEnvColR(), gstate.getTextureEnvColG(), gstate.getTextureEnvColB()); // Unlike the others (and even alpha), this one simply always rounds up. const Vec3 roundup = Vec3::AssignToAll(255); out_rgb = ((const255 - texcolor.rgb()) * prim_color.rgb() + texcolor.rgb() * texenv + roundup); // Must divide by less to keep the precision for doubling to be accurate. if (gstate.isColorDoublingEnabled()) out_rgb /= 128; else out_rgb /= 256; out_a = (rgba) ? ((prim_color.a() + 1) * texcolor.a() / 256) : prim_color.a(); break; } case GE_TEXFUNC_REPLACE: out_rgb = texcolor.rgb(); // Doubling even happens for replace. if (gstate.isColorDoublingEnabled()) out_rgb *= 2; out_a = (rgba) ? texcolor.a() : prim_color.a(); break; case GE_TEXFUNC_ADD: case GE_TEXFUNC_UNKNOWN1: case GE_TEXFUNC_UNKNOWN2: case GE_TEXFUNC_UNKNOWN3: // Don't need to clamp afterward, we always clamp before tests. out_rgb = prim_color.rgb() + texcolor.rgb(); if (gstate.isColorDoublingEnabled()) out_rgb *= 2; // Alpha is still blended the common way. out_a = (rgba) ? ((prim_color.a() + 1) * texcolor.a() / 256) : prim_color.a(); break; } return ToVec4IntResult(Vec4(out_rgb, out_a)); } static inline Vec3 GetSourceFactor(GEBlendSrcFactor factor, const Vec4 &source, const Vec4 &dst) { switch (factor) { case GE_SRCBLEND_DSTCOLOR: return dst.rgb(); case GE_SRCBLEND_INVDSTCOLOR: return Vec3::AssignToAll(255) - dst.rgb(); case GE_SRCBLEND_SRCALPHA: #if defined(_M_SSE) return Vec3(_mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3))); #else return Vec3::AssignToAll(source.a()); #endif case GE_SRCBLEND_INVSRCALPHA: #if defined(_M_SSE) return Vec3(_mm_sub_epi32(_mm_set1_epi32(255), _mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3)))); #else return Vec3::AssignToAll(255 - source.a()); #endif case GE_SRCBLEND_DSTALPHA: return Vec3::AssignToAll(dst.a()); case GE_SRCBLEND_INVDSTALPHA: return Vec3::AssignToAll(255 - dst.a()); case GE_SRCBLEND_DOUBLESRCALPHA: return Vec3::AssignToAll(2 * source.a()); case GE_SRCBLEND_DOUBLEINVSRCALPHA: return Vec3::AssignToAll(255 - std::min(2 * source.a(), 255)); case GE_SRCBLEND_DOUBLEDSTALPHA: return Vec3::AssignToAll(2 * dst.a()); case GE_SRCBLEND_DOUBLEINVDSTALPHA: return Vec3::AssignToAll(255 - std::min(2 * dst.a(), 255)); case GE_SRCBLEND_FIXA: default: // All other dest factors (> 10) are treated as FIXA. return Vec3::FromRGB(gstate.getFixA()); } } static inline Vec3 GetDestFactor(GEBlendDstFactor factor, const Vec4 &source, const Vec4 &dst) { switch (factor) { case GE_DSTBLEND_SRCCOLOR: return source.rgb(); case GE_DSTBLEND_INVSRCCOLOR: return Vec3::AssignToAll(255) - source.rgb(); case GE_DSTBLEND_SRCALPHA: #if defined(_M_SSE) return Vec3(_mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3))); #else return Vec3::AssignToAll(source.a()); #endif case GE_DSTBLEND_INVSRCALPHA: #if defined(_M_SSE) return Vec3(_mm_sub_epi32(_mm_set1_epi32(255), _mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3)))); #else return Vec3::AssignToAll(255 - source.a()); #endif case GE_DSTBLEND_DSTALPHA: return Vec3::AssignToAll(dst.a()); case GE_DSTBLEND_INVDSTALPHA: return Vec3::AssignToAll(255 - dst.a()); case GE_DSTBLEND_DOUBLESRCALPHA: return Vec3::AssignToAll(2 * source.a()); case GE_DSTBLEND_DOUBLEINVSRCALPHA: return Vec3::AssignToAll(255 - std::min(2 * source.a(), 255)); case GE_DSTBLEND_DOUBLEDSTALPHA: return Vec3::AssignToAll(2 * dst.a()); case GE_DSTBLEND_DOUBLEINVDSTALPHA: return Vec3::AssignToAll(255 - std::min(2 * dst.a(), 255)); case GE_DSTBLEND_FIXB: default: // All other dest factors (> 10) are treated as FIXB. return Vec3::FromRGB(gstate.getFixB()); } } // Removed inline here - it was never chosen to be inlined by the compiler anyway, too complex. Vec3 AlphaBlendingResult(const PixelFuncID &pixelID, const Vec4 &source, const Vec4 &dst) { // Note: These factors cannot go below 0, but they can go above 255 when doubling. Vec3 srcfactor = GetSourceFactor(pixelID.AlphaBlendSrc(), source, dst); Vec3 dstfactor = GetDestFactor(pixelID.AlphaBlendDst(), source, dst); switch (pixelID.AlphaBlendEq()) { case GE_BLENDMODE_MUL_AND_ADD: { #if defined(_M_SSE) // We switch to 16 bit to use mulhi, and we use 4 bits of decimal to make the 16 bit shift free. const __m128i half = _mm_set1_epi16(1 << 3); const __m128i