#include #include #include #include "profiler/profiler.h" #include "Common/Log.h" #include "Common/StringUtils.h" #include "Common/Vulkan/VulkanContext.h" #include "GPU/Vulkan/VulkanUtil.h" #include "GPU/Vulkan/PipelineManagerVulkan.h" #include "GPU/Vulkan/ShaderManagerVulkan.h" #include "GPU/Common/DrawEngineCommon.h" #include "ext/native/thin3d/thin3d.h" #include "ext/native/thin3d/VulkanRenderManager.h" #include "ext/native/thin3d/VulkanQueueRunner.h" PipelineManagerVulkan::PipelineManagerVulkan(VulkanContext *vulkan) : vulkan_(vulkan), pipelines_(256) { // The pipeline cache is created on demand (or explicitly through Load). } PipelineManagerVulkan::~PipelineManagerVulkan() { Clear(); if (pipelineCache_ != VK_NULL_HANDLE) vulkan_->Delete().QueueDeletePipelineCache(pipelineCache_); } void PipelineManagerVulkan::Clear() { // This should kill off all the shaders at once. // This could also be an opportunity to store the whole cache to disk. Will need to also // store the keys. pipelines_.Iterate([&](const VulkanPipelineKey &key, VulkanPipeline *value) { if (value->pipeline) vulkan_->Delete().QueueDeletePipeline(value->pipeline); delete value; }); pipelines_.Clear(); } void PipelineManagerVulkan::DeviceLost() { Clear(); if (pipelineCache_ != VK_NULL_HANDLE) vulkan_->Delete().QueueDeletePipelineCache(pipelineCache_); } void PipelineManagerVulkan::DeviceRestore(VulkanContext *vulkan) { vulkan_ = vulkan; // The pipeline cache is created on demand. } struct DeclTypeInfo { VkFormat type; const char *name; }; static const DeclTypeInfo VComp[] = { { VK_FORMAT_UNDEFINED, "NULL" }, // DEC_NONE, { VK_FORMAT_R32_SFLOAT, "R32_SFLOAT " }, // DEC_FLOAT_1, { VK_FORMAT_R32G32_SFLOAT, "R32G32_SFLOAT " }, // DEC_FLOAT_2, { VK_FORMAT_R32G32B32_SFLOAT, "R32G32B32_SFLOAT " }, // DEC_FLOAT_3, { VK_FORMAT_R32G32B32A32_SFLOAT, "R32G32B32A32_SFLOAT " }, // DEC_FLOAT_4, { VK_FORMAT_R8G8B8A8_SNORM, "R8G8B8A8_SNORM" }, // DEC_S8_3, { VK_FORMAT_R16G16B16A16_SNORM, "R16G16B16A16_SNORM " }, // DEC_S16_3, { VK_FORMAT_R8G8B8A8_UNORM, "R8G8B8A8_UNORM " }, // DEC_U8_1, { VK_FORMAT_R8G8B8A8_UNORM, "R8G8B8A8_UNORM " }, // DEC_U8_2, { VK_FORMAT_R8G8B8A8_UNORM, "R8G8B8A8_UNORM " }, // DEC_U8_3, { VK_FORMAT_R8G8B8A8_UNORM, "R8G8B8A8_UNORM " }, // DEC_U8_4, { VK_FORMAT_R16G16_UNORM, "R16G16_UNORM" }, // DEC_U16_1, { VK_FORMAT_R16G16_UNORM, "R16G16_UNORM" }, // DEC_U16_2, { VK_FORMAT_R16G16B16A16_UNORM, "R16G16B16A16_UNORM " }, // DEC_U16_3, { VK_FORMAT_R16G16B16A16_UNORM, "R16G16B16A16_UNORM " }, // DEC_U16_4, }; static void VertexAttribSetup(VkVertexInputAttributeDescription *attr, int fmt, int offset, PspAttributeLocation location) { assert(fmt != DEC_NONE); assert(fmt < ARRAY_SIZE(VComp)); attr->location = (uint32_t)location; attr->binding = 0; attr->format = VComp[fmt].type; attr->offset = offset; } // Returns the number of attributes that were set. // We could cache these AttributeDescription arrays (with pspFmt as the key), but hardly worth bothering // as we will only call this code when we need to create a new VkPipeline. static int SetupVertexAttribs(VkVertexInputAttributeDescription attrs[], const DecVtxFormat &decFmt) { int count = 0; if (decFmt.w0fmt != 0) { VertexAttribSetup(&attrs[count++], decFmt.w0fmt, decFmt.w0off, PspAttributeLocation::W1); } if (decFmt.w1fmt != 0) { VertexAttribSetup(&attrs[count++], decFmt.w1fmt, decFmt.w1off, PspAttributeLocation::W2); } if (decFmt.uvfmt != 0) { VertexAttribSetup(&attrs[count++], decFmt.uvfmt, decFmt.uvoff, PspAttributeLocation::TEXCOORD); } if (decFmt.c0fmt != 0) { VertexAttribSetup(&attrs[count++], decFmt.c0fmt, decFmt.c0off, PspAttributeLocation::COLOR0); } if (decFmt.c1fmt != 0) { VertexAttribSetup(&attrs[count++], decFmt.c1fmt, decFmt.c1off, PspAttributeLocation::COLOR1); } if (decFmt.nrmfmt != 0) { VertexAttribSetup(&attrs[count++], decFmt.nrmfmt, decFmt.nrmoff, PspAttributeLocation::NORMAL); } // Position is always there. VertexAttribSetup(&attrs[count++], decFmt.posfmt, decFmt.posoff, PspAttributeLocation::POSITION); return count; } static int SetupVertexAttribsPretransformed(VkVertexInputAttributeDescription attrs[], bool needsUV, bool needsColor1) { int count = 0; VertexAttribSetup(&attrs[count++], DEC_FLOAT_4, 0, PspAttributeLocation::POSITION); if (needsUV) { VertexAttribSetup(&attrs[count++], DEC_FLOAT_3, 16, PspAttributeLocation::TEXCOORD); } VertexAttribSetup(&attrs[count++], DEC_U8_4, 28, PspAttributeLocation::COLOR0); if (needsColor1) { VertexAttribSetup(&attrs[count++], DEC_U8_4, 32, PspAttributeLocation::COLOR1); } return count; } static bool UsesBlendConstant(int factor) { switch (factor) { case VK_BLEND_FACTOR_CONSTANT_ALPHA: case VK_BLEND_FACTOR_CONSTANT_COLOR: case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA: case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR: return true; default: return false; } } static VulkanPipeline *CreateVulkanPipeline(VkDevice device, VkPipelineCache pipelineCache, VkPipelineLayout layout, VkRenderPass renderPass, const VulkanPipelineRasterStateKey &key, const DecVtxFormat *decFmt, VulkanVertexShader *vs, VulkanFragmentShader *fs, bool useHwTransform, float lineWidth) { PROFILE_THIS_SCOPE("pipelinebuild"); bool useBlendConstant = false; VkPipelineColorBlendAttachmentState blend0{}; blend0.blendEnable = key.blendEnable; if (key.blendEnable) { blend0.colorBlendOp = (VkBlendOp)key.blendOpColor; blend0.alphaBlendOp = (VkBlendOp)key.blendOpAlpha; blend0.srcColorBlendFactor = (VkBlendFactor)key.srcColor; blend0.srcAlphaBlendFactor = (VkBlendFactor)key.srcAlpha; blend0.dstColorBlendFactor = (VkBlendFactor)key.destColor; blend0.dstAlphaBlendFactor = (VkBlendFactor)key.destAlpha; } blend0.colorWriteMask = key.colorWriteMask; VkPipelineColorBlendStateCreateInfo cbs{ VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO }; cbs.flags = 0; cbs.pAttachments = &blend0; cbs.attachmentCount = 1; cbs.logicOpEnable = key.logicOpEnable; if (key.logicOpEnable) cbs.logicOp = (VkLogicOp)key.logicOp; else cbs.logicOp = VK_LOGIC_OP_COPY; VkPipelineDepthStencilStateCreateInfo dss{ VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO }; dss.depthBoundsTestEnable = false; dss.stencilTestEnable = key.stencilTestEnable; if (key.stencilTestEnable) { dss.front.compareOp = (VkCompareOp)key.stencilCompareOp; dss.front.passOp = (VkStencilOp)key.stencilPassOp; dss.front.failOp = (VkStencilOp)key.stencilFailOp; dss.front.depthFailOp = (VkStencilOp)key.stencilDepthFailOp; // Back stencil is always the same as front on PSP. memcpy(&dss.back, &dss.front, sizeof(dss.front)); } dss.depthTestEnable = key.depthTestEnable; if (key.depthTestEnable) { dss.depthCompareOp = (VkCompareOp)key.depthCompareOp; dss.depthWriteEnable = key.depthWriteEnable; } VkDynamicState dynamicStates[8]{}; int numDyn = 0; if (key.blendEnable && (UsesBlendConstant(key.srcAlpha) || UsesBlendConstant(key.srcColor) || UsesBlendConstant(key.destAlpha) || UsesBlendConstant(key.destColor))) { dynamicStates[numDyn++] = VK_DYNAMIC_STATE_BLEND_CONSTANTS; useBlendConstant = true; } dynamicStates[numDyn++] = VK_DYNAMIC_STATE_SCISSOR; dynamicStates[numDyn++] = VK_DYNAMIC_STATE_VIEWPORT; if (key.stencilTestEnable) { dynamicStates[numDyn++] = VK_DYNAMIC_STATE_STENCIL_WRITE_MASK; dynamicStates[numDyn++] = VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK; dynamicStates[numDyn++] = VK_DYNAMIC_STATE_STENCIL_REFERENCE; } VkPipelineDynamicStateCreateInfo ds{ VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO }; ds.flags = 0; ds.pDynamicStates = dynamicStates; ds.dynamicStateCount = numDyn; VkPipelineRasterizationStateCreateInfo rs{ VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO }; rs.flags = 0; rs.depthBiasEnable = false; rs.cullMode = key.cullMode; rs.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; rs.lineWidth = lineWidth; rs.rasterizerDiscardEnable = false; rs.polygonMode = VK_POLYGON_MODE_FILL; rs.depthClampEnable = key.depthClampEnable; VkPipelineMultisampleStateCreateInfo ms{ VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO }; ms.pSampleMask = nullptr; ms.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; VkPipelineShaderStageCreateInfo ss[2]{}; ss[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; ss[0].stage = VK_SHADER_STAGE_VERTEX_BIT; ss[0].pSpecializationInfo = nullptr; ss[0].module = vs->GetModule(); ss[0].pName = "main"; ss[0].flags = 0; ss[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; ss[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT; ss[1].pSpecializationInfo = nullptr; ss[1].module = fs->GetModule(); ss[1].pName = "main"; ss[1].flags = 0; if (!ss[0].module || !ss[1].module) { ERROR_LOG(G3D, "Failed creating graphics pipeline - bad shaders"); // Create a placeholder to avoid creating over and over if shader compiler broken. VulkanPipeline *nullPipeline = new VulkanPipeline(); nullPipeline->pipeline = VK_NULL_HANDLE; nullPipeline->flags = 0; return nullPipeline; } VkPipelineInputAssemblyStateCreateInfo inputAssembly{ VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO }; inputAssembly.flags = 0; inputAssembly.topology = (VkPrimitiveTopology)key.topology; inputAssembly.primitiveRestartEnable = false; int vertexStride = 0; int offset = 0; VkVertexInputAttributeDescription attrs[8]; int attributeCount; if (useHwTransform) { attributeCount = SetupVertexAttribs(attrs, *decFmt); vertexStride = decFmt->stride; } else { bool needsUV = vs->GetID().Bit(VS_BIT_DO_TEXTURE); bool needsColor1 = vs->GetID().Bit(VS_BIT_LMODE); attributeCount = SetupVertexAttribsPretransformed(attrs, needsUV, needsColor1); vertexStride = 36; } VkVertexInputBindingDescription ibd{}; ibd.binding = 0; ibd.inputRate = VK_VERTEX_INPUT_RATE_VERTEX; ibd.stride = vertexStride; VkPipelineVertexInputStateCreateInfo vis{ VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO }; vis.flags = 0; vis.vertexBindingDescriptionCount = 1; vis.pVertexBindingDescriptions = &ibd; vis.vertexAttributeDescriptionCount = attributeCount; vis.pVertexAttributeDescriptions = attrs; VkPipelineViewportStateCreateInfo views{ VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO }; views.flags = 0; views.viewportCount = 1; views.scissorCount = 1; views.pViewports = nullptr; // dynamic views.pScissors = nullptr; // dynamic VkGraphicsPipelineCreateInfo