// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "ArmJit.h" using namespace MIPSAnalyst; #define _RS ((op>>21) & 0x1F) #define _RT ((op>>16) & 0x1F) #define _RD ((op>>11) & 0x1F) #define _FS ((op>>11) & 0x1F) #define _FT ((op>>16) & 0x1F) #define _FD ((op>>6 ) & 0x1F) #define _SA ((op>>6 ) & 0x1F) #define _POS ((op>>6 ) & 0x1F) #define _SIZE ((op>>11 ) & 0x1F) #define DISABLE Comp_Generic(op); return; namespace MIPSComp { static u32 EvalOr(u32 a, u32 b) { return a | b; } static u32 EvalXor(u32 a, u32 b) { return a ^ b; } static u32 EvalAnd(u32 a, u32 b) { return a & b; } void Jit::CompImmLogic(int rs, int rt, u32 uimm, void (ARMXEmitter::*arith)(ARMReg dst, ARMReg src, Operand2 op2), u32 (*eval)(u32 a, u32 b)) { if (gpr.IsImm(rs)) { gpr.SetImm(rt, (*eval)(gpr.GetImm(rs), uimm)); } else { gpr.MapDirtyIn(rt, rs); // TODO: Special case when uimm can be represented as an Operand2 Operand2 op2; if (TryMakeOperand2(uimm, op2)) { (this->*arith)(gpr.R(rt), gpr.R(rs), op2); } else { MOVI2R(R0, (u32)uimm); (this->*arith)(gpr.R(rt), gpr.R(rs), R0); } } } void Jit::Comp_IType(u32 op) { s32 simm = (s32)(s16)(op & 0xFFFF); // sign extension u32 uimm = op & 0xFFFF; u32 suimm = (u32)(s32)simm; int rt = _RT; int rs = _RS; switch (op >> 26) { case 8: // same as addiu? case 9: // R(rt) = R(rs) + simm; break; //addiu { if (gpr.IsImm(rs)) { gpr.SetImm(rt, gpr.GetImm(rs) + simm); } else if (rs == 0) { // add to zero register = immediate gpr.SetImm(rt, (u32)simm); } else { gpr.MapDirtyIn(rt, rs); Operand2 op2; bool negated; if (TryMakeOperand2_AllowNegation(simm, op2, &negated)) { if (!negated) ADD(gpr.R(rt), gpr.R(rs), op2); else SUB(gpr.R(rt), gpr.R(rs), op2); } else { MOVI2R(R0, (u32)simm); ADD(gpr.R(rt), gpr.R(rs), R0); } } break; } case 12: CompImmLogic(rs, rt, uimm, &ARMXEmitter::AND, &EvalAnd); break; case 13: CompImmLogic(rs, rt, uimm, &ARMXEmitter::ORR, &EvalOr); break; case 14: CompImmLogic(rs, rt, uimm, &ARMXEmitter::EOR, &EvalXor); break; case 10: // R(rt) = (s32)R(rs) < simm; break; //slti { gpr.MapDirtyIn(rt, rs); Operand2 op2; bool negated; if (TryMakeOperand2_AllowNegation(simm, op2, &negated)) { if (!negated) CMP(gpr.R(rs), op2); else CMN(gpr.R(rs), op2); } else { MOVI2R(R0, simm); CMP(gpr.R(rs), R0); } SetCC(CC_LT); MOVI2R(gpr.R(rt), 1); SetCC(CC_GE); MOVI2R(gpr.R(rt), 0); SetCC(CC_AL); } break; case 11: // R(rt) = R(rs) < uimm; break; //sltiu { gpr.MapDirtyIn(rt, rs); Operand2 op2; bool negated; if (TryMakeOperand2_AllowNegation(suimm, op2, &negated)) { if (!negated) CMP(gpr.R(rs), op2); else CMN(gpr.R(rs), op2); } else { MOVI2R(R0, suimm); CMP(gpr.R(rs), R0); } SetCC(CC_LO); MOVI2R(gpr.R(rt), 1); SetCC(CC_HS); MOVI2R(gpr.R(rt), 0); SetCC(CC_AL); } break; case 15: // R(rt) = uimm << 16; //lui gpr.SetImm(rt, uimm << 16); break; default: Comp_Generic(op); break; } } void Jit::Comp_RType2(u32 op) { DISABLE; } void Jit::Comp_RType3(u32 op) { int rt = _RT; int rs = _RS; int rd = _RD; switch (op & 63) { //case 10: if (!R(rt)) R(rd) = R(rs); break; //movz //case 11: if (R(rt)) R(rd) = R(rs); break; //movn // case 32: //R(rd) = R(rs) + R(rt); break; //add case 33: //R(rd) = R(rs) + R(rt); break; //addu // Some optimized special cases if (rs == 0) { gpr.MapDirtyIn(rd, rt); MOV(gpr.R(rd), gpr.R(rt)); } else if (rt == 0) { gpr.MapDirtyIn(rd, rs); MOV(gpr.R(rd), gpr.R(rs)); } else { gpr.MapDirtyInIn(rd, rs, rt); ADD(gpr.R(rd), gpr.R(rs), gpr.R(rt)); } break; case 34: //R(rd) = R(rs) - R(rt); break; //sub case 35: gpr.MapDirtyInIn(rd, rs, rt); SUB(gpr.R(rd), gpr.R(rs), gpr.R(rt)); break; case 36: //R(rd) = R(rs) & R(rt); break; //and gpr.MapDirtyInIn(rd, rs, rt); AND(gpr.R(rd), gpr.R(rs), gpr.R(rt)); break; case 37: //R(rd) = R(rs) | R(rt); break; //or gpr.MapDirtyInIn(rd, rs, rt); ORR(gpr.R(rd), gpr.R(rs), gpr.R(rt)); break; case 38: //R(rd) = R(rs) ^ R(rt); break; //xor/eor gpr.MapDirtyInIn(rd, rs, rt); EOR(gpr.R(rd), gpr.R(rs), gpr.R(rt)); break; case 39: // R(rd) = ~(R(rs) | R(rt)); break; //nor gpr.MapDirtyInIn(rd, rs, rt); if (rt == 0) { MVN(gpr.R(rd), gpr.R(rs)); } else { ORR(gpr.R(rd), gpr.R(rs), gpr.R(rt)); MVN(gpr.R(rd), gpr.R(rd)); } break; case 42: //R(rd) = (int)R(rs) < (int)R(rt); break; //slt gpr.MapDirtyInIn(rd, rs, rt); CMP(gpr.R(rs), gpr.R(rt)); SetCC(CC_LT); MOVI2R(gpr.R(rd), 1); SetCC(CC_GE); MOVI2R(gpr.R(rd), 0); SetCC(CC_AL); break; case 43: //R(rd) = R(rs) < R(rt); break; //sltu gpr.MapDirtyInIn(rd, rs, rt); CMP(gpr.R(rs), gpr.R(rt)); SetCC(CC_LO); MOVI2R(gpr.R(rd), 1); SetCC(CC_HS); MOVI2R(gpr.R(rd), 0); SetCC(CC_AL); break; case 44: //R(rd) = max(R(rs), R(rt); break; //max gpr.MapDirtyInIn(rd, rs, rt); CMP(gpr.R(rs), gpr.R(rt)); SetCC(CC_GT); MOV(gpr.R(rd), gpr.R(rs)); SetCC(CC_LE); MOV(gpr.R(rd), gpr.R(rt)); SetCC(CC_AL); break; case 45: //R(rd) = min(R(rs), R(rt)); break; //min gpr.MapDirtyInIn(rd, rs, rt); CMP(gpr.R(rs), gpr.R(rt)); SetCC(CC_LT); MOV(gpr.R(rd), gpr.R(rs)); SetCC(CC_GE); MOV(gpr.R(rd), gpr.R(rt)); SetCC(CC_AL); break; default: // gpr.UnlockAll(); Comp_Generic(op); break; } } void Jit::CompShiftImm(u32 op, ArmGen::ShiftType shiftType) { int rd = _RD; int rt = _RT; int sa = _SA; gpr.MapDirtyIn(rd, rt); MOV(gpr.R(rd), Operand2(sa, shiftType, gpr.R(rt))); } // "over-shifts" work the same as on x86 - only bottom 5 bits are used to get the shift value /* void Jit::CompShiftVar(u32 op, void (XEmitter::*shift)(int, OpArg, OpArg)) { int rd = _RD; int rt = _RT; int rs = _RS; gpr.FlushLockX(ECX); gpr.Lock(rd, rt, rs); gpr.BindToRegister(rd, true, true); if (rd != rt) MOV(32, gpr.R(rd), gpr.R(rt)); MOV(32, R(ECX), gpr.R(rs)); // Only ECX can be used for variable shifts. AND(32, R(ECX), Imm32(0x1f)); (this->*shift)(32, gpr.R(rd), R(ECX)); gpr.UnlockAll(); gpr.UnlockAllX(); } */ void Jit::Comp_ShiftType(u32 op) { int rs = _RS; int fd = _FD; // WARNIGN : ROTR switch (op & 0x3f) { case 0: CompShiftImm(op, ST_LSL); break; case 2: CompShiftImm(op, rs == 1 ? ST_ROR : ST_LSR); break; // srl case 3: CompShiftImm(op, ST_ASR); break; // sra // case 4: CompShiftVar(op, &XEmitter::SHL); break; // R(rd) = R(rt) << R(rs); break; //sllv // case 6: CompShiftVar(op, fd == 1 ? &XEmitter::ROR : &XEmitter::SHR); break; // R(rd) = R(rt) >> R(rs); break; //srlv // case 7: CompShiftVar(op, &XEmitter::SAR); break; // R(rd) = ((s32)R(rt)) >> R(rs); break; //srav default: Comp_Generic(op); //_dbg_assert_msg_(CPU,0,"Trying to interpret instruction that can't be interpreted"); break; } } void Jit::Comp_Special3(u32 op) { // ext, ins DISABLE; } void Jit::Comp_Allegrex(u32 op) { int rt = _RT; int rd = _RD; switch ((op >> 6) & 31) { /* case 16: // seb // R(rd) = (u32)(s32)(s8)(u8)R(rt); gpr.Lock(rd, rt); gpr.BindToRegister(rd, true, true); MOV(32, R(EAX), gpr.R(rt)); // work around the byte-register addressing problem MOVSX(32, 8, gpr.RX(rd), R(EAX)); gpr.UnlockAll(); break; case 24: // seh gpr.Lock(rd, rt); gpr.BindToRegister(rd, true, true); MOVSX(32, 16, gpr.RX(rd), gpr.R(rt)); gpr.UnlockAll(); break; */ case 20: //bitrev if (gpr.IsImm(rt)) { // http://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel u32 v = gpr.GetImm(rt); // swap odd and even bits v = ((v >> 1) & 0x55555555) | ((v & 0x55555555) << 1); // swap consecutive pairs v = ((v >> 2) & 0x33333333) | ((v & 0x33333333) << 2); // swap nibbles ... v = ((v >> 4) & 0x0F0F0F0F) | ((v & 0x0F0F0F0F) << 4); // swap bytes v = ((v >> 8) & 0x00FF00FF) | ((v & 0x00FF00FF) << 8); // swap 2-byte long pairs v = ( v >> 16 ) | ( v << 16); gpr.SetImm(rd,v); break; } default: Comp_Generic(op); return; } } void Jit::Comp_MulDivType(u32 op) { // DISABLE; int rt = _RT; int rs = _RS; int rd = _RD; switch (op & 63) { case 16: // R(rd) = HI; //mfhi gpr.MapDirtyIn(rd, MIPSREG_HI); MOV(gpr.R(rd), gpr.R(MIPSREG_HI)); break; case 17: // HI = R(rs); //mthi gpr.MapDirtyIn(MIPSREG_HI, rs); MOV(gpr.R(MIPSREG_HI), gpr.R(rs)); break; case 18: // R(rd) = LO; break; //mflo gpr.MapDirtyIn(rd, MIPSREG_LO); MOV(gpr.R(rd), gpr.R(MIPSREG_LO)); break; case 19: // LO = R(rs); break; //mtlo gpr.MapDirtyIn(MIPSREG_LO, rs); MOV(gpr.R(MIPSREG_LO), gpr.R(rs)); break; case 24: //mult (the most popular one). lo,hi = signed mul (rs * rt) gpr.MapDirtyDirtyInIn(MIPSREG_LO, MIPSREG_HI, rs, rt); SMULL(gpr.R(MIPSREG_LO), gpr.R(MIPSREG_HI), gpr.R(rs), gpr.R(rt)); break; case 25: //multu (2nd) lo,hi = unsigned mul (rs * rt) gpr.MapDirtyDirtyInIn(MIPSREG_LO, MIPSREG_HI, rs, rt); UMULL(gpr.R(MIPSREG_LO), gpr.R(MIPSREG_HI), gpr.R(rs), gpr.R(rt)); break; case 28: //madd gpr.MapDirtyDirtyInIn(MIPSREG_LO, MIPSREG_HI, rs, rt, false); SMLAL(gpr.R(MIPSREG_LO), gpr.R(MIPSREG_HI), gpr.R(rs), gpr.R(rt)); break; case 29: //maddu gpr.MapDirtyDirtyInIn(MIPSREG_LO, MIPSREG_HI, rs, rt, false); UMLAL(gpr.R(MIPSREG_LO), gpr.R(MIPSREG_HI), gpr.R(rs), gpr.R(rt)); break; default: DISABLE; } } }