// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #include #include "gfx_es2/gpu_features.h" #if defined(_WIN32) && defined(_DEBUG) #include "Common/CommonWindows.h" #endif #include "base/stringutil.h" #include "Common/Vulkan/VulkanLoader.h" #include "Core/Config.h" #include "GPU/ge_constants.h" #include "GPU/GPUState.h" #include "GPU/Common/ShaderId.h" #include "GPU/Common/VertexDecoderCommon.h" #include "GPU/Vulkan/VertexShaderGeneratorVulkan.h" #include "GPU/Vulkan/PipelineManagerVulkan.h" #include "GPU/Vulkan/ShaderManagerVulkan.h" static const char *vulkan_glsl_preamble = "#version 400\n" "#extension GL_ARB_separate_shader_objects : enable\n" "#extension GL_ARB_shading_language_420pack : enable\n\n"; // "Varying" layout - must match fragment shader // color0 = 0 // color1 = 1 // texcoord = 2 // fog = 3 // SDL 1.2 on Apple does not have support for OpenGL 3 and hence needs // special treatment in the shader generator. #ifdef __APPLE__ #define FORCE_OPENGL_2_0 #endif #undef WRITE #define WRITE p+=sprintf static const char * const boneWeightDecl[9] = { "#ERROR#", "layout(location = 3) in float w1;\n", "layout(location = 3) in vec2 w1;\n", "layout(location = 3) in vec3 w1;\n", "layout(location = 3) in vec4 w1;\n", "layout(location = 3) in vec4 w1;\nlayout(location = 4) in float w2;\n", "layout(location = 3) in vec4 w1;\nlayout(location = 4) in vec2 w2;\n", "layout(location = 3) in vec4 w1;\nlayout(location = 4) in vec3 w2;\n", "layout(location = 3) in vec4 w1;\nlayout(location = 4) in vec4 w2;\n", }; enum DoLightComputation { LIGHT_OFF, LIGHT_SHADE, LIGHT_FULL, }; // Depth range and viewport // // After the multiplication with the projection matrix, we have a 4D vector in clip space. // In OpenGL, Z is from -1 to 1, while in D3D, Z is from 0 to 1. // PSP appears to use the OpenGL convention. As Z is from -1 to 1, and the viewport is represented // by a center and a scale, to find the final Z value, all we need to do is to multiply by ZScale and // add ZCenter - these are properly scaled to directly give a Z value in [0, 65535]. // // z = vec.z * ViewportZScale + ViewportZCenter; // // That will give us the final value between 0 and 65535, which we can simply floor to simulate // the limited precision of the PSP's depth buffer. Then we convert it back: // z = floor(z); // // vec.z = (z - ViewportZCenter) / ViewportZScale; // // Now, the regular machinery will take over and do the calculation again. // // All this above is for full transform mode. // In through mode, the Z coordinate just goes straight through and there is no perspective division. // We simulate this of course with pretty much an identity matrix. Rounding Z becomes very easy. // // TODO: Skip all this if we can actually get a 16-bit depth buffer along with stencil, which // is a bit of a rare configuration, although quite common on mobile. bool GenerateVulkanGLSLVertexShader(const ShaderID &id, char *buffer, bool *usesLighting) { char *p = buffer; // #define USE_FOR_LOOP WRITE(p, "%s", vulkan_glsl_preamble); bool highpFog = false; bool highpTexcoord = false; bool isModeThrough = id.Bit(VS_BIT_IS_THROUGH); bool lmode = id.Bit(VS_BIT_LMODE) && !isModeThrough; // TODO: Different expression than in shaderIDgen bool doTexture = id.Bit(VS_BIT_DO_TEXTURE); bool doTextureProjection = id.Bit(VS_BIT_DO_TEXTURE_PROJ); GETexMapMode uvGenMode = static_cast(id.Bits(VS_BIT_UVGEN_MODE, 