srgb = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(source.ivec, source.ivec), 4), half); const __m128i sf = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(srcfactor.ivec, srcfactor.ivec), 4), half); const __m128i s = _mm_mulhi_epi16(srgb, sf); const __m128i drgb = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(dst.ivec, dst.ivec), 4), half); const __m128i df = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(dstfactor.ivec, dstfactor.ivec), 4), half); const __m128i d = _mm_mulhi_epi16(drgb, df); return Vec3(_mm_unpacklo_epi16(_mm_adds_epi16(s, d), _mm_setzero_si128())); #else Vec3 half = Vec3::AssignToAll(1); Vec3 lhs = ((source.rgb() * 2 + half) * (srcfactor * 2 + half)) / 1024; Vec3 rhs = ((dst.rgb() * 2 + half) * (dstfactor * 2 + half)) / 1024; return lhs + rhs; #endif } case GE_BLENDMODE_MUL_AND_SUBTRACT: { #if defined(_M_SSE) const __m128i half = _mm_set1_epi16(1 << 3); const __m128i srgb = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(source.ivec, source.ivec), 4), half); const __m128i sf = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(srcfactor.ivec, srcfactor.ivec), 4), half); const __m128i s = _mm_mulhi_epi16(srgb, sf); const __m128i drgb = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(dst.ivec, dst.ivec), 4), half); const __m128i df = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(dstfactor.ivec, dstfactor.ivec), 4), half); const __m128i d = _mm_mulhi_epi16(drgb, df); return Vec3(_mm_unpacklo_epi16(_mm_max_epi16(_mm_subs_epi16(s, d), _mm_setzero_si128()), _mm_setzero_si128())); #else Vec3 half = Vec3::AssignToAll(1); Vec3 lhs = ((source.rgb() * 2 + half) * (srcfactor * 2 + half)) / 1024; Vec3 rhs = ((dst.rgb() * 2 + half) * (dstfactor * 2 + half)) / 1024; return lhs - rhs; #endif } case GE_BLENDMODE_MUL_AND_SUBTRACT_REVERSE: { #if defined(_M_SSE) const __m128i half = _mm_set1_epi16(1 << 3); const __m128i srgb = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(source.ivec, source.ivec), 4), half); const __m128i sf = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(srcfactor.ivec, srcfactor.ivec), 4), half); const __m128i s = _mm_mulhi_epi16(srgb, sf); const __m128i drgb = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(dst.ivec, dst.ivec), 4), half); const __m128i df = _mm_add_epi16(_mm_slli_epi16(_mm_packs_epi32(dstfactor.ivec, dstfactor.ivec), 4), half); const __m128i d = _mm_mulhi_epi16(drgb, df); return Vec3(_mm_unpacklo_epi16(_mm_max_epi16(_mm_subs_epi16(d, s), _mm_setzero_si128()), _mm_setzero_si128())); #else Vec3 half = Vec3::AssignToAll(1); Vec3 lhs = ((source.rgb() * 2 + half) * (srcfactor * 2 + half)) / 1024; Vec3 rhs = ((dst.rgb() * 2 + half) * (dstfactor * 2 + half)) / 1024; return rhs - lhs; #endif } case GE_BLENDMODE_MIN: return Vec3(std::min(source.r(), dst.r()), std::min(source.g(), dst.g()), std::min(source.b(), dst.b())); case GE_BLENDMODE_MAX: return Vec3(std::max(source.r(), dst.r()), std::max(source.g(), dst.g()), std::max(source.b(), dst.b())); case GE_BLENDMODE_ABSDIFF: return Vec3(::abs(source.r() - dst.r()), ::abs(source.g() - dst.g()), ::abs(source.b() - dst.b())); default: return source.rgb(); } } template static inline Vec4IntResult SOFTRAST_CALL ApplyTexturing(Sampler::Funcs sampler, Vec4IntArg prim_color, float s, float t, int texlevel, int frac_texlevel, bool bilinear, u8 *texptr[], int texbufw[], int x, int y) { Vec4 texcolor0; const u8 **tptr0 = const_cast(&texptr[mayHaveMipLevels ? texlevel : 0]); const int *bufw0 = &texbufw[mayHaveMipLevels ? texlevel : 0]; if (!bilinear) { int u[8] = { 0 }, v[8] = { 0 }; // 1.27.4 fixed point // Nearest filtering only. Round texcoords. GetTexelCoordinates(mayHaveMipLevels ? texlevel : 0, s, t, u[0], v[0], x, y); if (mayHaveMipLevels && frac_texlevel) { GetTexelCoordinates(texlevel + 1, s, t, u[1], v[1], x, y); } texcolor0 = Vec4(sampler.nearest(u[0], v[0], tptr0[0], bufw0[0], mayHaveMipLevels ? texlevel : 0)); if (mayHaveMipLevels && frac_texlevel) { Vec4 texcolor1 = Vec4(sampler.nearest(u[1], v[1], tptr0[1], bufw0[1], texlevel + 1)); texcolor0 = (texcolor1 * frac_texlevel + texcolor0 * (16 - frac_texlevel)) / 16; } return GetTextureFunctionOutput(prim_color, ToVec4IntArg(texcolor0)); } return sampler.linear(s, t, x, y, prim_color, tptr0, bufw0, mayHaveMipLevels ? texlevel : 0, mayHaveMipLevels ? frac_texlevel : 0); } template static inline Vec4IntResult SOFTRAST_CALL ApplyTexturingSingle(Sampler::Funcs sampler, Vec4IntArg prim_color, float s, float t, int texlevel, int frac_texlevel, bool bilinear, u8 *texptr[], int texbufw[], int x, int y) { return ApplyTexturing(sampler, prim_color, s, t, texlevel, frac_texlevel, bilinear, texptr, texbufw, ((x & 15) + 1) / 2, ((y & 15) + 1) / 2); } // Produces a signed 1.27.4 value. static int TexLog2(float delta) { union FloatBits { float f; u32 u; }; FloatBits f; f.f = delta; // Use the exponent as the tex level, and the top mantissa bits for a frac. // We can't support more than 4 bits of frac, so truncate. int useful = (f.u >> 19) & 0x0FFF; // Now offset so the exponent aligns with log2f (exp=127 is 0.) return useful - 127 * 16; } template static inline void CalculateSamplingParams(const float ds, const float dt, const int maxTexLevel, int &level, int &levelFrac, bool &filt) { const int width = gstate.getTextureWidth(0); const int height = gstate.getTextureHeight(0); // With 8 bits of fraction (because texslope can be fairly precise.) int detail; switch (gstate.getTexLevelMode()) { case GE_TEXLEVEL_MODE_AUTO: detail = TexLog2(std::max(ds * width, dt * height)); break; case GE_TEXLEVEL_MODE_SLOPE: // This is always offset by an extra texlevel. detail = 1 * 16 + TexLog2(gstate.getTextureLodSlope()); break; case GE_TEXLEVEL_MODE_CONST: default: // Unused value 3 operates the same as CONST. detail = 0; break; } // Add in the bias (used in all modes), expanding to 8 bits of fraction. detail += gstate.getTexLevelOffset16(); if (mayHaveMipLevels) { if (detail > 0 && maxTexLevel > 0) { bool mipFilt = gstate.isMipmapFilteringEnabled(); int level8 = std::min(detail, maxTexLevel * 16); if (!mipFilt) { // Round up at 1.5. level8 += 8; } level = level8 >> 4; levelFrac = mipFilt ? level8 & 0xF : 0; } else { level = 0; levelFrac = 0; } } if (g_Config.iTexFiltering == TEX_FILTER_FORCE_LINEAR) { filt = true; } else if (g_Config.iTexFiltering == TEX_FILTER_FORCE_NEAREST) { filt = false; } else { filt = detail > 0 ? gstate.isMinifyFilteringEnabled() : gstate.isMagnifyFilteringEnabled(); } } template static inline void ApplyTexturing(Sampler::Funcs sampler, Vec4 *prim_color, const Vec4 &s, const Vec4 &t, int maxTexLevel, u8 *texptr[], int texbufw[], int x, int y) { float ds = s[1] - s[0]; float dt = t[2] - t[0]; int level; int levelFrac; bool bilinear; CalculateSamplingParams(ds, dt, maxTexLevel, level, levelFrac, bilinear); for (int i = 0; i < 4; ++i) { prim_color[i] = ApplyTexturing(sampler, ToVec4IntArg(prim_color[i]), s[i], t[i], level, levelFrac, bilinear, texptr, texbufw, ((x & 15) + 1) / 2, ((y & 15) + 1) / 2); } } struct TriangleEdge { Vec4 Start(const ScreenCoords &v0, const ScreenCoords &v1, const ScreenCoords &origin); inline Vec4 StepX(const Vec4 &w); inline Vec4 StepY(const Vec4 &w); Vec4 stepX; Vec4 stepY; }; Vec4 TriangleEdge::Start(const ScreenCoords &v0, const ScreenCoords &v1, const ScreenCoords &origin) { // Start at pixel centers. Vec4 initX = Vec4::AssignToAll(origin.x) + Vec4(7, 23, 7, 23); Vec4 initY = Vec4::AssignToAll(origin.y) + Vec4(7, 7, 23, 23); // orient2d refactored. int xf = v0.y - v1.y; int yf = v1.x - v0.x; int c = v1.y * v0.x - v1.x * v0.y; stepX = Vec4::AssignToAll(xf * 16 * 2); stepY = Vec4::AssignToAll(yf * 16 * 2); return Vec4::AssignToAll(xf) * initX + Vec4::AssignToAll(yf) * initY + Vec4::AssignToAll(c); } inline Vec4 TriangleEdge::StepX(const Vec4 &w) { #if defined(_M_SSE) && !PPSSPP_ARCH(X86) return _mm_add_epi32(w.ivec, stepX.ivec); #else return w + stepX; #endif } inline Vec4 TriangleEdge::StepY(const Vec4 &w) { #if defined(_M_SSE) && !PPSSPP_ARCH(X86) return _mm_add_epi32(w.ivec, stepY.ivec); #else return w + stepY; #endif } static inline Vec4 MakeMask(const Vec4 &w0, const Vec4 &w1, const Vec4 &w2, const Vec4 &bias0, const Vec4 &bias1, const Vec4 &bias2, const Vec4 &scissor) { #if defined(_M_SSE) && !PPSSPP_ARCH(X86) __m128i biased0 = _mm_add_epi32(w0.ivec, bias0.ivec); __m128i biased1 = _mm_add_epi32(w1.ivec, bias1.ivec); __m128i biased2 = _mm_add_epi32(w2.ivec, bias2.ivec); return _mm_or_si128(_mm_or_si128(biased0, _mm_or_si128(biased1, biased2)), scissor.ivec); #else return (w0 + bias0) | (w1 + bias1) | (w2 + bias2) | scissor; #endif } static inline bool AnyMask(const Vec4 &mask) { #if defined(_M_SSE) && !PPSSPP_ARCH(X86) // In other words: !