pipe{ VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO }; pipe.flags = 0; pipe.stageCount = 2; pipe.pStages = ss; pipe.basePipelineIndex = 0; pipe.pColorBlendState = &cbs; pipe.pDepthStencilState = &dss; pipe.pRasterizationState = &rs; // We will use dynamic viewport state. pipe.pVertexInputState = &vis; pipe.pViewportState = &views; pipe.pTessellationState = nullptr; pipe.pDynamicState = &ds; pipe.pInputAssemblyState = &inputAssembly; pipe.pMultisampleState = &ms; pipe.layout = layout; pipe.basePipelineHandle = VK_NULL_HANDLE; pipe.basePipelineIndex = 0; pipe.renderPass = renderPass; pipe.subpass = 0; VkPipeline pipeline; VkResult result = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipe, nullptr, &pipeline); if (result != VK_SUCCESS) { if (result == VK_INCOMPLETE) { // Bad return value seen on Adreno in Burnout :( Try to ignore? // TODO: Log all the information we can here! } else { _dbg_assert_msg_(G3D, false, "Failed creating graphics pipeline! result='%s'", VulkanResultToString(result)); } ERROR_LOG(G3D, "Failed creating graphics pipeline! result='%s'", VulkanResultToString(result)); // Create a placeholder to avoid creating over and over if something is broken. VulkanPipeline *nullPipeline = new VulkanPipeline(); nullPipeline->pipeline = VK_NULL_HANDLE; nullPipeline->flags = 0; return nullPipeline; } VulkanPipeline *vulkanPipeline = new VulkanPipeline(); vulkanPipeline->pipeline = pipeline; vulkanPipeline->flags = 0; if (useBlendConstant) vulkanPipeline->flags |= PIPELINE_FLAG_USES_BLEND_CONSTANT; if (key.topology == VK_PRIMITIVE_TOPOLOGY_LINE_LIST || key.topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP) vulkanPipeline->flags |= PIPELINE_FLAG_USES_LINES; return vulkanPipeline; } VulkanPipeline *PipelineManagerVulkan::GetOrCreatePipeline(VkPipelineLayout layout, VkRenderPass renderPass, const VulkanPipelineRasterStateKey &rasterKey, const DecVtxFormat *decFmt, VulkanVertexShader *vs, VulkanFragmentShader *fs, bool useHwTransform) { if (!pipelineCache_) { VkPipelineCacheCreateInfo pc{ VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO }; VkResult res = vkCreatePipelineCache(vulkan_->GetDevice(), &pc, nullptr, &pipelineCache_); assert(VK_SUCCESS == res); } VulkanPipelineKey key{}; _assert_msg_(G3D, renderPass, "Can't create a pipeline with a null renderpass"); key.raster = rasterKey; key.renderPass = renderPass; key.useHWTransform = useHwTransform; key.vShader = vs->GetModule(); key.fShader = fs->GetModule(); key.vtxFmtId = useHwTransform ? decFmt->id : 0; auto iter = pipelines_.Get(key); if (iter) return iter; VulkanPipeline *pipeline = CreateVulkanPipeline( vulkan_->GetDevice(), pipelineCache_, layout, renderPass, rasterKey, decFmt, vs, fs, useHwTransform, lineWidth_); pipelines_.Insert(key, pipeline); // Don't return placeholder null pipelines. if (pipeline && pipeline->pipeline) { return pipeline; } else { return nullptr; } } std::vector PipelineManagerVulkan::DebugGetObjectIDs(DebugShaderType type) { std::vector ids; switch (type) { case SHADER_TYPE_PIPELINE: { pipelines_.Iterate([&](const VulkanPipelineKey &key, VulkanPipeline *value) { std::string id; key.ToString(&id); ids.push_back(id); }); } break; default: break; } return ids; } static const char *const topologies[8] = { "POINTLIST", "LINELIST", "LINESTRIP", "TRILIST", "TRISTRIP", "TRIFAN", }; static const char *const blendOps[8] = { "ADD", "SUB", "REVSUB", "MIN", "MAX", }; static const char *const compareOps[8] = { "NEVER", "<", "==", "<=", ">", ">=", "!