// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "base/logging.h" #include "base/timeutil.h" #include "Common/MemoryUtil.h" #include "Core/MemMap.h" #include "Core/Host.h" #include "Core/System.h" #include "Core/Reporting.h" #include "Core/Config.h" #include "Core/CoreTiming.h" #include "gfx/d3d9_state.h" #include "GPU/Math3D.h" #include "GPU/GPUState.h" #include "GPU/ge_constants.h" #include "GPU/Common/TextureDecoder.h" #include "GPU/Common/SplineCommon.h" #include "GPU/Common/TransformCommon.h" #include "GPU/Common/VertexDecoderCommon.h" #include "GPU/Common/SoftwareTransformCommon.h" #include "GPU/Directx9/TextureCacheDX9.h" #include "GPU/Directx9/DrawEngineDX9.h" #include "GPU/Directx9/ShaderManagerDX9.h" #include "GPU/Directx9/GPU_DX9.h" namespace DX9 { const D3DPRIMITIVETYPE glprim[8] = { D3DPT_POINTLIST, D3DPT_LINELIST, D3DPT_LINESTRIP, D3DPT_TRIANGLELIST, D3DPT_TRIANGLESTRIP, D3DPT_TRIANGLEFAN, D3DPT_TRIANGLELIST, // With OpenGL ES we have to expand sprites into triangles, tripling the data instead of doubling. sigh. OpenGL ES, Y U NO SUPPORT GL_QUADS? }; // hrydgard's quick guesses - TODO verify static const int D3DPRIMITIVEVERTEXCOUNT[8][2] = { {0, 0}, // invalid {1, 0}, // 1 = D3DPT_POINTLIST, {2, 0}, // 2 = D3DPT_LINELIST, {2, 1}, // 3 = D3DPT_LINESTRIP, {3, 0}, // 4 = D3DPT_TRIANGLELIST, {1, 2}, // 5 = D3DPT_TRIANGLESTRIP, {1, 2}, // 6 = D3DPT_TRIANGLEFAN, }; inline int D3DPrimCount(D3DPRIMITIVETYPE prim, int size) { return (size / D3DPRIMITIVEVERTEXCOUNT[prim][0]) - D3DPRIMITIVEVERTEXCOUNT[prim][1]; } enum { TRANSFORMED_VERTEX_BUFFER_SIZE = VERTEX_BUFFER_MAX * sizeof(TransformedVertex) }; #define VERTEXCACHE_DECIMATION_INTERVAL 17 enum { VAI_KILL_AGE = 120, VAI_UNRELIABLE_KILL_AGE = 240, VAI_UNRELIABLE_KILL_MAX = 4 }; static const D3DVERTEXELEMENT9 TransformedVertexElements[] = { { 0, 0, D3DDECLTYPE_FLOAT4, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0 }, { 0, 16, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 0 }, { 0, 28, D3DDECLTYPE_UBYTE4N, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_COLOR, 0 }, { 0, 32, D3DDECLTYPE_UBYTE4N, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_COLOR, 1 }, D3DDECL_END() }; DrawEngineDX9::DrawEngineDX9(Draw::DrawContext *draw) : decodedVerts_(0), prevPrim_(GE_PRIM_INVALID), lastVType_(-1), shaderManager_(0), textureCache_(0), framebufferManager_(0), numDrawCalls(0), vertexCountInDrawCalls(0), decodeCounter_(0), dcid_(0) { device_ = (LPDIRECT3DDEVICE9)draw->GetNativeObject(Draw::NativeObject::DEVICE); decOptions_.expandAllWeightsToFloat = true; decOptions_.expand8BitNormalsToFloat = true; decimationCounter_ = VERTEXCACHE_DECIMATION_INTERVAL; // Allocate nicely aligned memory. Maybe graphics drivers will // appreciate it. // All this is a LOT of memory, need to see if we can cut down somehow. decoded = (u8 *)AllocateMemoryPages(DECODED_VERTEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); decIndex = (u16 *)AllocateMemoryPages(DECODED_INDEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); splineBuffer = (u8 *)AllocateMemoryPages(SPLINE_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); transformed = (TransformedVertex *)AllocateMemoryPages(TRANSFORMED_VERTEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); transformedExpanded = (TransformedVertex *)AllocateMemoryPages(3 * TRANSFORMED_VERTEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); indexGen.Setup(decIndex); InitDeviceObjects(); tessDataTransfer = new TessellationDataTransferDX9(); device_->CreateVertexDeclaration(TransformedVertexElements, &transformedVertexDecl_); } DrawEngineDX9::~DrawEngineDX9() { if (transformedVertexDecl_) { transformedVertexDecl_->Release(); } DestroyDeviceObjects(); FreeMemoryPages(decoded, DECODED_VERTEX_BUFFER_SIZE); FreeMemoryPages(decIndex, DECODED_INDEX_BUFFER_SIZE); FreeMemoryPages(splineBuffer, SPLINE_BUFFER_SIZE); FreeMemoryPages(transformed, TRANSFORMED_VERTEX_BUFFER_SIZE); FreeMemoryPages(transformedExpanded, 3 * TRANSFORMED_VERTEX_BUFFER_SIZE); for (auto decl = vertexDeclMap_.begin(); decl != vertexDeclMap_.end(); ++decl) { if (decl->second) { decl->second->Release(); } } delete tessDataTransfer; } void DrawEngineDX9::InitDeviceObjects() { } void DrawEngineDX9::DestroyDeviceObjects() { ClearTrackedVertexArrays(); } struct DeclTypeInfo { u32 type; const char * name; }; static const DeclTypeInfo VComp[] = { { 0, "NULL" }, // DEC_NONE, { D3DDECLTYPE_FLOAT1, "D3DDECLTYPE_FLOAT1 " }, // DEC_FLOAT_1, { D3DDECLTYPE_FLOAT2, "D3DDECLTYPE_FLOAT2 " }, // DEC_FLOAT_2, { D3DDECLTYPE_FLOAT3, "D3DDECLTYPE_FLOAT3 " }, // DEC_FLOAT_3, { D3DDECLTYPE_FLOAT4, "D3DDECLTYPE_FLOAT4 " }, // DEC_FLOAT_4, { 0, "UNUSED" }, // DEC_S8_3, { D3DDECLTYPE_SHORT4N, "D3DDECLTYPE_SHORT4N " }, // DEC_S16_3, { D3DDECLTYPE_UBYTE4N, "D3DDECLTYPE_UBYTE4N " }, // DEC_U8_1, { D3DDECLTYPE_UBYTE4N, "D3DDECLTYPE_UBYTE4N " }, // DEC_U8_2, { D3DDECLTYPE_UBYTE4N, "D3DDECLTYPE_UBYTE4N " }, // DEC_U8_3, { D3DDECLTYPE_UBYTE4N, "D3DDECLTYPE_UBYTE4N " }, // DEC_U8_4, {0, "UNUSED_DEC_U16_1" }, // DEC_U16_1, {0, "UNUSED_DEC_U16_2" }, // DEC_U16_2, {D3DDECLTYPE_USHORT4N ,"D3DDECLTYPE_USHORT4N "}, // DEC_U16_3, {D3DDECLTYPE_USHORT4N ,"D3DDECLTYPE_USHORT4N "}, // DEC_U16_4, // Not supported in regular DX9 so faking, will cause graphics bugs until worked around {0,"UNUSED_DEC_U8A_2"}, // DEC_U8A_2, {0,"UNUSED_DEC_U16A_2" }, // DEC_U16A_2, }; static void VertexAttribSetup(D3DVERTEXELEMENT9 * VertexElement, u8 fmt, u8 offset, u8 usage, u8 usage_index = 0) { memset(VertexElement, 0, sizeof(D3DVERTEXELEMENT9)); VertexElement->Offset = offset; VertexElement->Type = VComp[fmt].type; VertexElement->Usage = usage; VertexElement->UsageIndex = usage_index; } IDirect3DVertexDeclaration9 *DrawEngineDX9::SetupDecFmtForDraw(VSShader *vshader, const DecVtxFormat &decFmt, u32 pspFmt) { auto vertexDeclCached = vertexDeclMap_.find(pspFmt); if (vertexDeclCached == vertexDeclMap_.end()) { D3DVERTEXELEMENT9 VertexElements[8]; D3DVERTEXELEMENT9 *VertexElement = &VertexElements[0]; // Vertices Elements orders // WEIGHT if (decFmt.w0fmt != 0) { VertexAttribSetup(VertexElement, decFmt.w0fmt, decFmt.w0off, D3DDECLUSAGE_TEXCOORD, 1); VertexElement++; } if (decFmt.w1fmt != 0) { VertexAttribSetup(VertexElement, decFmt.w1fmt, decFmt.w1off, D3DDECLUSAGE_TEXCOORD, 2); VertexElement++; } // TC if (decFmt.uvfmt != 0) { VertexAttribSetup(VertexElement, decFmt.uvfmt, decFmt.uvoff, D3DDECLUSAGE_TEXCOORD, 0); VertexElement++; } // COLOR if (decFmt.c0fmt != 0) { VertexAttribSetup(VertexElement, decFmt.c0fmt, decFmt.c0off, D3DDECLUSAGE_COLOR, 