(mask.x < 0 && mask.y < 0 && mask.z < 0 && mask.w < 0) __m128i low2 = _mm_and_si128(mask.ivec, _mm_shuffle_epi32(mask.ivec, _MM_SHUFFLE(3, 2, 3, 2))); __m128i low1 = _mm_and_si128(low2, _mm_shuffle_epi32(low2, _MM_SHUFFLE(1, 1, 1, 1))); // Now we only need to check one sign bit. return _mm_cvtsi128_si32(low1) >= 0; #else return mask.x >= 0 || mask.y >= 0 || mask.z >= 0 || mask.w >= 0; #endif } static inline Vec4 EdgeRecip(const Vec4 &w0, const Vec4 &w1, const Vec4 &w2) { #if defined(_M_SSE) && !PPSSPP_ARCH(X86) __m128i wsum = _mm_add_epi32(w0.ivec, _mm_add_epi32(w1.ivec, w2.ivec)); // _mm_rcp_ps loses too much precision. return _mm_div_ps(_mm_set1_ps(1.0f), _mm_cvtepi32_ps(wsum)); #else return (w0 + w1 + w2).Cast().Reciprocal(); #endif } template void DrawTriangleSlice( const VertexData& v0, const VertexData& v1, const VertexData& v2, int x1, int y1, int x2, int y2, bool byY, int h1, int h2, const PixelFuncID &pixelID, const Rasterizer::SingleFunc &drawPixel, const Sampler::Funcs &sampler) { Vec4 bias0 = Vec4::AssignToAll(IsRightSideOrFlatBottomLine(v0.screenpos.xy(), v1.screenpos.xy(), v2.screenpos.xy()) ? -1 : 0); Vec4 bias1 = Vec4::AssignToAll(IsRightSideOrFlatBottomLine(v1.screenpos.xy(), v2.screenpos.xy(), v0.screenpos.xy()) ? -1 : 0); Vec4 bias2 = Vec4::AssignToAll(IsRightSideOrFlatBottomLine(v2.screenpos.xy(), v0.screenpos.xy(), v1.screenpos.xy()) ? -1 : 0); int texbufw[hasMipLevels ? 8 : 1] = {0}; int maxTexLevel = hasMipLevels ? gstate.getTextureMaxLevel() : 0; u8 *texptr[hasMipLevels ? 8 : 1] = {NULL}; if (gstate.isTextureMapEnabled() && !clearMode) { GETextureFormat texfmt = gstate.getTextureFormat(); for (int i = 0; i <= maxTexLevel; i++) { u32 texaddr = gstate.getTextureAddress(i); texbufw[i] = GetTextureBufw(i, texaddr, texfmt); if (Memory::IsValidAddress(texaddr)) texptr[i] = Memory::GetPointerUnchecked(texaddr); else texptr[i] = 0; } } TriangleEdge e0; TriangleEdge e1; TriangleEdge e2; int64_t minX = x1, maxX = x2, minY = y1, maxY = y2; if (byY) { maxY = std::min(maxY, minY + h2 * 16 * 2) - 1; minY += h1 * 16 * 2; } else { maxX = std::min(maxX, minX + h2 * 16 * 2) - 1; minX += h1 * 16 * 2; } ScreenCoords pprime(minX, minY, 0); Vec4 w0_base = e0.Start(v1.screenpos, v2.screenpos, pprime); Vec4 w1_base = e1.Start(v2.screenpos, v0.screenpos, pprime); Vec4 w2_base = e2.Start(v0.screenpos, v1.screenpos, pprime); // All the z values are the same, no interpolation required. // This is common, and when we interpolate, we lose accuracy. const bool flatZ = v0.screenpos.z == v1.screenpos.z && v0.screenpos.z == v2.screenpos.z; for (int64_t curY = minY; curY <= maxY; curY += 32, w0_base = e0.StepY(w0_base), w1_base = e1.StepY(w1_base), w2_base = e2.StepY(w2_base)) { Vec4 w0 = w0_base; Vec4 w1 = w1_base; Vec4 w2 = w2_base; // TODO: Maybe we can clip the edges instead? int scissorYPlus1 = curY + 16 > maxY ? -1 : 0; Vec4 scissor_mask = Vec4(0, maxX - minX, scissorYPlus1, (maxX - minX) | scissorYPlus1); Vec4 scissor_step = Vec4(0, -32, 0, -32); DrawingCoords p = TransformUnit::ScreenToDrawing(ScreenCoords(minX, curY, 0)); for (int64_t curX = minX; curX <= maxX; curX += 32, w0 = e0.StepX(w0), w1 = e1.StepX(w1), w2 = e2.StepX(w2), scissor_mask = scissor_mask + scissor_step, p.x = (p.x + 2) & 0x3FF) { // If p is on or inside all edges, render pixel Vec4 mask = MakeMask(w0, w1, w2, bias0, bias1, bias2, scissor_mask); if (AnyMask(mask)) { Vec4 wsum_recip = EdgeRecip(w0, w1, w2); Vec4 prim_color[4]; Vec3 sec_color[4]; if (gstate.getShadeMode() == GE_SHADE_GOURAUD && !clearMode) { // Does the PSP do perspective-correct color interpolation? The GC doesn't. for (int i = 0; i < 4; ++i) { prim_color[i] = Interpolate(v0.color0, v1.color0, v2.color0, w0[i], w1[i], w2[i], wsum_recip[i]); sec_color[i] = Interpolate(v0.color1, v1.color1, v2.color1, w0[i], w1[i], w2[i], wsum_recip[i]); } } else { for (int i = 0; i < 4; ++i) { prim_color[i] = v2.color0; sec_color[i] = v2.color1; } } if (gstate.isTextureMapEnabled() && !clearMode) { Vec4 s, t; if (gstate.isModeThrough()) { s = Interpolate(v0.texturecoords.s(), v1.texturecoords.s(), v2.texturecoords.s(), w0, w1, w2, wsum_recip); t = Interpolate(v0.texturecoords.t(), v1.texturecoords.t(), v2.texturecoords.t(), w0, w1, w2, wsum_recip); // For levels > 0, mipmapping is always based on level 0. Simpler to scale first. s *= 1.0f / (float)gstate.getTextureWidth(0); t *= 1.0f / (float)gstate.getTextureHeight(0); } else { // Texture coordinate interpolation must definitely be perspective-correct. GetTextureCoordinates(v0, v1, v2, w0, w1, w2, wsum_recip, s, t); } ApplyTexturing(sampler, prim_color, s, t, maxTexLevel, texptr, texbufw, curX, curY); } if (!clearMode) { for (int i = 0; i < 4; ++i) { #if defined(_M_SSE) // TODO: Tried making Vec4 do this, but things got slower. const __m128i sec = _mm_and_si128(sec_color[i].ivec, _mm_set_epi32(0, -1, -1, -1)); prim_color[i].ivec = _mm_add_epi32(prim_color[i].ivec, sec); #else prim_color[i] += Vec4(sec_color[i], 0); #endif } } Vec4 fog = Vec4::AssignToAll(255); if (gstate.isFogEnabled() && !clearMode) { Vec4 fogdepths = w0.Cast() * v0.fogdepth + w1.Cast() * v1.fogdepth + w2.Cast() * v2.fogdepth; fogdepths = fogdepths * wsum_recip; for (int i = 0; i < 4; ++i) { fog[i] = ClampFogDepth(fogdepths[i]); } } Vec4 z; if (flatZ) { z = Vec4::AssignToAll(v2.screenpos.z); } else { // TODO: Is that the correct way to interpolate? Vec4 zfloats = w0.Cast() * v0.screenpos.z + w1.Cast() * v1.screenpos.z + w2.Cast() * v2.screenpos.z; z = (zfloats * wsum_recip).Cast(); } DrawingCoords subp = p; for (int i = 0; i < 4; ++i) { if (mask[i] < 0) { continue; } subp.x = p.x + (i & 1); subp.y = p.y + (i / 2); drawPixel(subp.x, subp.y, z[i], fog[i], ToVec4IntArg(prim_color[i]), pixelID); } } } } } // Draws triangle, vertices specified in counter-clockwise direction void DrawTriangle(const VertexData& v0, const VertexData& v1, const VertexData& v2) { PROFILE_THIS_SCOPE("draw_tri"); Vec2 d01((int)v0.screenpos.x - (int)v1.screenpos.x, (int)v0.screenpos.y - (int)v1.screenpos.y); Vec2 d02((int)v0.screenpos.x - (int)v2.screenpos.x, (int)v0.screenpos.y - (int)v2.screenpos.y); Vec2 d12((int)v1.screenpos.x - (int)v2.screenpos.x, (int)v1.screenpos.y - (int)v2.screenpos.y); // Drop primitives which are not in CCW order by checking the cross product if (d01.x * d02.y - d01.y * d02.x < 0) return; int minX = std::min(std::min(v0.screenpos.x, v1.screenpos.x), v2.screenpos.x) & ~0xF; int minY = std::min(std::min(v0.screenpos.y, v1.screenpos.y), v2.screenpos.y) & ~0xF; int maxX = (std::max(std::max(v0.screenpos.x, v1.screenpos.x), v2.screenpos.x) + 0xF) & ~0xF; int maxY = (std::max(std::max(v0.screenpos.y, v1.screenpos.y), v2.screenpos.y) + 0xF) & ~0xF; DrawingCoords scissorTL(gstate.getScissorX1(), gstate.getScissorY1(), 0); DrawingCoords scissorBR(gstate.getScissorX2(), gstate.getScissorY2(), 0); minX = std::max(minX, (int)TransformUnit::DrawingToScreen(scissorTL).x); maxX = std::min(maxX, (int)TransformUnit::DrawingToScreen(scissorBR).x + 15); minY = std::max(minY, (int)TransformUnit::DrawingToScreen(scissorTL).y); maxY = std::min(maxY, (int)TransformUnit::DrawingToScreen(scissorBR).y + 15); // 32 because we do two pixels at once, and we don't want overlap. int rangeY = (maxY - minY) / 32 + 1; int rangeX = (maxX - minX) / 32 + 1; PixelFuncID pixelID; ComputePixelFuncID(&pixelID); Rasterizer::SingleFunc drawPixel = Rasterizer::GetSingleFunc(pixelID); Sampler::Funcs sampler = Sampler::GetFuncs(); const bool hasMipLevels = gstate.isMipmapEnabled() ? gstate.getTextureMaxLevel() > 0 : false; auto drawSlice = (hasMipLevels ? (gstate.isModeClear() ? &DrawTriangleSlice : &DrawTriangleSlice) : (gstate.isModeClear() ? &DrawTriangleSlice : &DrawTriangleSlice) ); const int MIN_LINES_PER_THREAD = 4; if (rangeY >= 12 && rangeX >= rangeY * 4) { auto bound = [&](int a, int b) -> void { drawSlice(v0, v1, v2, minX, minY, maxX, maxY, false, a, b, pixelID, drawPixel, sampler); }; ParallelRangeLoop(&g_threadManager, bound, 0, rangeX, MIN_LINES_PER_THREAD); } else if (rangeY >= 12 && rangeX >= 12) { auto bound = [&](int a, int b) -> void { drawSlice(v0, v1, v2, minX, minY, maxX, maxY, true, a, b, pixelID, drawPixel, sampler); }; ParallelRangeLoop(&g_threadManager, bound, 0, rangeY, MIN_LINES_PER_THREAD); } else { drawSlice(v0, v1, v2, minX, minY, maxX, maxY, true, 