2)); // this is only valid for some settings of uvGenMode GETexProjMapMode uvProjMode = static_cast(id.Bits(VS_BIT_UVPROJ_MODE, 2)); bool doShadeMapping = uvGenMode == GE_TEXMAP_ENVIRONMENT_MAP; bool doFlatShading = id.Bit(VS_BIT_FLATSHADE); bool useHWTransform = id.Bit(VS_BIT_USE_HW_TRANSFORM); bool hasColor = id.Bit(VS_BIT_HAS_COLOR) || !useHWTransform; bool hasNormal = id.Bit(VS_BIT_HAS_NORMAL) && useHWTransform; bool hasTexcoord = id.Bit(VS_BIT_HAS_TEXCOORD) || !useHWTransform; bool enableFog = id.Bit(VS_BIT_ENABLE_FOG); bool throughmode = id.Bit(VS_BIT_IS_THROUGH); bool flipNormal = id.Bit(VS_BIT_NORM_REVERSE); int ls0 = id.Bits(VS_BIT_LS0, 2); int ls1 = id.Bits(VS_BIT_LS1, 2); bool enableBones = id.Bit(VS_BIT_ENABLE_BONES); bool enableLighting = id.Bit(VS_BIT_LIGHTING_ENABLE); int matUpdate = id.Bits(VS_BIT_MATERIAL_UPDATE, 3); // The uniforms are passed in as three "clumps" that may or may not be present. // We will memcpy the parts into place in a big buffer so we can be quite dynamic about what parts // are present and what parts aren't, but we will not be ultra detailed about it. *usesLighting = enableLighting || doShadeMapping; WRITE(p, "\n"); WRITE(p, "layout (std140, set = 0, binding = 2) uniform baseVars {\n%s} base;\n", ub_baseStr); if (enableLighting || doShadeMapping) WRITE(p, "layout (std140, set = 0, binding = 3) uniform lightVars {\n%s} light;\n", ub_vs_lightsStr); if (enableBones) WRITE(p, "layout (std140, set = 0, binding = 4) uniform boneVars {\n%s} bone;\n", ub_vs_bonesStr); const char *shading = doFlatShading ? "flat " : ""; DoLightComputation doLight[4] = { LIGHT_OFF, LIGHT_OFF, LIGHT_OFF, LIGHT_OFF }; if (useHWTransform) { int shadeLight0 = doShadeMapping ? ls0 : -1; int shadeLight1 = doShadeMapping ? ls1 : -1; for (int i = 0; i < 4; i++) { if (i == shadeLight0 || i == shadeLight1) doLight[i] = LIGHT_SHADE; if (id.Bit(VS_BIT_LIGHTING_ENABLE) && id.Bit(VS_BIT_LIGHT0_ENABLE + i)) doLight[i] = LIGHT_FULL; } } int numBoneWeights = 0; int boneWeightScale = id.Bits(VS_BIT_WEIGHT_FMTSCALE, 2); if (enableBones) { numBoneWeights = 1 + id.Bits(VS_BIT_BONES, 3); WRITE(p, "%s", boneWeightDecl[numBoneWeights]); } int texFmtScale = id.Bits(VS_BIT_TEXCOORD_FMTSCALE, 2); if (useHWTransform) WRITE(p, "layout (location = %d) in vec3 position;\n", PspAttributeLocation::POSITION); else // we pass the fog coord in w WRITE(p, "layout (location = %d) in vec4 position;\n", PspAttributeLocation::POSITION); if (useHWTransform && hasNormal) WRITE(p, "layout (location = %d) in vec3 normal;\n", PspAttributeLocation::NORMAL); if (doTexture && hasTexcoord) { if (!useHWTransform && doTextureProjection && !throughmode) WRITE(p, "layout (location = %d) in vec3 texcoord;\n", PspAttributeLocation::TEXCOORD); else WRITE(p, "layout (location = %d) in vec2 texcoord;\n", PspAttributeLocation::TEXCOORD); } if (hasColor) { WRITE(p, "layout (location = %d) in vec4 color0;\n", PspAttributeLocation::COLOR0); if (lmode && !useHWTransform) // only software transform supplies color1 as vertex data WRITE(p, "layout (location = %d) in vec3 color1;\n", PspAttributeLocation::COLOR1); } bool prescale = g_Config.bPrescaleUV && !throughmode && (uvGenMode == GE_TEXMAP_TEXTURE_COORDS || uvGenMode == GE_TEXMAP_UNKNOWN); WRITE(p, "layout (location = 1) %sout vec4 v_color0;\n", shading); if (lmode) { WRITE(p, "layout (location = 2) %sout vec3 v_color1;\n", shading); } if (doTexture) { if (doTextureProjection) { WRITE(p, "layout (location = 0) out vec3 v_texcoord;\n"); } else { WRITE(p, "layout (location = 0) out vec2 v_texcoord;\n"); } } if (enableFog) { // See the fragment shader generator WRITE(p, "layout (location = 3) out float v_fogdepth;\n"); } // See comment above this function (GenerateVertexShader). if (!isModeThrough && gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) { // Apply the projection and viewport to get the Z buffer value, floor to integer, undo the viewport and projection. WRITE(p, "\nvec4 depthRoundZVP(vec4 v) {\n"); WRITE(p, " float z = v.z / v.w;\n"); WRITE(p, " z = z * base.depthRange.x + base.depthRange.y;\n"); WRITE(p, " z = floor(z);\n"); WRITE(p, " z = (z - base.depthRange.z) * base.depthRange.w;\n"); WRITE(p, " return vec4(v.x, v.y, z * v.w, v.w);\n"); WRITE(p, "}\n\n"); } WRITE(p, "out gl_PerVertex { vec4 gl_Position; };\n"); WRITE(p, "void main() {\n"); if (!useHWTransform) { // Simple pass-through of vertex data to fragment shader if (doTexture) { if (throughmode && doTextureProjection) { WRITE(p, " v_texcoord = vec3(texcoord, 1.0);\n"); } else { WRITE(p, " v_texcoord = texcoord;\n"); } } if (hasColor) { WRITE(p, " v_color0 = color0;\n"); if (lmode) WRITE(p, " v_color1 = color1;\n"); } else { WRITE(p, " v_color0 = base.matambientalpha;\n"); if (lmode) WRITE(p, " v_color1 = vec3(0.0);\n"); } if (enableFog) { WRITE(p, " v_fogdepth = position.w;\n"); } if (isModeThrough) { WRITE(p, " gl_Position = base.proj_through_mtx * vec4(position.xyz, 1.0);\n"); } else { // The viewport is used in this case, so need to compensate for that. if (gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) { WRITE(p, " gl_Position = depthRoundZVP(base.proj_mtx * vec4(position.xyz, 1.0));\n"); } else { WRITE(p, " gl_Position = base.proj_mtx * vec4(position.xyz, 1.0);\n"); } } } else { // Step 1: World Transform / Skinning if (!enableBones) { // No skinning, just standard T&L. WRITE(p, " vec3 worldpos = (base.world_mtx * vec4(position.xyz, 1.0)).xyz;\n"); if (hasNormal) WRITE(p, " mediump vec3 worldnormal = normalize((base.world_mtx * vec4(%snormal, 0.0)).xyz);\n", flipNormal ? "-" : ""); else WRITE(p, " mediump vec3 worldnormal = vec3(0.0, 0.0, 1.0);\n"); } else { static const char *rescale[4] = { "", " * 1.9921875", " * 1.999969482421875", "" }; // 2*127.5f/128.f, 2*32767.5f/32768.f, 1.0f}; const char *factor = rescale[boneWeightScale]; static const char * const boneWeightAttr[8] = { "w1.x", "w1.y", "w1.z", "w1.w", "w2.x", "w2.y", "w2.z", "w2.w", }; WRITE(p, " mat4 skinMatrix = w1.x * bone.m[0];\n"); if (numBoneWeights > 1) { for (int i = 1; i < numBoneWeights; i++) { WRITE(p, " skinMatrix += %s * bone.m[%i];\n", boneWeightAttr[i], i); } } WRITE(p, ";\n"); // Trying to simplify this results in bugs in LBP... WRITE(p, " vec3 skinnedpos = (skinMatrix * vec4(position, 1.0)).xyz %s;\n", factor); WRITE(p, " vec3 worldpos = (base.world_mtx * vec4(skinnedpos, 1.0)).xyz;\n"); if (hasNormal) { WRITE(p, " mediump vec3 skinnednormal = (skinMatrix * vec4(%snormal, 0.0)).xyz %s;\n", flipNormal ? "-" : "", factor); } else { WRITE(p, " mediump vec3 skinnednormal = (skinMatrix * vec4(0.0, 0.0, %s1.0, 0.0)).xyz %s;\n", flipNormal ? "-" : "", factor); } WRITE(p, " mediump vec3 worldnormal = normalize((base.world_mtx * vec4(skinnednormal, 0.0)).xyz);\n"); } WRITE(p, " vec4 viewPos = base.view_mtx * vec4(worldpos, 