0); VertexElement++; } // Never used ? if (decFmt.c1fmt != 0) { VertexAttribSetup(VertexElement, decFmt.c1fmt, decFmt.c1off, D3DDECLUSAGE_COLOR, 1); VertexElement++; } // NORMAL if (decFmt.nrmfmt != 0) { VertexAttribSetup(VertexElement, decFmt.nrmfmt, decFmt.nrmoff, D3DDECLUSAGE_NORMAL, 0); VertexElement++; } // POSITION // Always VertexAttribSetup(VertexElement, decFmt.posfmt, decFmt.posoff, D3DDECLUSAGE_POSITION, 0); VertexElement++; // End D3DVERTEXELEMENT9 end = D3DDECL_END(); memcpy(VertexElement, &end, sizeof(D3DVERTEXELEMENT9)); // Create declaration IDirect3DVertexDeclaration9 *pHardwareVertexDecl = nullptr; HRESULT hr = device_->CreateVertexDeclaration( VertexElements, &pHardwareVertexDecl ); if (FAILED(hr)) { ERROR_LOG(G3D, "Failed to create vertex declaration!"); pHardwareVertexDecl = nullptr; } // Add it to map vertexDeclMap_[pspFmt] = pHardwareVertexDecl; return pHardwareVertexDecl; } else { // Set it from map return vertexDeclCached->second; } } void DrawEngineDX9::SetupVertexDecoder(u32 vertType) { SetupVertexDecoderInternal(vertType); } inline void DrawEngineDX9::SetupVertexDecoderInternal(u32 vertType) { // As the decoder depends on the UVGenMode when we use UV prescale, we simply mash it // into the top of the verttype where there are unused bits. const u32 vertTypeID = (vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24); // If vtype has changed, setup the vertex decoder. if (vertTypeID != lastVType_) { dec_ = GetVertexDecoder(vertTypeID); lastVType_ = vertTypeID; } } void DrawEngineDX9::SubmitPrim(void *verts, void *inds, GEPrimitiveType prim, int vertexCount, u32 vertType, int *bytesRead) { if (!indexGen.PrimCompatible(prevPrim_, prim) || numDrawCalls >= MAX_DEFERRED_DRAW_CALLS || vertexCountInDrawCalls + vertexCount > VERTEX_BUFFER_MAX) Flush(); // TODO: Is this the right thing to do? if (prim == GE_PRIM_KEEP_PREVIOUS) { prim = prevPrim_ != GE_PRIM_INVALID ? prevPrim_ : GE_PRIM_POINTS; } else { prevPrim_ = prim; } SetupVertexDecoderInternal(vertType); *bytesRead = vertexCount * dec_->VertexSize(); if ((vertexCount < 2 && prim > 0) || (vertexCount < 3 && prim > 2 && prim != GE_PRIM_RECTANGLES)) return; DeferredDrawCall &dc = drawCalls[numDrawCalls]; dc.verts = verts; dc.inds = inds; dc.vertType = vertType; dc.indexType = (vertType & GE_VTYPE_IDX_MASK) >> GE_VTYPE_IDX_SHIFT; dc.prim = prim; dc.vertexCount = vertexCount; u32 dhash = dcid_; dhash ^= (u32)(uintptr_t)verts; dhash = __rotl(dhash, 13); dhash ^= (u32)(uintptr_t)inds; dhash = __rotl(dhash, 13); dhash ^= (u32)vertType; dhash = __rotl(dhash, 13); dhash ^= (u32)vertexCount; dhash = __rotl(dhash, 13); dhash ^= (u32)prim; dcid_ = dhash; if (inds) { GetIndexBounds(inds, vertexCount, vertType, &dc.indexLowerBound, &dc.indexUpperBound); } else { dc.indexLowerBound = 0; dc.indexUpperBound = vertexCount - 1; } uvScale[numDrawCalls] = gstate_c.uv; numDrawCalls++; vertexCountInDrawCalls += vertexCount; if (g_Config.bSoftwareSkinning && (vertType & GE_VTYPE_WEIGHT_MASK)) { DecodeVertsStep(); decodeCounter_++; } if (prim == GE_PRIM_RECTANGLES && (gstate.getTextureAddress(0) & 0x3FFFFFFF) == (gstate.getFrameBufAddress() & 0x3FFFFFFF)) { // Rendertarget == texture? if (!g_Config.bDisableSlowFramebufEffects) { gstate_c.Dirty(DIRTY_TEXTURE_PARAMS); Flush(); } } } void DrawEngineDX9::DecodeVerts() { const UVScale origUV = gstate_c.uv; for (; decodeCounter_ < numDrawCalls; decodeCounter_++) { gstate_c.uv = uvScale[decodeCounter_]; DecodeVertsStep(); } gstate_c.uv = origUV; // Sanity check if (indexGen.Prim() < 0) { ERROR_LOG_REPORT(G3D, "DecodeVerts: Failed to deduce prim: %i", indexGen.Prim()); // Force to points (0) indexGen.AddPrim(GE_PRIM_POINTS, 0); } } void DrawEngineDX9::DecodeVertsStep() { const int i = decodeCounter_; const DeferredDrawCall &dc = drawCalls[i]; indexGen.SetIndex(decodedVerts_); int indexLowerBound = dc.indexLowerBound, indexUpperBound = dc.indexUpperBound; u32 indexType = dc.indexType; void *inds = dc.inds; if (indexType == GE_VTYPE_IDX_NONE >> GE_VTYPE_IDX_SHIFT) { // Decode the verts and apply morphing. Simple. dec_->DecodeVerts(decoded + decodedVerts_ * (int)dec_->GetDecVtxFmt().stride, dc.verts, indexLowerBound, indexUpperBound); decodedVerts_ += indexUpperBound - indexLowerBound + 1; indexGen.AddPrim(dc.prim, dc.vertexCount); } else { // It's fairly common that games issue long sequences of PRIM calls, with differing // inds pointer but the same base vertex pointer. We'd like to reuse vertices between // these as much as possible, so we make sure here to combine as many as possible // into one nice big drawcall, sharing data. // 1. Look ahead to find the max index, only looking as "matching" drawcalls. // Expand the lower and upper bounds as we go. int lastMatch = i; const int total = numDrawCalls; for (int j = i + 1; j < total; ++j) { if (drawCalls[j].verts != dc.verts) break; if (memcmp(&uvScale[j], &uvScale[i], sizeof(uvScale[0])) != 0) break; indexLowerBound = std::min(indexLowerBound, (int)drawCalls[j].indexLowerBound); indexUpperBound = std::max(indexUpperBound, (int)drawCalls[j].indexUpperBound); lastMatch = j; } // 2. Loop through the drawcalls, translating indices as we go. switch (indexType) { case GE_VTYPE_IDX_8BIT >> GE_VTYPE_IDX_SHIFT: for (int j = i; j <= lastMatch; j++) { indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u8 *)drawCalls[j].inds, indexLowerBound); } break; case GE_VTYPE_IDX_16BIT >> GE_VTYPE_IDX_SHIFT: for (int j = i; j <= lastMatch; j++) { indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u16_le *)drawCalls[j].inds, indexLowerBound); } break; case GE_VTYPE_IDX_32BIT >> GE_VTYPE_IDX_SHIFT: for (int j = i; j <= lastMatch; j++) { indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u32_le *)drawCalls[j].inds, indexLowerBound); } break; } const int vertexCount = indexUpperBound - indexLowerBound + 1; // This check is a workaround for Pangya Fantasy Golf, which sends bogus index data when switching items in "My Room" sometimes. if (decodedVerts_ + vertexCount > VERTEX_BUFFER_MAX) { return; } // 3. Decode that range of vertex data. dec_->DecodeVerts(decoded + decodedVerts_ * (int)dec_->GetDecVtxFmt().stride, dc.verts, indexLowerBound, indexUpperBound); decodedVerts_ += vertexCount; // 4. Advance indexgen vertex counter. indexGen.Advance(vertexCount); decodeCounter_ = lastMatch; } } inline u32 ComputeMiniHashRange(const void *ptr, size_t sz) { // Switch to u32 units. const u32 *p = (const u32 *)ptr; sz >>= 2; if (sz > 