=", "ALWAYS", }; static const char *const logicOps[] = { "CLEAR", "AND", "AND_REV", "COPY", "AND_INV", "NOOP", "XOR", "OR", "NOR", "EQUIV", "INVERT", "OR_REV", "COPY_INV", "OR_INV", "NAND", "SET", }; static const char *const stencilOps[8] = { "KEEP", "ZERO", "REPLACE", "INC_CLAMP", "DEC_CLAMP", "INVERT", "INC_WRAP", "DEC_WRAP", }; static const char *const blendFactors[19] = { "ZERO", "ONE", "SRC_COLOR", "ONE_MINUS_SRC_COLOR", "DST_COLOR", "ONE_MINUS_DST_COLOR", "SRC_ALPHA", "ONE_MINUS_SRC_ALPHA", "DST_ALPHA", "ONE_MINUS_DST_ALPHA", "CONSTANT_COLOR", "ONE_MINUS_CONSTANT_COLOR", "CONSTANT_ALPHA", "ONE_MINUS_CONSTANT_ALPHA", "SRC_ALPHA_SATURATE", "SRC1_COLOR", "ONE_MINUS_SRC1_COLOR", "SRC1_ALPHA", "ONE_MINUS_SRC1_ALPHA", }; std::string PipelineManagerVulkan::DebugGetObjectString(std::string id, DebugShaderType type, DebugShaderStringType stringType) { if (type != SHADER_TYPE_PIPELINE) return "N/A"; VulkanPipelineKey pipelineKey; pipelineKey.FromString(id); VulkanPipeline *iter = pipelines_.Get(pipelineKey); if (!iter) { return ""; } std::string str = pipelineKey.GetDescription(stringType); return StringFromFormat("%p: %s", iter, str.c_str()); } std::string VulkanPipelineKey::GetDescription(DebugShaderStringType stringType) const { switch (stringType) { case SHADER_STRING_SHORT_DESC: { std::stringstream str; str << topologies[raster.topology] << " "; if (raster.blendEnable) { str << "Blend(C:" << blendOps[raster.blendOpColor] << "/" << blendFactors[raster.srcColor] << ":" << blendFactors[raster.destColor] << " "; if (raster.blendOpAlpha != VK_BLEND_OP_ADD || raster.srcAlpha != VK_BLEND_FACTOR_ONE || raster.destAlpha != VK_BLEND_FACTOR_ZERO) { str << "A:" << blendOps[raster.blendOpAlpha] << "/" << blendFactors[raster.srcColor] << ":" << blendFactors[raster.destColor] << " "; } str << ") "; } if (raster.colorWriteMask != 0xF) { str << "Mask("; for (int i = 0; i < 4; i++) { if (raster.colorWriteMask & (1 << i)) { str << "RGBA"[i]; } else { str << "_"; } } str << ") "; } if (raster.depthTestEnable) { str << "Depth("; if (raster.depthWriteEnable) str << "W, "; if (raster.depthCompareOp) str << compareOps[raster.depthCompareOp & 7]; str << ") "; } if (raster.stencilTestEnable) { str << "Stencil("; str << compareOps[raster.stencilCompareOp & 7] << " "; str << stencilOps[raster.stencilPassOp & 7] << "/"; str << stencilOps[raster.stencilFailOp & 7] << "/"; str << stencilOps[raster.stencilDepthFailOp& 7]; str << ") "; } if (raster.logicOpEnable) { str << "Logic(" << logicOps[raster.logicOp & 15] << ") "; } if (useHWTransform) { str << "HWX "; } if (vtxFmtId) { str << "V(" << StringFromFormat("%08x", vtxFmtId) << ") "; // TODO: Format nicer. } else { str << "SWX "; } return str.str(); } case SHADER_STRING_SOURCE_CODE: { return "N/A"; } default: return "N/A"; } } void PipelineManagerVulkan::SetLineWidth(float lineWidth) { if (lineWidth_ == lineWidth) return; lineWidth_ = lineWidth; // Wipe all line-drawing pipelines. pipelines_.Iterate([&](const VulkanPipelineKey &key, VulkanPipeline *value) { if (value->UsesLines()) { if (value->pipeline) vulkan_->Delete().QueueDeletePipeline(value->pipeline); delete value; pipelines_.Remove(key); } }); } // For some reason this struct is only defined in the spec, not in the headers. struct VkPipelineCacheHeader { uint32_t