1.0);\n"); // Final view and projection transforms. if (gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) { WRITE(p, " gl_Position = depthRoundZVP(base.proj_mtx * viewPos);\n"); } else { WRITE(p, " gl_Position = base.proj_mtx * viewPos;\n"); } // TODO: Declare variables for dots for shade mapping if needed. const char *ambientStr = ((matUpdate & 1) && hasColor) ? "color0" : "base.matambientalpha"; const char *diffuseStr = ((matUpdate & 2) && hasColor) ? "color0.rgb" : "light.matdiffuse"; const char *specularStr = ((matUpdate & 4) && hasColor) ? "color0.rgb" : "light.matspecular.rgb"; bool diffuseIsZero = true; bool specularIsZero = true; bool distanceNeeded = false; if (enableLighting) { WRITE(p, " vec4 lightSum0 = light.globalAmbient * %s + vec4(light.matemissive, 0.0);\n", ambientStr); for (int i = 0; i < 4; i++) { GELightType type = static_cast(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2)); GELightComputation comp = static_cast(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2)); if (doLight[i] != LIGHT_FULL) continue; diffuseIsZero = false; if (comp != GE_LIGHTCOMP_ONLYDIFFUSE) specularIsZero = false; if (type != GE_LIGHTTYPE_DIRECTIONAL) distanceNeeded = true; } if (!specularIsZero) { WRITE(p, " vec3 lightSum1 = vec3(0.0);\n"); } if (!diffuseIsZero) { WRITE(p, " vec3 toLight;\n"); WRITE(p, " vec3 diffuse;\n"); } if (distanceNeeded) { WRITE(p, " float distance;\n"); WRITE(p, " float lightScale;\n"); } } // Calculate lights if needed. If shade mapping is enabled, lights may need to be // at least partially calculated. for (int i = 0; i < 4; i++) { if (doLight[i] != LIGHT_FULL) continue; GELightType type = static_cast(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2)); GELightComputation comp = static_cast(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2)); if (type == GE_LIGHTTYPE_DIRECTIONAL) { // We prenormalize light positions for directional lights. WRITE(p, " toLight = light.pos[%i];\n", i); } else { WRITE(p, " toLight = light.pos[%i] - worldpos;\n", i); WRITE(p, " distance = length(toLight);\n"); WRITE(p, " toLight /= distance;\n"); } bool doSpecular = comp != GE_LIGHTCOMP_ONLYDIFFUSE; bool poweredDiffuse = comp == GE_LIGHTCOMP_BOTHWITHPOWDIFFUSE; WRITE(p, " mediump float dot%i = max(dot(toLight, worldnormal), 0.0);\n", i); if (poweredDiffuse) { // pow(0.0, 0.0) may be undefined, but the PSP seems to treat it as 1.0. // Seen in Tales of the World: Radiant Mythology (#2424.) WRITE(p, " if (dot%i == 0.0 && light.matspecular.a == 0.0) {\n", i); WRITE(p, " dot%i = 1.0;\n", i); WRITE(p, " } else {\n"); WRITE(p, " dot%i = pow(dot%i, light.matspecular.a);\n", i, i); WRITE(p, " }\n"); } const char *timesLightScale = " * lightScale"; // Attenuation switch (type) { case GE_LIGHTTYPE_DIRECTIONAL: timesLightScale = ""; break; case GE_LIGHTTYPE_POINT: WRITE(p, " lightScale = clamp(1.0 / dot(light.att[%i], vec3(1.0, distance, distance*distance)), 0.0, 1.0);\n", i); break; case GE_LIGHTTYPE_SPOT: case GE_LIGHTTYPE_UNKNOWN: WRITE(p, " float angle%i = dot(normalize(light.dir[%i]), toLight);\n", i, i); WRITE(p, " if (angle%i >= light.angle[%i]) {\n", i, i); WRITE(p, " lightScale = clamp(1.0 / dot(light.att[%i], vec3(1.0, distance, distance*distance)), 0.0, 1.0) * pow(angle%i, light.spotCoef[%i]);\n", i, i, i); WRITE(p, " } else {\n"); WRITE(p, " lightScale = 0.0;\n"); WRITE(p, " }\n"); break; default: // ILLEGAL