0, rangeY, pixelID, drawPixel, sampler); } } void DrawPoint(const VertexData &v0) { ScreenCoords pos = v0.screenpos; Vec4 prim_color = v0.color0; Vec3 sec_color = v0.color1; ScreenCoords scissorTL(TransformUnit::DrawingToScreen(DrawingCoords(gstate.getScissorX1(), gstate.getScissorY1(), 0))); ScreenCoords scissorBR(TransformUnit::DrawingToScreen(DrawingCoords(gstate.getScissorX2(), gstate.getScissorY2(), 0))); // Allow drawing within a pixel's center. scissorBR.x += 15; scissorBR.y += 15; if (pos.x < scissorTL.x || pos.y < scissorTL.y || pos.x > scissorBR.x || pos.y > scissorBR.y) return; Sampler::Funcs sampler = Sampler::GetFuncs(); PixelFuncID pixelID; ComputePixelFuncID(&pixelID); Rasterizer::SingleFunc drawPixel = Rasterizer::GetSingleFunc(pixelID); if (gstate.isTextureMapEnabled() && !pixelID.clearMode) { int texbufw[8] = {0}; int maxTexLevel = gstate.getTextureMaxLevel(); u8 *texptr[8] = {NULL}; if (!gstate.isMipmapEnabled()) { // No mipmapping enabled maxTexLevel = 0; } if (gstate.isTextureMapEnabled() && !pixelID.clearMode) { GETextureFormat texfmt = gstate.getTextureFormat(); for (int i = 0; i <= maxTexLevel; i++) { u32 texaddr = gstate.getTextureAddress(i); texbufw[i] = GetTextureBufw(i, texaddr, texfmt); if (Memory::IsValidAddress(texaddr)) texptr[i] = Memory::GetPointerUnchecked(texaddr); else texptr[i] = 0; } } float s = v0.texturecoords.s(); float t = v0.texturecoords.t(); if (gstate.isModeThrough()) { s *= 1.0f / (float)gstate.getTextureWidth(0); t *= 1.0f / (float)gstate.getTextureHeight(0); } else { // Texture coordinate interpolation must definitely be perspective-correct. GetTextureCoordinates(v0, v0, 0.0f, s, t); } int texLevel; int texLevelFrac; bool bilinear; CalculateSamplingParams(0.0f, 0.0f, maxTexLevel, texLevel, texLevelFrac, bilinear); prim_color = ApplyTexturingSingle(sampler, ToVec4IntArg(prim_color), s, t, texLevel, texLevelFrac, bilinear, texptr, texbufw, pos.x, pos.y); } if (!pixelID.clearMode) prim_color += Vec4(sec_color, 0); ScreenCoords pprime = pos; DrawingCoords p = TransformUnit::ScreenToDrawing(pprime); u16 z = pos.z; u8 fog = 255; if (gstate.isFogEnabled() && !pixelID.clearMode) { fog = ClampFogDepth(v0.fogdepth); } drawPixel(p.x, p.y, z, fog, ToVec4IntArg(prim_color), pixelID); } void ClearRectangle(const VertexData &v0, const VertexData &v1) { int minX = std::min(v0.screenpos.x, v1.screenpos.x) & ~0xF; int minY = std::min(v0.screenpos.y, v1.screenpos.y) & ~0xF; int maxX = (std::max(v0.screenpos.x, v1.screenpos.x) + 0xF) & ~0xF; int maxY = (std::max(v0.screenpos.y, v1.screenpos.y) + 0xF) & ~0xF; DrawingCoords scissorTL(gstate.getScissorX1(), gstate.getScissorY1(), 0); DrawingCoords scissorBR(gstate.getScissorX2(), gstate.getScissorY2(), 0); minX = std::max(minX, (int)TransformUnit::DrawingToScreen(scissorTL).x); maxX = std::max(0, std::min(maxX, (int)TransformUnit::DrawingToScreen(scissorBR).x + 16)); minY = std::max(minY, (int)TransformUnit::DrawingToScreen(scissorTL).y); maxY = std::max(0, std::min(maxY, (int)TransformUnit::DrawingToScreen(scissorBR).y + 16)); DrawingCoords pprime = TransformUnit::ScreenToDrawing(ScreenCoords(minX, minY, 0)); DrawingCoords pend = TransformUnit::ScreenToDrawing(ScreenCoords(maxX, maxY, 0)); constexpr int MIN_LINES_PER_THREAD = 32; // Min and max are in PSP fixed point screen coordinates, 16 here is for the 4 subpixel bits. const int w = (maxX - minX) / 16; if (w <= 0) return; if (gstate.isClearModeDepthMask()) { const u16 z = v1.screenpos.z; const int stride = gstate.DepthBufStride(); // If both bytes of Z equal, we can just use memset directly which is faster. if ((z & 0xFF) == (z >> 8)) { ParallelRangeLoop(&g_threadManager, [=](int y1, int y2) { DrawingCoords p = pprime; for (p.y = y1; p.y < y2; ++p.y) { u16 *row = depthbuf.Get16Ptr(p.x, p.y, stride); memset(row, z, w * 2); } }, pprime.y, pend.y, MIN_LINES_PER_THREAD); } else { ParallelRangeLoop(&g_threadManager, [=](int y1, int y2) { DrawingCoords p = pprime; for (p.y = y1; p.y < y2; ++p.y) { for (int x = 0; x < w; ++x) { SetPixelDepth(p.x + x, p.y, z); } } }, pprime.y, pend.y, MIN_LINES_PER_THREAD); } } // Note: this stays 0xFFFFFFFF if keeping color and alpha, even for 16-bit. u32 keepOldMask = 0xFFFFFFFF; if (gstate.isClearModeColorMask()) keepOldMask &= 0xFF000000; if (gstate.isClearModeAlphaMask()) keepOldMask &= 0x00FFFFFF; // The pixel write masks are respected in clear mode. keepOldMask |= gstate.getColorMask(); const u32 new_color = v1.color0.ToRGBA(); u16 new_color16; switch (gstate.FrameBufFormat()) { case GE_FORMAT_565: new_color16 = RGBA8888ToRGB565(new_color); keepOldMask = keepOldMask == 0 ? 