headerSize; VkPipelineCacheHeaderVersion version; uint32_t vendorId; uint32_t deviceId; uint8_t uuid[VK_UUID_SIZE]; }; struct StoredVulkanPipelineKey { VulkanPipelineRasterStateKey raster; VShaderID vShaderID; FShaderID fShaderID; uint32_t vtxFmtId; bool useHWTransform; bool backbufferPass; VulkanQueueRunner::RPKey renderPassKey; // For std::set. Better zero-initialize the struct properly for this to work. bool operator < (const StoredVulkanPipelineKey &other) const { return memcmp(this, &other, sizeof(*this)) < 0; } }; void PipelineManagerVulkan::SaveCache(FILE *file, bool saveRawPipelineCache, ShaderManagerVulkan *shaderManager, Draw::DrawContext *drawContext) { VulkanRenderManager *rm = (VulkanRenderManager *)drawContext->GetNativeObject(Draw::NativeObject::RENDER_MANAGER); VulkanQueueRunner *queueRunner = rm->GetQueueRunner(); size_t dataSize = 0; uint32_t size; if (saveRawPipelineCache) { // WARNING: See comment in LoadCache before using this path. VkResult result = vkGetPipelineCacheData(vulkan_->GetDevice(), pipelineCache_, &dataSize, nullptr); uint32_t size = (uint32_t)dataSize; if (result != VK_SUCCESS) { size = 0; fwrite(&size, sizeof(size), 1, file); return; } std::unique_ptr buffer(new uint8_t[dataSize]); vkGetPipelineCacheData(vulkan_->GetDevice(), pipelineCache_, &dataSize, buffer.get()); size = (uint32_t)dataSize; fwrite(&size, sizeof(size), 1, file); fwrite(buffer.get(), 1, size, file); NOTICE_LOG(G3D, "Saved Vulkan pipeline cache (%d bytes).", (int)size); } size_t seekPosOnFailure = ftell(file); bool failed = false; bool writeFailed = false; int count = 0; // Since we don't include the full pipeline key, there can be duplicates, // caused by things like switching from buffered to non-buffered rendering. // Make sure the set of pipelines we write is "unique". std::set keys; // TODO: Use derivative pipelines when possible, helps Mali driver pipeline creation speed at least. pipelines_.Iterate([&](const VulkanPipelineKey &pkey, VulkanPipeline *value) { if (failed) return; VulkanVertexShader *vshader = shaderManager->GetVertexShaderFromModule(pkey.vShader); VulkanFragmentShader *fshader = shaderManager->GetFragmentShaderFromModule(pkey.fShader); if (!vshader || !fshader) { failed = true; return; } StoredVulkanPipelineKey key{}; key.raster = pkey.raster; key.useHWTransform = pkey.useHWTransform; key.fShaderID = fshader->GetID(); key.vShaderID = vshader->GetID(); if (key.useHWTransform) { // NOTE: This is not a vtype, but a decoded vertex format. key.vtxFmtId = pkey.vtxFmtId; } // Figure out what kind of renderpass this pipeline uses. if (pkey.renderPass == queueRunner->GetBackbufferRenderPass()) { key.backbufferPass = true; key.renderPassKey = {}; } else { key.backbufferPass = false; queueRunner->GetRenderPassKey(pkey.renderPass, &key.renderPassKey); } keys.insert(key); }); // Write the number of pipelines. size = (uint32_t)keys.size(); writeFailed = writeFailed || fwrite(&size, sizeof(size), 1, file) != 1; // Write the pipelines. for (auto &key : keys) { writeFailed = writeFailed || fwrite(&key, sizeof(key), 1, file) != 1; } if (failed) { ERROR_LOG(G3D, "Failed to write pipeline cache, some shader was missing"); // Write a zero in the right place so it doesn't try to load the pipelines next time. size = 0; fseek(file, (long)seekPosOnFailure, SEEK_SET); writeFailed = fwrite(&size, sizeof(size), 1, file) != 1; if (writeFailed) { ERROR_LOG(G3D, "Failed