// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #include #include "gfx_es2/gpu_features.h" #if defined(_WIN32) && defined(_DEBUG) #include "Common/CommonWindows.h" #endif #include "base/stringutil.h" #include "Common/Vulkan/VulkanLoader.h" #include "Core/Config.h" #include "GPU/ge_constants.h" #include "GPU/GPUState.h" #include "GPU/Common/ShaderId.h" #include "GPU/Common/VertexDecoderCommon.h" #include "GPU/Vulkan/VertexShaderGeneratorVulkan.h" #include "GPU/Vulkan/PipelineManagerVulkan.h" #include "GPU/Vulkan/ShaderManagerVulkan.h" static const char *vulkan_glsl_preamble = "#version 430\n" "#extension GL_ARB_separate_shader_objects : enable\n" "#extension GL_ARB_shading_language_420pack : enable\n\n"; // "Varying" layout - must match fragment shader // color0 = 0 // color1 = 1 // texcoord = 2 // fog = 3 #undef WRITE #define WRITE p+=sprintf static const char * const boneWeightDecl[9] = { "#ERROR#", "layout(location = 3) in float w1;\n", "layout(location = 3) in vec2 w1;\n", "layout(location = 3) in vec3 w1;\n", "layout(location = 3) in vec4 w1;\n", "layout(location = 3) in vec4 w1;\nlayout(location = 4) in float w2;\n", "layout(location = 3) in vec4 w1;\nlayout(location = 4) in vec2 w2;\n", "layout(location = 3) in vec4 w1;\nlayout(location = 4) in vec3 w2;\n", "layout(location = 3) in vec4 w1;\nlayout(location = 4) in vec4 w2;\n", }; enum DoLightComputation { LIGHT_OFF, LIGHT_SHADE, LIGHT_FULL, }; // Depth range and viewport // // After the multiplication with the projection matrix, we have a 4D vector in clip space. // In OpenGL, Z is from -1 to 1, while in D3D, Z is from 0 to 1. // PSP appears to use the OpenGL convention. As Z is from -1 to 1, and the viewport is represented // by a center and a scale, to find the final Z value, all we need to do is to multiply by ZScale and // add ZCenter - these are properly scaled to directly give a Z value in [0, 65535]. // // z = vec.z * ViewportZScale + ViewportZCenter; // // That will give us the final value between 0 and 65535, which we can simply floor to simulate // the limited precision of the PSP's depth buffer. Then we convert it back: // z = floor(z); // // vec.z = (z - ViewportZCenter) / ViewportZScale; // // Now, the regular machinery will take over and do the calculation again. // // All this above is for full transform mode. // In through mode, the Z coordinate just goes straight through and there is no perspective division. // We simulate this of course with pretty much an identity matrix. Rounding Z becomes very easy. // // TODO: Skip all this if we can actually get a 16-bit depth buffer along with stencil, which // is a bit of a rare configuration, although quite common on mobile. bool GenerateVulkanGLSLVertexShader(const ShaderID &id, char *buffer, bool *usesLighting) { char *p = buffer; WRITE(p, "%s", vulkan_glsl_preamble); bool highpFog = false; bool highpTexcoord = false; bool isModeThrough = id.Bit(VS_BIT_IS_THROUGH); bool lmode = id.Bit(VS_BIT_LMODE) && !isModeThrough; // TODO: Different expression than in shaderIDgen bool doTexture = id.Bit(VS_BIT_DO_TEXTURE); bool