100) { size_t step = sz / 4; u32 hash = 0; for (size_t i = 0; i < sz; i += step) { hash += DoReliableHash32(p + i, 100, 0x3A44B9C4); } return hash; } else { return p[0] + p[sz - 1]; } } u32 DrawEngineDX9::ComputeMiniHash() { u32 fullhash = 0; const int vertexSize = dec_->GetDecVtxFmt().stride; const int indexSize = IndexSize(dec_->VertexType()); int step; if (numDrawCalls < 3) { step = 1; } else if (numDrawCalls < 8) { step = 4; } else { step = numDrawCalls / 8; } for (int i = 0; i < numDrawCalls; i += step) { const DeferredDrawCall &dc = drawCalls[i]; if (!dc.inds) { fullhash += ComputeMiniHashRange(dc.verts, vertexSize * dc.vertexCount); } else { int indexLowerBound = dc.indexLowerBound, indexUpperBound = dc.indexUpperBound; fullhash += ComputeMiniHashRange((const u8 *)dc.verts + vertexSize * indexLowerBound, vertexSize * (indexUpperBound - indexLowerBound)); fullhash += ComputeMiniHashRange(dc.inds, indexSize * dc.vertexCount); } } return fullhash; } void DrawEngineDX9::MarkUnreliable(VertexArrayInfoDX9 *vai) { vai->status = VertexArrayInfoDX9::VAI_UNRELIABLE; if (vai->vbo) { vai->vbo->Release(); vai->vbo = nullptr; } if (vai->ebo) { vai->ebo->Release(); vai->ebo = nullptr; } } ReliableHashType DrawEngineDX9::ComputeHash() { ReliableHashType fullhash = 0; const int vertexSize = dec_->GetDecVtxFmt().stride; const int indexSize = IndexSize(dec_->VertexType()); // TODO: Add some caps both for numDrawCalls and num verts to check? // It is really very expensive to check all the vertex data so often. for (int i = 0; i < numDrawCalls; i++) { const DeferredDrawCall &dc = drawCalls[i]; if (!dc.inds) { fullhash += DoReliableHash((const char *)dc.verts, vertexSize * dc.vertexCount, 0x1DE8CAC4); } else { int indexLowerBound = dc.indexLowerBound, indexUpperBound = dc.indexUpperBound; int j = i + 1; int lastMatch = i; while (j < numDrawCalls) { if (drawCalls[j].verts != dc.verts) break; indexLowerBound = std::min(indexLowerBound, (int)dc.indexLowerBound); indexUpperBound = std::max(indexUpperBound, (int)dc.indexUpperBound); lastMatch = j; j++; } // This could get seriously expensive with sparse indices. Need to combine hashing ranges the same way // we do when drawing. fullhash += DoReliableHash((const char *)dc.verts + vertexSize * indexLowerBound, vertexSize * (indexUpperBound - indexLowerBound), 0x029F3EE1); // Hm, we will miss some indices when combining above, but meh, it should be fine. fullhash += DoReliableHash((const char *)dc.inds, indexSize * dc.vertexCount, 0x955FD1CA); i = lastMatch; } } if (uvScale) { fullhash += DoReliableHash(&uvScale[0], sizeof(uvScale[0]) * numDrawCalls, 0x0123e658); } return fullhash; } void DrawEngineDX9::ClearTrackedVertexArrays() { for (auto vai = vai_.begin(); vai != vai_.end(); vai++) { delete vai->second; } vai_.clear(); } void DrawEngineDX9::DecimateTrackedVertexArrays() { if (--decimationCounter_ <= 0) { decimationCounter_ = VERTEXCACHE_DECIMATION_INTERVAL; } else { return; } const int threshold = gpuStats.numFlips - VAI_KILL_AGE; const int unreliableThreshold = gpuStats.numFlips - VAI_UNRELIABLE_KILL_AGE; int unreliableLeft = VAI_UNRELIABLE_KILL_MAX; for (auto iter = vai_.begin(); iter != vai_.end(); ) { bool kill; if (iter->second->status == VertexArrayInfoDX9::VAI_UNRELIABLE) { // We