0 : (0xFFFF0000 | RGBA8888ToRGB565(keepOldMask)); break; case GE_FORMAT_5551: new_color16 = RGBA8888ToRGBA5551(new_color); keepOldMask = keepOldMask == 0 ? 0 : (0xFFFF0000 | RGBA8888ToRGBA5551(keepOldMask)); break; case GE_FORMAT_4444: new_color16 = RGBA8888ToRGBA4444(new_color); keepOldMask = keepOldMask == 0 ? 0 : (0xFFFF0000 | RGBA8888ToRGBA4444(keepOldMask)); break; case GE_FORMAT_8888: break; case GE_FORMAT_INVALID: case GE_FORMAT_DEPTH16: _dbg_assert_msg_(false, "Software: invalid framebuf format."); break; } if (keepOldMask == 0) { const int stride = gstate.FrameBufStride(); if (gstate.FrameBufFormat() == GE_FORMAT_8888) { const bool canMemsetColor = (new_color & 0xFF) == (new_color >> 8) && (new_color & 0xFFFF) == (new_color >> 16); if (canMemsetColor) { ParallelRangeLoop(&g_threadManager, [=](int y1, int y2) { DrawingCoords p = pprime; for (p.y = y1; p.y < y2; ++p.y) { u32 *row = fb.Get32Ptr(p.x, p.y, stride); memset(row, new_color, w * 4); } }, pprime.y, pend.y, MIN_LINES_PER_THREAD); } else { ParallelRangeLoop(&g_threadManager, [=](int y1, int y2) { DrawingCoords p = pprime; for (p.y = y1; p.y < y2; ++p.y) { for (int x = 0; x < w; ++x) { fb.Set32(p.x + x, p.y, stride, new_color); } } }, pprime.y, pend.y, MIN_LINES_PER_THREAD); } } else { const bool canMemsetColor = (new_color16 & 0xFF) == (new_color16 >> 8); if (canMemsetColor) { ParallelRangeLoop(&g_threadManager, [=](int y1, int y2) { DrawingCoords p = pprime; for (p.y = y1; p.y < y2; ++p.y) { u16 *row = fb.Get16Ptr(p.x, p.y, stride); memset(row, new_color16, w * 2); } }, pprime.y, pend.y, MIN_LINES_PER_THREAD); } else { ParallelRangeLoop(&g_threadManager, [=](int y1, int y2) { DrawingCoords p = pprime; for (p.y = y1; p.y < y2; ++p.y) { for (int x = 0; x < w; ++x) { fb.Set16(p.x + x, p.y, stride, new_color16); } } }, pprime.y, pend.y, MIN_LINES_PER_THREAD); } } } else if (keepOldMask != 0xFFFFFFFF) { const int stride = gstate.FrameBufStride(); if (gstate.FrameBufFormat() == GE_FORMAT_8888) { ParallelRangeLoop(&g_threadManager, [=](int y1, int y2) { DrawingCoords p = pprime; for (p.y = y1; p.y < y2; ++p.y) { for (int x = 0; x < w; ++x) { const u32 old_color = fb.Get32(p.x + x, p.y, stride); const u32 c = (old_color & keepOldMask) | (new_color & ~keepOldMask); fb.Set32(p.x + x, p.y, stride, c); } } }, pprime.y, pend.y, MIN_LINES_PER_THREAD); } else { ParallelRangeLoop(&g_threadManager, [=](int y1, int y2) { DrawingCoords p = pprime; for (p.y = y1; p.y < y2; ++p.y) { for (int x = 0; x < w; ++x) { const u16 old_color = fb.Get16(p.x + x, p.y, stride); const u16 c = (old_color & keepOldMask) | (new_color16 & ~keepOldMask); fb.Set16(p.x + x, p.y, stride, c); } } }, pprime.y, pend.y, MIN_LINES_PER_THREAD); } } } void DrawLine(const VertexData &v0, const VertexData &v1) { // TODO: Use a proper line drawing algorithm that handles fractional endpoints correctly. Vec3 a(v0.screenpos.x, v0.screenpos.y, v0.screenpos.z); Vec3 b(v1.screenpos.x, v1.screenpos.y, v0.screenpos.z); int dx = b.x - a.x; int dy = b.y - a.y; int dz = b.z - a.z; int steps; if (abs(dx) < abs(dy)) steps = abs(dy) / 16; else steps = abs(dx) / 16; // Avoid going too far since we typically don't start at the pixel center. if (dx < 0 && dx >= -16) dx++; if (dy < 0 && dy >= -16) dy++; double xinc = (double)dx / steps; double yinc = (double)dy / steps; double zinc = (double)dz / steps; ScreenCoords scissorTL(TransformUnit::DrawingToScreen(DrawingCoords(gstate.getScissorX1(), gstate.getScissorY1(), 0))); ScreenCoords scissorBR(TransformUnit::DrawingToScreen(DrawingCoords(gstate.getScissorX2(), gstate.getScissorY2(), 0))); // Allow drawing within a pixel's center. scissorBR.x += 15; scissorBR.y += 15; PixelFuncID pixelID; ComputePixelFuncID(&pixelID); int texbufw[8] = {0}; int maxTexLevel = gstate.getTextureMaxLevel(); u8 *texptr[8] = {NULL}; if (!gstate.isMipmapEnabled()) { // No mipmapping enabled maxTexLevel = 0; } if (gstate.isTextureMapEnabled() && !pixelID.clearMode) { GETextureFormat texfmt = gstate.getTextureFormat(); for (int i = 0; i <= maxTexLevel; i++) { u32 texaddr = gstate.getTextureAddress(i); texbufw[i] = GetTextureBufw(i, texaddr, texfmt); texptr[i] = Memory::GetPointer(texaddr); } } Sampler::Funcs sampler = Sampler::GetFuncs(); Rasterizer::SingleFunc drawPixel = Rasterizer::GetSingleFunc(pixelID); double x = a.x > b.x ? a.x - 1 : a.x; double y = a.y > b.y ? a.y - 1 : a.y; double z = a.z; const int steps1 = steps == 0 ? 