doTextureTransform = id.Bit(VS_BIT_DO_TEXTURE_TRANSFORM); GETexMapMode uvGenMode = static_cast(id.Bits(VS_BIT_UVGEN_MODE, 2)); // this is only valid for some settings of uvGenMode GETexProjMapMode uvProjMode = static_cast(id.Bits(VS_BIT_UVPROJ_MODE, 2)); bool doShadeMapping = uvGenMode == GE_TEXMAP_ENVIRONMENT_MAP; bool doFlatShading = id.Bit(VS_BIT_FLATSHADE); bool useHWTransform = id.Bit(VS_BIT_USE_HW_TRANSFORM); bool hasColor = id.Bit(VS_BIT_HAS_COLOR) || !useHWTransform; bool hasNormal = id.Bit(VS_BIT_HAS_NORMAL) && useHWTransform; bool hasTexcoord = id.Bit(VS_BIT_HAS_TEXCOORD) || !useHWTransform; bool enableFog = id.Bit(VS_BIT_ENABLE_FOG); bool throughmode = id.Bit(VS_BIT_IS_THROUGH); bool flipNormal = id.Bit(VS_BIT_NORM_REVERSE); int ls0 = id.Bits(VS_BIT_LS0, 2); int ls1 = id.Bits(VS_BIT_LS1, 2); bool enableBones = id.Bit(VS_BIT_ENABLE_BONES); bool enableLighting = id.Bit(VS_BIT_LIGHTING_ENABLE); int matUpdate = id.Bits(VS_BIT_MATERIAL_UPDATE, 3); bool doBezier = id.Bit(VS_BIT_BEZIER); bool doSpline = id.Bit(VS_BIT_SPLINE); bool hasColorTess = id.Bit(VS_BIT_HAS_COLOR_TESS); bool hasTexcoordTess = id.Bit(VS_BIT_HAS_TEXCOORD_TESS); bool flipNormalTess = id.Bit(VS_BIT_NORM_REVERSE_TESS); // The uniforms are passed in as three "clumps" that may or may not be present. // We will memcpy the parts into place in a big buffer so we can be quite dynamic about what parts // are present and what parts aren't, but we will not be ultra detailed about it. *usesLighting = enableLighting || doShadeMapping; WRITE(p, "\n"); WRITE(p, "layout (std140, set = 0, binding = 2) uniform baseVars {\n%s} base;\n", ub_baseStr); if (enableLighting || doShadeMapping) WRITE(p, "layout (std140, set = 0, binding = 3) uniform lightVars {\n%s} light;\n", ub_vs_lightsStr); if (enableBones) WRITE(p, "layout (std140, set = 0, binding = 4) uniform boneVars {\n%s} bone;\n", ub_vs_bonesStr); const char *shading = doFlatShading ? "flat " : ""; DoLightComputation doLight[4] = { LIGHT_OFF, LIGHT_OFF, LIGHT_OFF, LIGHT_OFF }; if (useHWTransform) { int shadeLight0 = doShadeMapping ? ls0 : -1; int shadeLight1 = doShadeMapping ? ls1 : -1; for (int i = 0; i < 4; i++) { if (i == shadeLight0 || i == shadeLight1) doLight[i] = LIGHT_SHADE; if (id.Bit(VS_BIT_LIGHTING_ENABLE) && id.Bit(VS_BIT_LIGHT0_ENABLE + i)) doLight[i] = LIGHT_FULL; } } int numBoneWeights = 0; int boneWeightScale = id.Bits(VS_BIT_WEIGHT_FMTSCALE, 2); if (enableBones) { numBoneWeights = 1 + id.Bits(VS_BIT_BONES, 3); WRITE(p, "%s", boneWeightDecl[numBoneWeights]); } if (useHWTransform) WRITE(p, "layout (location = %d) in vec3 position;\n", PspAttributeLocation::POSITION); else // we pass the fog coord in w WRITE(p, "layout (location = %d) in vec4 position;\n", PspAttributeLocation::POSITION); if (useHWTransform && hasNormal) WRITE(p, "layout (location = %d) in vec3 normal;\n", PspAttributeLocation::NORMAL); bool texcoordInVec3 = false; if (doTexture && hasTexcoord) { if (!useHWTransform && doTextureTransform && !throughmode) { WRITE(p, "layout (location = %d) in vec3 texcoord;\n", PspAttributeLocation::TEXCOORD); texcoordInVec3 = true; } else WRITE(p, "layout (location = %d) in vec2 texcoord;\n", PspAttributeLocation::TEXCOORD); } if (hasColor) { WRITE(p, "layout (location = %d) in vec4 color0;\n", PspAttributeLocation::COLOR0); if (lmode && !useHWTransform) // only software transform supplies color1 as vertex data WRITE(p, "layout (location = %d) in vec3 color1;\n", PspAttributeLocation::COLOR1); } WRITE(p, "layout (location = 1) %sout vec4 v_color0;\n", shading); if (lmode) { WRITE(p, "layout (location = 2) %sout vec3 v_color1;\n", shading); } if (doTexture) { WRITE(p, "layout (location = 0) out vec3 v_texcoord;\n"); } if (enableFog) { // See the fragment shader generator WRITE(p, "layout (location = 3) out float v_fogdepth;\n"); } // See comment above this function (GenerateVertexShader). if (!isModeThrough && gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) { // Apply the projection and viewport to get the Z buffer value, floor to integer, undo the viewport and projection. WRITE(p, "\nvec4 depthRoundZVP(vec4 v) {\n"); WRITE(p, " float z = v.z / v.w;\n"); WRITE(p, " z = z * base.depthRange.x + base.depthRange.y;\n"); WRITE(p, " z = floor(z);\n"); WRITE(p, " z = (z - base.depthRange.z) * base.depthRange.w;\n"); WRITE(p, " return vec4(v.x, v.y, z * v.w, v.w);\n"); WRITE(p, "}\n\n"); } WRITE(p, "out gl_PerVertex { vec4 gl_Position; };\n"); if (doBezier || doSpline) { WRITE(p, "layout (std430) struct TessData {\n"); WRITE(p, " vec4 pos;\n"); WRITE(p, " vec4 uv;\n"); WRITE(p, " vec4 color;\n"); WRITE(p, "};"); WRITE(p, "layout (std430, set = 0, binding = 5) buffer s_tess_data {\n"); WRITE(p, " TessData data[];"); WRITE(p, "} tess_data;"); for (int i = 2; i <= 4; i++) { // Define 3 types vec2, vec3, vec4 WRITE(p, "vec%d tess_sample(in vec%d points[16], in vec2 weights[4]) {\n", i, i); WRITE(p, " vec%d pos = vec%d(0);\n", i, i); WRITE(p, " for (int i = 0; i < 4; ++i) {\n"); WRITE(p, " for (int j = 0; j < 4; ++j) {\n"); WRITE(p, " float f = weights[j].x * weights[i].y;\n"); WRITE(p, " if (f != 0)\n"); WRITE(p, " pos = pos + f * points[i * 4 + j];\n"); WRITE(p, " }\n"); WRITE(p, " }\n"); WRITE(p, " return pos;\n"); WRITE(p, "}\n"); } if (doSpline) { WRITE(p, "void spline_knot(ivec2 num_patches, ivec2 type, out vec2 knot[6], ivec2 patch_pos) {\n"); WRITE(p, " for (int i = 0; i < 6; ++i) {\n"); WRITE(p, " knot[i] = vec2(i + patch_pos.x - 2, i + patch_pos.y - 2);\n"); WRITE(p, " }\n"); WRITE(p, " if ((type.x & 1) != 0) {\n"); WRITE(p, " if (patch_pos.x <= 2)\n"); WRITE(p, " knot[0].x = 0;\n"); WRITE(p, " if (patch_pos.x <= 1)\n"); WRITE(p, " knot[1].x = 0;\n"); WRITE(p, " }\n"); WRITE(p, " if ((type.x & 2) != 0) {\n"); WRITE(p, " if (patch_pos.x >= (num_patches.x - 2))\n"); WRITE(p, " knot[5].x = num_patches.x;\n"); WRITE(p, " if (patch_pos.x == (num_patches.x - 1))\n"); WRITE(p, " knot[4].x = num_patches.x;\n"); WRITE(p, " }\n"); WRITE(p, " if ((type.y & 1) != 0) {\n"); WRITE(p, " if (patch_pos.y <= 2)\n"); WRITE(p, " knot[0].y = 0;\n"); WRITE(p, " if (patch_pos.y <= 1)\n"); WRITE(p, " knot[1].y = 0;\n"); WRITE(p, " }\n"); WRITE(p, " if ((type.y & 2) != 0) {\n"); WRITE(p, " if (patch_pos.y >= (num_patches.y - 2))\n"); WRITE(p, " knot[5].y = num_patches.y;\n"); WRITE(p, " if (patch_pos.y == (num_patches.y - 1))\n"); WRITE(p, " knot[4].y = num_patches.y;\n"); WRITE(p, " }\n"); WRITE(p, "}\n"); WRITE(p, "void spline_weight(vec2 t, in vec2 knot[6], out vec2 weights[4]) {\n"); // TODO: Maybe compilers could be coaxed into vectorizing this code without the above explicitly... WRITE(p, " vec2 t0 = (t - knot[0]);\n"); WRITE(p, " vec2 t1 = (t - knot[1]);\n"); WRITE(p, " vec2 t2 = (t - knot[2]);\n"); // TODO: All our knots are integers so we should be able to get rid of these divisions (How?) WRITE(p, " vec2 f30 = t0 / (knot[3] - knot[0]);\n"); WRITE(p, " vec2 f41 = t1 / (knot[4] - knot[1]);\n"); WRITE(p, " vec2 f52 = t2 / (knot[5] - knot[2]);\n"); WRITE(p, " vec2 f31 = t1 / (knot[3] - knot[1]);\n"); WRITE(p, " vec2 f42 = t2 / (knot[4] - knot[2]);\n"); WRITE(p, " vec2 f32 = t2 / (knot[3] - knot[2]);\n"); WRITE(p, " vec2 a = (1 - f30)*(1 - f31);\n"); WRITE(p, " vec2 b = (f31*f41);\n"); WRITE(p, " vec2 c = (1 - f41)*(1 - f42);\n"); WRITE(p, " vec2 d = (f42*f52);\n"); WRITE(p, " weights[0] = a - (a*f32);\n"); WRITE(p, " weights[1] = 1 - a - b + ((a + b + c - 1)*f32);\n"); WRITE(p, " weights[2] = b + ((1 - b - c - d)*f32);\n"); WRITE(p, " weights[3] = d*f32;\n"); WRITE(p, "}\n"); } } WRITE(p, "void main() {\n"); if (!useHWTransform) { // Simple pass-through of vertex data to fragment shader if (doTexture) { if (texcoordInVec3) { WRITE(p, " v_texcoord = texcoord;\n"); } else { WRITE(p, " v_texcoord = vec3(texcoord, 1.0);\n"); } } if (hasColor) { WRITE(p, " v_color0 = color0;\n"); if (lmode) WRITE(p, " v_color1 = color1;\n"); } else { WRITE(p, " v_color0 = base.matambientalpha;\n"); if (lmode) WRITE(p, " v_color1 = vec3(0.0);\n"); } if (enableFog) { WRITE(p, " v_fogdepth = position.w;\n"); } if (isModeThrough) { WRITE(p, " gl_Position = base.proj_through_mtx * vec4(position.xyz, 1.0);\n"); } else { // The viewport is used in this case, so need to compensate for that. if (gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) { WRITE(p, " gl_Position = depthRoundZVP(base.proj_mtx * vec4(position.xyz, 1.0));\n"); } else { WRITE(p, " gl_Position = base.proj_mtx * vec4(position.xyz, 1.0);\n"); } } } else { // Step 1: World Transform / Skinning if (!enableBones) { if (doBezier || doSpline) { WRITE(p, " vec3 _pos[16];\n"); WRITE(p, " vec2 _tex[16];\n"); WRITE(p, " vec4 _col[16];\n"); WRITE(p, " int num_patches_u = %s;\n", doBezier ? "(base.spline_count_u - 1) / 3" : "base.spline_count_u - 3"); WRITE(p, " int u = int(mod(gl_InstanceIndex, num_patches_u));\n"); WRITE(p, " int v = gl_InstanceIndex / num_patches_u;\n"); WRITE(p, " ivec2 patch_pos = ivec2(u, v);\n"); WRITE(p, " for (int i = 0; i < 4; i++) {\n"); WRITE(p, " for (int j = 0; j < 4; j++) {\n"); WRITE(p, " int idx = (i + v%s) * base.spline_count_u + (j + u%s);\n", doBezier ? " * 3" : "", doBezier ? " * 3" : ""); WRITE(p, " _pos[i * 4 + j] = tess_data.data[idx].pos.xyz;\n"); if (doTexture && hasTexcoord && hasTexcoordTess) WRITE(p, " _tex[i * 4 + j] = tess_data.data[idx].uv.xy;\n"); if (hasColor && hasColorTess) WRITE(p, " _col[i * 4 + j] = tess_data.data[idx].color;\n"); WRITE(p, " }\n"); WRITE(p, " }\n"); WRITE(p, " vec2 tess_pos = position.xy;\n"); WRITE(p, " vec2 weights[4];\n"); if (doBezier) { // Bernstein 3D WRITE(p, " weights[0] = (1 - tess_pos) * (1 - tess_pos) * (1 - tess_pos);\n"); WRITE(p, " weights[1] = 3 * tess_pos * (1 - tess_pos) * (1 - tess_pos);\n"); WRITE(p, " weights[2] = 3 * tess_pos * tess_pos * (1 - tess_pos);\n"); WRITE(p, " weights[3] = tess_pos * tess_pos * tess_pos;\n"); } else { // Spline WRITE(p, " ivec2 spline_num_patches = ivec2(base.spline_count_u - 3, base.spline_count_v - 3);\n"); WRITE(p, " ivec2 spline_type = ivec2(base.spline_type_u, base.spline_type_v);\n"); WRITE(p, " vec2 knots[6];\n"); WRITE(p, " spline_knot(spline_num_patches, spline_type, knots, patch_pos);\n"); WRITE(p, " spline_weight(tess_pos + patch_pos, knots, weights);\n"); } WRITE(p, " vec3 pos = tess_sample(_pos, weights);\n"); if (doTexture && hasTexcoord) { if (hasTexcoordTess) WRITE(p, " vec2 tex = tess_sample(_tex, weights);\n"); else WRITE(p, " vec2 tex = tess_pos + patch_pos;\n"); } if (hasColor) { if (hasColorTess) WRITE(p, " vec4 col = tess_sample(_col, weights);\n"); else WRITE(p, " vec4 col = tess_data.data[0].color;\n"); } if (hasNormal) { // Curved surface is probably always need to compute normal(not sampling from control points) if (doBezier) { // Bernstein derivative WRITE(p, " vec2 bernderiv[4];\n"); WRITE(p, " bernderiv[0] = -3 * (tess_pos - 1) * (tess_pos - 1); \n"); WRITE(p, " bernderiv[1] = 9 * tess_pos * tess_pos - 12 * tess_pos + 3; \n"); WRITE(p, " bernderiv[2] = 3 * (2 - 3 * tess_pos) * tess_pos; \n"); WRITE(p, " bernderiv[3] = 3 * tess_pos * tess_pos; \n"); WRITE(p, " vec2 bernderiv_u[4];\n"); WRITE(p, " vec2 bernderiv_v[4];\n"); WRITE(p, " for (int i = 0; i < 4; i++) {\n"); WRITE(p, " bernderiv_u[i] = vec2(bernderiv[i].x, weights[i].y);\n"); WRITE(p, " bernderiv_v[i] = vec2(weights[i].x, bernderiv[i].y);\n"); WRITE(p, " }\n"); WRITE(p, " vec3 du = tess_sample(_pos, bernderiv_u);\n"); WRITE(p, " vec3 dv = tess_sample(_pos, bernderiv_v);\n"); } else { // Spline WRITE(p, " vec2 tess_next_u = vec2(normal.x, 0);\n"); WRITE(p, " vec2 tess_next_v = vec2(0, normal.y);\n"); // Right WRITE(p, " vec2 tess_pos_r = tess_pos + tess_next_u;\n"); WRITE(p, " spline_weight(tess_pos_r + patch_pos, knots, weights);\n"); WRITE(p, " vec3 pos_r = tess_sample(_pos, weights);\n"); // Left WRITE(p, " vec2 tess_pos_l = tess_pos - tess_next_u;\n"); WRITE(p, " spline_weight(tess_pos_l + patch_pos, knots, weights);\n"); WRITE(p, " vec3 pos_l = tess_sample(_pos, weights);\n"); // Down WRITE(p, " vec2 tess_pos_d = tess_pos + tess_next_v;\n"); WRITE(p, " spline_weight(tess_pos_d + patch_pos, knots, weights);\n"); WRITE(p, " vec3 pos_d = tess_sample(_pos, weights);\n"); // Up WRITE(p, " vec2 tess_pos_u = tess_pos - tess_next_v;\n"); WRITE(p, " spline_weight(tess_pos_u + patch_pos, knots, weights);\n"); WRITE(p, " vec3 pos_u = tess_sample(_pos, weights);\n"); WRITE(p, " vec3 