to write pipeline cache, disk full?"); } return; } if (writeFailed) { ERROR_LOG(G3D, "Failed to write pipeline cache, disk full?"); } else { NOTICE_LOG(G3D, "Saved Vulkan pipeline ID cache (%d unique pipelines/%d).", (int)keys.size(), (int)pipelines_.size()); } } bool PipelineManagerVulkan::LoadCache(FILE *file, bool loadRawPipelineCache, ShaderManagerVulkan *shaderManager, Draw::DrawContext *drawContext, VkPipelineLayout layout) { VulkanRenderManager *rm = (VulkanRenderManager *)drawContext->GetNativeObject(Draw::NativeObject::RENDER_MANAGER); VulkanQueueRunner *queueRunner = rm->GetQueueRunner(); uint32_t size = 0; if (loadRawPipelineCache) { // WARNING: Do not use this path until after reading and implementing https://zeux.io/2019/07/17/serializing-pipeline-cache/ ! bool success = fread(&size, sizeof(size), 1, file) == 1; if (!size || !success) { WARN_LOG(G3D, "Zero-sized Vulkan pipeline cache."); return true; } std::unique_ptr buffer(new uint8_t[size]); success = fread(buffer.get(), 1, size, file) == size; // Verify header. VkPipelineCacheHeader *header = (VkPipelineCacheHeader *)buffer.get(); if (!success || header->version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE) { // Bad header, don't do anything. WARN_LOG(G3D, "Bad Vulkan pipeline cache header - ignoring"); return false; } if (0 != memcmp(header->uuid, vulkan_->GetPhysicalDeviceProperties().properties.pipelineCacheUUID, VK_UUID_SIZE)) { // Wrong hardware/driver/etc. WARN_LOG(G3D, "Bad Vulkan pipeline cache UUID - ignoring"); return false; } VkPipelineCacheCreateInfo pc{ VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO }; pc.pInitialData = buffer.get(); pc.initialDataSize = size; pc.flags = 0; VkPipelineCache cache; VkResult res = vkCreatePipelineCache(vulkan_->GetDevice(), &pc, nullptr, &cache); if (res != VK_SUCCESS) { return false; } if (!pipelineCache_) { pipelineCache_ = cache; } else { vkMergePipelineCaches(vulkan_->GetDevice(), pipelineCache_, 1, &cache); } NOTICE_LOG(G3D, "Loaded Vulkan pipeline cache (%d bytes).", (int)size); } else { if (!pipelineCache_) { VkPipelineCacheCreateInfo pc{ VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO }; VkResult res = vkCreatePipelineCache(vulkan_->GetDevice(), &pc, nullptr, &pipelineCache_); } } // Read the number of pipelines. bool failed = fread(&size, sizeof(size), 1, file) != 1; NOTICE_LOG(G3D, "Creating %d pipelines...", size); for (uint32_t i = 0; i < size; i++) { if (failed || cancelCache_) { break; } StoredVulkanPipelineKey key; failed = failed || fread(&key, sizeof(key), 1, file) != 1; if (failed) { ERROR_LOG(G3D, "Truncated Vulkan pipeline cache file"); continue; } VulkanVertexShader *vs = shaderManager->GetVertexShaderFromID(key.vShaderID); VulkanFragmentShader *fs = shaderManager->GetFragmentShaderFromID(key.fShaderID); if (!vs || !fs) { failed = true; ERROR_LOG(G3D, "Failed to find vs or fs in of pipeline %d in cache", (int)i); continue; } VkRenderPass rp; if (key.backbufferPass) { rp = queueRunner->GetBackbufferRenderPass(); } else { rp = queueRunner->GetRenderPass(key.renderPassKey); } DecVtxFormat fmt; fmt.InitializeFromID(key.vtxFmtId); GetOrCreatePipeline(layout, rp, key.raster, key.useHWTransform ? &fmt : 0, vs, fs, key.useHWTransform); } NOTICE_LOG(G3D, "Recreated Vulkan pipeline cache (%d pipelines).", (int)size); return true; } void PipelineManagerVulkan::CancelCache() { cancelCache_ = true; }