break; } WRITE(p, " diffuse = (light.diffuse[%i] * %s) * dot%i;\n", i, diffuseStr, i); if (doSpecular) { WRITE(p, " dot%i = dot(normalize(toLight + vec3(0.0, 0.0, 1.0)), worldnormal);\n", i); WRITE(p, " if (dot%i > 0.0)\n", i); WRITE(p, " lightSum1 += light.specular[%i] * %s * (pow(dot%i, light.matspecular.a) %s);\n", i, specularStr, i, timesLightScale); } WRITE(p, " lightSum0.rgb += (light.ambient[%i] * %s.rgb + diffuse)%s;\n", i, ambientStr, timesLightScale); } if (enableLighting) { // Sum up ambient, emissive here. if (lmode) { WRITE(p, " v_color0 = clamp(lightSum0, 0.0, 1.0);\n"); // v_color1 only exists when lmode = 1. if (specularIsZero) { WRITE(p, " v_color1 = vec3(0.0);\n"); } else { WRITE(p, " v_color1 = clamp(lightSum1, 0.0, 1.0);\n"); } } else { if (specularIsZero) { WRITE(p, " v_color0 = clamp(lightSum0, 0.0, 1.0);\n"); } else { WRITE(p, " v_color0 = clamp(clamp(lightSum0, 0.0, 1.0) + vec4(lightSum1, 0.0), 0.0, 1.0);\n"); } } } else { // Lighting doesn't affect color. if (hasColor) { WRITE(p, " v_color0 = color0;\n"); } else { WRITE(p, " v_color0 = base.matambientalpha;\n"); } if (lmode) { WRITE(p, " v_color1 = vec3(0.0);\n"); } } // Step 3: UV generation if (doTexture) { switch (uvGenMode) { case GE_TEXMAP_TEXTURE_COORDS: // Scale-offset. Easy. case GE_TEXMAP_UNKNOWN: // Not sure what this is, but Riviera uses it. Treating as coords works. if (prescale) { if (hasTexcoord) { WRITE(p, " v_texcoord = texcoord;\n"); } else { WRITE(p, " v_texcoord = vec2(0.0);\n"); } } else { if (hasTexcoord) { WRITE(p, " v_texcoord = texcoord * base.uvscaleoffset.xy + base.uvscaleoffset.zw;\n"); } else { WRITE(p, " v_texcoord = base.uvscaleoffset.zw;\n"); } } break; case GE_TEXMAP_TEXTURE_MATRIX: // Projection mapping. { std::string temp_tc; switch (uvProjMode) { case GE_PROJMAP_POSITION: // Use model space XYZ as source temp_tc = "vec4(position.xyz, 1.0)"; break; case GE_PROJMAP_UV: // Use unscaled UV as source { // prescale is false here. if (hasTexcoord) { static const char *rescaleuv[4] = { "", " * 1.9921875", " * 1.999969482421875", "" }; // 2*127.5f/128.f, 2*32767.5f/32768.f, 1.0f}; const char *factor = rescaleuv[texFmtScale]; temp_tc = StringFromFormat("vec4(texcoord.xy %s, 0.0, 1.0)", factor); } else { temp_tc = "vec4(0.0, 0.0, 0.0, 1.0)"; } } break; case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized transformed normal as source if (hasNormal) temp_tc = flipNormal ? "vec4(normalize(-normal), 1.0)" : "vec4(normalize(normal), 1.0)"; else temp_tc = "vec4(0.0, 0.0, 1.0, 1.0)"; break; case GE_PROJMAP_NORMAL: // Use non-normalized transformed normal as source if (hasNormal) temp_tc = flipNormal ? "vec4(-normal, 1.0)" : "vec4(normal, 1.0)"; else temp_tc = "vec4(0.0, 0.0, 1.0, 1.0)"; break; } // Transform by texture matrix. XYZ as we are doing projection mapping. WRITE(p, " v_texcoord = (base.tex_mtx * %s).xyz * vec3(base.uvscaleoffset.xy, 1.0);\n", temp_tc.c_str()); } break; case GE_TEXMAP_ENVIRONMENT_MAP: // Shade mapping - use dots from light sources. WRITE(p, " v_texcoord = base.uvscaleoffset.xy * vec2(1.0 + dot(normalize(light.pos[%i]), worldnormal), 1.0 + dot(normalize(light.pos[%i]), worldnormal)) * 0.5;\n", ls0, ls1); break; default: // ILLEGAL break; } } // Compute fogdepth if (enableFog) WRITE(p, " v_fogdepth = (viewPos.z + base.fogcoef_stencilreplace.x) * base.fogcoef_stencilreplace.y;\n"); } WRITE(p, "}\n"); return true; }