du = pos_r - pos_l;\n"); WRITE(p, " vec3 dv = pos_d - pos_u;\n"); } WRITE(p, " vec3 nrm = cross(du, dv);\n"); WRITE(p, " nrm = normalize(nrm);\n"); } WRITE(p, " vec3 worldpos = vec4(pos.xyz, 1.0) * base.world_mtx;\n"); if (hasNormal) { WRITE(p, " mediump vec3 worldnormal = normalize(vec4(%snrm, 0.0) * base.world_mtx);\n", flipNormalTess ? "-" : ""); } else { WRITE(p, " mediump vec3 worldnormal = vec3(0.0, 0.0, 1.0);\n"); } } else { // No skinning, just standard T&L. WRITE(p, " vec3 worldpos = vec4(position.xyz, 1.0) * base.world_mtx;\n"); if (hasNormal) WRITE(p, " mediump vec3 worldnormal = normalize(vec4(%snormal, 0.0) * base.world_mtx);\n", flipNormal ? "-" : ""); else WRITE(p, " mediump vec3 worldnormal = vec3(0.0, 0.0, 1.0);\n"); } } else { static const char *rescale[4] = { "", " * 1.9921875", " * 1.999969482421875", "" }; // 2*127.5f/128.f, 2*32767.5f/32768.f, 1.0f}; const char *factor = rescale[boneWeightScale]; static const char * const boneWeightAttr[8] = { "w1.x", "w1.y", "w1.z", "w1.w", "w2.x", "w2.y", "w2.z", "w2.w", }; WRITE(p, " mat3x4 skinMatrix = w1.x * bone.m[0];\n"); if (numBoneWeights > 1) { for (int i = 1; i < numBoneWeights; i++) { WRITE(p, " skinMatrix += %s * bone.m[%i];\n", boneWeightAttr[i], i); } } WRITE(p, ";\n"); // Trying to simplify this results in bugs in LBP... WRITE(p, " vec3 skinnedpos = (vec4(position, 1.0) * skinMatrix) %s;\n", factor); WRITE(p, " vec3 worldpos = vec4(skinnedpos, 1.0) * base.world_mtx;\n"); if (hasNormal) { WRITE(p, " mediump vec3 skinnednormal = vec4(%snormal, 0.0) * skinMatrix %s;\n", flipNormal ? "-" : "", factor); } else { WRITE(p, " mediump vec3 skinnednormal = vec4(0.0, 0.0, %s1.0, 0.0) * skinMatrix %s;\n", flipNormal ? "-" : "", factor); } WRITE(p, " mediump vec3 worldnormal = normalize(vec4(skinnednormal, 0.0) * base.world_mtx);\n"); } WRITE(p, " vec4 viewPos = vec4(vec4(worldpos, 1.0) * base.view_mtx, 1.0);\n"); // Final view and projection transforms. if (gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) { WRITE(p, " gl_Position = depthRoundZVP(base.proj_mtx * viewPos);\n"); } else { WRITE(p, " gl_Position = base.proj_mtx * viewPos;\n"); } // TODO: Declare variables for dots for shade mapping if needed. const char *ambientStr = ((matUpdate & 1) && hasColor) ? "color0" : "base.matambientalpha"; const char *diffuseStr = ((matUpdate & 2) && hasColor) ? "color0.rgb" : "light.matdiffuse"; const char *specularStr = ((matUpdate & 4) && hasColor) ? "color0.rgb" : "light.matspecular.rgb"; if (doBezier || doSpline) { ambientStr = (matUpdate & 1) && hasColor ? "col" : "base.matambientalpha"; diffuseStr = (matUpdate & 2) && hasColor ? "col.rgb" : "light.matdiffuse"; specularStr = (matUpdate & 4) && hasColor ? "col.rgb" : "light.matspecular.rgb"; } bool diffuseIsZero = true; bool specularIsZero = true; bool distanceNeeded = false; if (enableLighting) { WRITE(p, " vec4 lightSum0 = light.u_ambient * %s + vec4(light.matemissive, 0.0);\n", ambientStr); for (int i = 0; i < 4; i++) { GELightType type = static_cast(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2)); GELightComputation