1 : steps; for (int i = 0; i < steps; i++) { if (x >= scissorTL.x && y >= scissorTL.y && x <= scissorBR.x && y <= scissorBR.y) { // Interpolate between the two points. Vec4 prim_color; Vec3 sec_color; if (gstate.getShadeMode() == GE_SHADE_GOURAUD) { prim_color = (v0.color0 * (steps - i) + v1.color0 * i) / steps1; sec_color = (v0.color1 * (steps - i) + v1.color1 * i) / steps1; } else { prim_color = v1.color0; sec_color = v1.color1; } u8 fog = 255; if (gstate.isFogEnabled() && !pixelID.clearMode) { fog = ClampFogDepth((v0.fogdepth * (float)(steps - i) + v1.fogdepth * (float)i) / steps1); } if (gstate.isAntiAliasEnabled()) { // TODO: Clearmode? // TODO: Calculate. prim_color.a() = 0x7F; } if (gstate.isTextureMapEnabled() && !pixelID.clearMode) { float s, s1; float t, t1; if (gstate.isModeThrough()) { Vec2 tc = (v0.texturecoords * (float)(steps - i) + v1.texturecoords * (float)i) / steps1; Vec2 tc1 = (v0.texturecoords * (float)(steps - i - 1) + v1.texturecoords * (float)(i + 1)) / steps1; s = tc.s() * (1.0f / (float)gstate.getTextureWidth(0)); s1 = tc1.s() * (1.0f / (float)gstate.getTextureWidth(0)); t = tc.t() * (1.0f / (float)gstate.getTextureHeight(0)); t1 = tc1.t() * (1.0f / (float)gstate.getTextureHeight(0)); } else { // Texture coordinate interpolation must definitely be perspective-correct. GetTextureCoordinates(v0, v1, (float)(steps - i) / steps1, s, t); GetTextureCoordinates(v0, v1, (float)(steps - i - 1) / steps1, s1, t1); } // If inc is 0, force the delta to zero. float ds = xinc == 0.0 ? 0.0f : (s1 - s) * 16.0f * (1.0f / xinc); float dt = yinc == 0.0 ? 0.0f : (t1 - t) * 16.0f * (1.0f / yinc); int texLevel; int texLevelFrac; bool texBilinear; CalculateSamplingParams(ds, dt, maxTexLevel, texLevel, texLevelFrac, texBilinear); if (gstate.isAntiAliasEnabled()) { // TODO: This is a niave and wrong implementation. DrawingCoords p0 = TransformUnit::ScreenToDrawing(ScreenCoords((int)x, (int)y, (int)z)); s = ((float)p0.x + xinc / 32.0f) / 512.0f; t = ((float)p0.y + yinc / 32.0f) / 512.0f; texBilinear = true; } prim_color = ApplyTexturingSingle(sampler, ToVec4IntArg(prim_color), s, t, texLevel, texLevelFrac, texBilinear, texptr, texbufw, x, y); } if (!pixelID.clearMode) prim_color += Vec4(sec_color, 0); ScreenCoords pprime = ScreenCoords((int)x, (int)y, (int)z); DrawingCoords p = TransformUnit::ScreenToDrawing(pprime); drawPixel(p.x, p.y, z, fog, ToVec4IntArg(prim_color), pixelID); } x += xinc; y += yinc; z += zinc; } } bool GetCurrentStencilbuffer(GPUDebugBuffer &buffer) { int w = gstate.getRegionX2() - gstate.getRegionX1() + 1; int h = gstate.getRegionY2() - gstate.getRegionY1() + 1; buffer.Allocate(w, h, GPU_DBG_FORMAT_8BIT); u8 *row = buffer.GetData(); for (int y = gstate.getRegionY1(); y <= gstate.getRegionY2(); ++y) { for (int x = gstate.getRegionX1(); x <= gstate.getRegionX2(); ++x) { row[x - gstate.getRegionX1()] = GetPixelStencil(gstate.FrameBufFormat(), x, y); } row += w; } return true; } bool GetCurrentTexture(GPUDebugBuffer &buffer, int level) { if (!gstate.isTextureMapEnabled()) { return false; } GETextureFormat texfmt = gstate.getTextureFormat(); u32 texaddr = gstate.getTextureAddress(level); int texbufw = GetTextureBufw(level, texaddr, texfmt); int w = gstate.getTextureWidth(level); int h = gstate.getTextureHeight(level); if (!texaddr || !Memory::IsValidRange(texaddr, (textureBitsPerPixel[texfmt] * texbufw * h) / 8)) return false; buffer.Allocate(w, h, GE_FORMAT_8888, false); Sampler::Funcs sampler = Sampler::GetFuncs(); u8 *texptr = Memory::GetPointer(texaddr); u32 *row = (u32 *)buffer.GetData(); for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { row[x] = Vec4(sampler.nearest(x, y, texptr, texbufw, level)).ToRGBA(); } row += w; } return true; } } // namespace