comp = static_cast(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2)); if (doLight[i] != LIGHT_FULL) continue; diffuseIsZero = false; if (comp != GE_LIGHTCOMP_ONLYDIFFUSE) specularIsZero = false; if (type != GE_LIGHTTYPE_DIRECTIONAL) distanceNeeded = true; } if (!specularIsZero) { WRITE(p, " vec3 lightSum1 = vec3(0.0);\n"); } if (!diffuseIsZero) { WRITE(p, " vec3 toLight;\n"); WRITE(p, " vec3 diffuse;\n"); } if (distanceNeeded) { WRITE(p, " float distance;\n"); WRITE(p, " float lightScale;\n"); } } // Calculate lights if needed. If shade mapping is enabled, lights may need to be // at least partially calculated. for (int i = 0; i < 4; i++) { if (doLight[i] != LIGHT_FULL) continue; GELightType type = static_cast(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2)); GELightComputation comp = static_cast(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2)); if (type == GE_LIGHTTYPE_DIRECTIONAL) { // We prenormalize light positions for directional lights. WRITE(p, " toLight = light.pos[%i];\n", i); } else { WRITE(p, " toLight = light.pos[%i] - worldpos;\n", i); WRITE(p, " distance = length(toLight);\n"); WRITE(p, " toLight /= distance;\n"); } bool doSpecular = comp != GE_LIGHTCOMP_ONLYDIFFUSE; bool poweredDiffuse = comp == GE_LIGHTCOMP_BOTHWITHPOWDIFFUSE; WRITE(p, " mediump float dot%i = max(dot(toLight, worldnormal), 0.0);\n", i); if (poweredDiffuse) { // pow(0.0, 0.0) may be undefined, but the PSP seems to treat it as 1.0. // Seen in Tales of the World: Radiant Mythology (#2424.) WRITE(p, " if (dot%i == 0.0 && light.matspecular.a == 0.0) {\n", i); WRITE(p, " dot%i = 1.0;\n", i); WRITE(p, " } else {\n"); WRITE(p, " dot%i = pow(dot%i, light.matspecular.a);\n", i, i); WRITE(p, " }\n"); } const char *timesLightScale = " * lightScale"; // Attenuation switch (type) { case GE_LIGHTTYPE_DIRECTIONAL: timesLightScale = ""; break; case GE_LIGHTTYPE_POINT: WRITE(p, " lightScale = clamp(1.0 / dot(light.att[%i], vec3(1.0, distance, distance*distance)), 0.0, 1.0);\n", i); break; case GE_LIGHTTYPE_SPOT: case GE_LIGHTTYPE_UNKNOWN: WRITE(p, " float angle%i = dot(normalize(light.dir[%i]), toLight);\n", i, i); WRITE(p, " if (angle%i >= light.angle[%i]) {\n", i, i); WRITE(p, " lightScale = clamp(1.0 / dot(light.att[%i], vec3(1.0, distance, distance*distance)), 0.0, 1.0) * pow(angle%i, light.spotCoef[%i]);\n", i, i, i); WRITE(p, " } else {\n"); WRITE(p, " lightScale = 0.0;\n"); WRITE(p, " }\n"); break; default: // ILLEGAL break; } WRITE(p, " diffuse = (light.diffuse[%i] * %s) * dot%i;\n", i, diffuseStr, i); if (doSpecular) { WRITE(p, " dot%i = dot(normalize(toLight + vec3(0.0, 0.0, 1.0)), worldnormal);\n", i); WRITE(p, " if (dot%i > 0.0)\n", i); WRITE(p, " lightSum1 += light.specular[%i] * %s * (pow(dot%i, light.matspecular.a) %s);\n", i, specularStr, i, timesLightScale); } WRITE(p, " lightSum0.rgb += (light.ambient[%i] * %s.rgb + diffuse)%s;\n", i, ambientStr, timesLightScale); } if (enableLighting) { // Sum up ambient, emissive here. if (lmode) { WRITE(p, " v_color0 = clamp(lightSum0, 0.0, 1.0);\n"); // v_color1 only exists when lmode = 1. if (specularIsZero) { WRITE(p, " v_color1 = vec3(0.0);\n"); } else { WRITE(p, " v_color1 = clamp(lightSum1, 0.0, 1.0);\n"); } } else { if (specularIsZero) { WRITE(p, " v_color0 = clamp(lightSum0, 0.0, 1.0);\n"); } else { WRITE(p, " v_color0 = clamp(clamp(lightSum0, 0.0, 1.0) + vec4(lightSum1, 0.0), 0.0, 1.0);\n"); } } } else { // Lighting doesn't affect color. if (hasColor) { if (doBezier || doSpline) WRITE(p, " v_color0 = col;\n"); else WRITE(p, " v_color0 = color0;\n"); } else { WRITE(p, " v_color0 = base.matambientalpha;\n"); } if (lmode) { WRITE(p, " v_color1 = vec3(0.0);\n"); } } bool scaleUV = !throughmode && (uvGenMode == GE_TEXMAP_TEXTURE_COORDS || uvGenMode == GE_TEXMAP_UNKNOWN); // Step 3: UV generation if (doTexture) { switch (uvGenMode) { case GE_TEXMAP_TEXTURE_COORDS: // Scale-offset. Easy. case GE_TEXMAP_UNKNOWN: // Not sure what this is, but Riviera uses it. Treating as coords works. if (scaleUV) { if (hasTexcoord) { if (doBezier || doSpline) WRITE(p, " v_texcoord = vec3(tex.xy * base.uvscaleoffset.xy + base.uvscaleoffset.zw, 0.0);\n"); else WRITE(p, " v_texcoord = vec3(texcoord.xy * base.uvscaleoffset.xy, 0.0);\n"); } else { WRITE(p, " v_texcoord = vec3(0.0);\n"); } } else { if (hasTexcoord) { if (doBezier || doSpline) WRITE(p, " v_texcoord = vec3(tex.xy * base.uvscaleoffset.xy + base.uvscaleoffset.zw, 0.0);\n"); else WRITE(p, " v_texcoord = vec3(texcoord.xy * base.uvscaleoffset.xy + base.uvscaleoffset.zw, 0.0);\n"); } else { WRITE(p, " v_texcoord = vec3(base.uvscaleoffset.zw, 0.0);\n"); } } break; case GE_TEXMAP_TEXTURE_MATRIX: // Projection mapping. { std::string temp_tc; switch (uvProjMode) { case GE_PROJMAP_POSITION: // Use model space XYZ as source temp_tc = "vec4(position.xyz, 1.0)"; break; case GE_PROJMAP_UV: // Use unscaled UV as source { // scaleUV is false here. if (hasTexcoord) { temp_tc = "vec4(texcoord.xy, 0.0, 1.0)"; } else { temp_tc = "vec4(0.0, 0.0, 0.0, 1.0)"; } } break; case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized transformed normal as source if (hasNormal) temp_tc = flipNormal ? "vec4(normalize(-normal), 1.0)" : "vec4(normalize(normal), 1.0)"; else temp_tc = "vec4(0.0, 0.0, 1.0, 1.0)"; break; case GE_PROJMAP_NORMAL: // Use non-normalized transformed normal as source if (hasNormal) temp_tc = flipNormal ? "vec4(-normal, 1.0)" : "vec4(normal, 1.0)"; else temp_tc = "vec4(0.0, 0.0, 1.0, 1.0)"; break; } // Transform by texture matrix. XYZ as we are doing projection mapping. WRITE(p, " v_texcoord = (%s * base.tex_mtx).xyz * vec3(base.uvscaleoffset.xy, 1.0);\n", temp_tc.c_str()); } break; case GE_TEXMAP_ENVIRONMENT_MAP: // Shade mapping - use dots from light sources. WRITE(p, " v_texcoord = vec3(base.uvscaleoffset.xy * vec2(1.0 + dot(normalize(light.pos[%i]), worldnormal), 1.0 + dot(normalize(light.pos[%i]), worldnormal)) * 0.5, 1.0);\n", ls0, ls1); break; default: // ILLEGAL break; } } // Compute fogdepth if (enableFog) WRITE(p, " v_fogdepth = (viewPos.z + base.fogcoef_stencilreplace.x) * base.fogcoef_stencilreplace.y;\n"); } WRITE(p, "}\n"); return true; }