limit killing unreliable so we don't rehash too often. kill = iter->second->lastFrame < unreliableThreshold && --unreliableLeft >= 0; } else { kill = iter->second->lastFrame < threshold; } if (kill) { delete iter->second; vai_.erase(iter++); } else { ++iter; } } // Enable if you want to see vertex decoders in the log output. Need a better way. #if 0 char buffer[16384]; for (std::map::iterator dec = decoderMap_.begin(); dec != decoderMap_.end(); ++dec) { char *ptr = buffer; ptr += dec->second->ToString(ptr); // *ptr++ = '\n'; NOTICE_LOG(G3D, buffer); } #endif } VertexArrayInfoDX9::~VertexArrayInfoDX9() { if (vbo) { vbo->Release(); } if (ebo) { ebo->Release(); } } static uint32_t SwapRB(uint32_t c) { return (c & 0xFF00FF00) | ((c >> 16) & 0xFF) | ((c << 16) & 0xFF0000); } // The inline wrapper in the header checks for numDrawCalls == 0 void DrawEngineDX9::DoFlush() { gpuStats.numFlushes++; gpuStats.numTrackedVertexArrays = (int)vai_.size(); // This is not done on every drawcall, we should collect vertex data // until critical state changes. That's when we draw (flush). GEPrimitiveType prim = prevPrim_; ApplyDrawState(prim); VSShader *vshader = shaderManager_->ApplyShader(prim, lastVType_); if (vshader->UseHWTransform()) { LPDIRECT3DVERTEXBUFFER9 vb_ = NULL; LPDIRECT3DINDEXBUFFER9 ib_ = NULL; int vertexCount = 0; int maxIndex = 0; bool useElements = true; // Cannot cache vertex data with morph enabled. bool useCache = g_Config.bVertexCache && !(lastVType_ & GE_VTYPE_MORPHCOUNT_MASK); // Also avoid caching when software skinning. if (g_Config.bSoftwareSkinning && (lastVType_ & GE_VTYPE_WEIGHT_MASK)) useCache = false; if (useCache) { u32 id = dcid_ ^ gstate.getUVGenMode(); // This can have an effect on which UV decoder we need to use! And hence what the decoded data will look like. See #9263 auto iter = vai_.find(id); VertexArrayInfoDX9 *vai; if (iter != vai_.end()) { // We've seen this before. Could have been a cached draw. vai = iter->second; } else { vai = new VertexArrayInfoDX9(); vai_[id] = vai; } switch (vai->status) { case VertexArrayInfoDX9::VAI_NEW: { // Haven't seen this one before. ReliableHashType dataHash = ComputeHash(); vai->hash = dataHash; vai->minihash = ComputeMiniHash(); vai->status = VertexArrayInfoDX9::VAI_HASHING; vai->drawsUntilNextFullHash = 0; DecodeVerts(); // writes to indexGen vai->numVerts = indexGen.VertexCount(); vai->prim = indexGen.Prim(); vai->maxIndex = indexGen.MaxIndex(); vai->flags = gstate_c.vertexFullAlpha ? VAI_FLAG_VERTEXFULLALPHA : 0; goto rotateVBO; } // Hashing - still gaining confidence about the buffer. // But if we get this far it's likely to be worth creating a vertex buffer. case VertexArrayInfoDX9::VAI_HASHING: { vai->numDraws++; if (vai->lastFrame != gpuStats.numFlips) { vai->numFrames++; } if (vai->drawsUntilNextFullHash == 0) { // Let's try to skip a full hash if mini would fail. const u32 newMiniHash = ComputeMiniHash(); ReliableHashType newHash = vai->hash; if (newMiniHash == vai->minihash) { newHash = ComputeHash(); } if (newMiniHash != vai->minihash || newHash != vai->hash) { MarkUnreliable(vai); DecodeVerts(); goto rotateVBO; } if (vai->numVerts > 64) { // exponential backoff up to 16 draws, then every 24 vai->drawsUntilNextFullHash = std::min(24, vai->numFrames); } else { // Lower numbers seem much more likely to change. vai->drawsUntilNextFullHash = 0; } // TODO: tweak //if (vai->numFrames > 1000) { // vai->status = VertexArrayInfo::VAI_RELIABLE; //} } else { vai->drawsUntilNextFullHash--; u32 newMiniHash = ComputeMiniHash(); if (newMiniHash != vai->minihash) { MarkUnreliable(vai); DecodeVerts(); goto rotateVBO; } } if (vai->vbo == 0) { DecodeVerts(); vai->numVerts = indexGen.VertexCount(); vai->prim = indexGen.Prim(); vai->maxIndex = indexGen.MaxIndex(); vai->flags = gstate_c.vertexFullAlpha ? VAI_FLAG_VERTEXFULLALPHA : 0; useElements = !indexGen.SeenOnlyPurePrims(); if (!useElements && indexGen.PureCount()) { vai->numVerts = indexGen.PureCount(); } _dbg_assert_msg_(G3D, gstate_c.vertBounds.minV >= gstate_c.vertBounds.maxV, "Should not have checked UVs when caching."); void * pVb; u32 size = dec_->GetDecVtxFmt().stride * indexGen.MaxIndex(); device_->CreateVertexBuffer(size, D3DUSAGE_WRITEONLY, 0, D3DPOOL_DEFAULT, &vai->vbo, NULL); vai->vbo->Lock(0, size, &pVb, 0); memcpy(pVb, decoded, size); vai->vbo->Unlock(); if (useElements) { void * pIb; u32 size = sizeof(short) * indexGen.VertexCount(); device_->CreateIndexBuffer(size, D3DUSAGE_WRITEONLY, D3DFMT_INDEX16, D3DPOOL_DEFAULT, &vai->ebo, NULL); vai->ebo->Lock(0, size, &pIb, 0); memcpy(pIb, decIndex, size); vai->ebo->Unlock(); } else { vai->ebo = 0; } } else { gpuStats.numCachedDrawCalls++; useElements = vai->ebo ? true : false; gpuStats.numCachedVertsDrawn += vai->numVerts; gstate_c.vertexFullAlpha = vai->flags & VAI_FLAG_VERTEXFULLALPHA; } vb_ = vai->vbo; ib_ = vai->ebo; vertexCount = vai->numVerts; maxIndex = vai->maxIndex; prim = static_cast(vai->prim); break; } // Reliable - we don't even bother hashing anymore. Right now we don't go here until after a very long time. case VertexArrayInfoDX9::VAI_RELIABLE: { vai->numDraws++; if (vai->lastFrame != gpuStats.numFlips) { vai->numFrames++; } gpuStats.numCachedDrawCalls++; gpuStats.numCachedVertsDrawn += vai->numVerts; vb_ = vai->vbo; ib_ = vai->ebo; vertexCount = vai->numVerts; maxIndex = vai->maxIndex; prim = static_cast(vai->prim); gstate_c.vertexFullAlpha = vai->flags & VAI_FLAG_VERTEXFULLALPHA; break; } case VertexArrayInfoDX9::VAI_UNRELIABLE: { vai->numDraws++; if (vai->lastFrame != gpuStats.numFlips) { vai->numFrames++; } DecodeVerts(); goto rotateVBO; } } vai->lastFrame = gpuStats.numFlips; } else { DecodeVerts(); rotateVBO: gpuStats.numUncachedVertsDrawn += indexGen.VertexCount(); useElements = !indexGen.SeenOnlyPurePrims(); vertexCount = indexGen.VertexCount(); maxIndex = indexGen.MaxIndex(); if (!useElements && indexGen.PureCount()) { vertexCount = indexGen.PureCount(); } prim = indexGen.Prim(); } VERBOSE_LOG(G3D, "Flush prim %i! %i verts in one go", prim, vertexCount); bool hasColor = (lastVType_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE; if (gstate.isModeThrough()) { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255); } else { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255); } ApplyDrawStateLate(); vshader = shaderManager_->ApplyShader(prim, lastVType_); IDirect3DVertexDeclaration9 *pHardwareVertexDecl = SetupDecFmtForDraw(vshader, dec_->GetDecVtxFmt(), dec_->VertexType()); if (pHardwareVertexDecl) { device_->SetVertexDeclaration(pHardwareVertexDecl); if (vb_ == NULL) { if (useElements) { device_->DrawIndexedPrimitiveUP(glprim[prim], 0, maxIndex + 1, D3DPrimCount(glprim[prim], vertexCount), decIndex, D3DFMT_INDEX16, decoded, dec_->GetDecVtxFmt().stride); } else { device_->DrawPrimitiveUP(glprim[prim], D3DPrimCount(glprim[prim], vertexCount), decoded, dec_->GetDecVtxFmt().stride); } } else { device_->SetStreamSource(0, vb_, 0, dec_->GetDecVtxFmt().stride); if (useElements) { device_->SetIndices(ib_); device_->DrawIndexedPrimitive(glprim[prim], 0, 0, maxIndex + 1, 0, D3DPrimCount(glprim[prim], vertexCount)); } else { device_->DrawPrimitive(glprim[prim], 0, D3DPrimCount(glprim[prim], vertexCount)); } } } } else { DecodeVerts(); bool hasColor = (lastVType_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE; if (gstate.isModeThrough()) { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255); } else { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255); } gpuStats.numUncachedVertsDrawn += indexGen.VertexCount(); prim = indexGen.Prim(); // Undo the strip optimization, not supported by the SW code yet. if (prim == GE_PRIM_TRIANGLE_STRIP) prim = GE_PRIM_TRIANGLES; VERBOSE_LOG(G3D, "Flush prim %i SW! %i verts in one go", prim, indexGen.VertexCount()); int numTrans = 0; bool drawIndexed = false; u16 *inds = decIndex; TransformedVertex *drawBuffer = NULL; SoftwareTransformResult result; memset(&result, 0, sizeof(result)); SoftwareTransformParams params; memset(¶ms, 0, sizeof(params)); params.decoded = decoded; params.transformed = transformed; params.transformedExpanded = transformedExpanded; params.fbman = framebufferManager_; params.texCache = textureCache_; params.allowSeparateAlphaClear = true; int maxIndex = indexGen.MaxIndex(); SoftwareTransform( prim, indexGen.VertexCount(), dec_->VertexType(), inds, GE_VTYPE_IDX_16BIT, dec_->GetDecVtxFmt(), maxIndex, drawBuffer, numTrans, drawIndexed, ¶ms, &result); ApplyDrawStateLate(); vshader = shaderManager_->ApplyShader(prim, lastVType_); if (result.action == SW_DRAW_PRIMITIVES) { if (result.setStencil) { dxstate.stencilFunc.set(D3DCMP_ALWAYS, result.stencilValue, 255); } // TODO: Add a post-transform cache here for multi-RECTANGLES only. // Might help for text drawing. // these spam the gDebugger log. const int vertexSize = sizeof(transformed[0]); device_->SetVertexDeclaration(transformedVertexDecl_); if (drawIndexed) { device_->DrawIndexedPrimitiveUP(glprim[prim], 0, maxIndex, D3DPrimCount(glprim[prim], numTrans), inds, D3DFMT_INDEX16, drawBuffer, sizeof(TransformedVertex)); } else { device_->DrawPrimitiveUP(glprim[prim], D3DPrimCount(glprim[prim], numTrans), drawBuffer, sizeof(TransformedVertex)); } } else if (result.action == SW_CLEAR) { u32 clearColor = result.color; float clearDepth = result.depth; int mask = gstate.isClearModeColorMask() ? D3DCLEAR_TARGET : 0; if (gstate.isClearModeAlphaMask()) mask |= D3DCLEAR_STENCIL; if (gstate.isClearModeDepthMask()) mask |= D3DCLEAR_ZBUFFER; if (mask & D3DCLEAR_ZBUFFER) { framebufferManager_->SetDepthUpdated(); } if (mask & D3DCLEAR_TARGET) { framebufferManager_->SetColorUpdated(gstate_c.skipDrawReason); } dxstate.colorMask.set((mask & D3DCLEAR_TARGET) != 0, (mask & D3DCLEAR_TARGET) != 0, (mask & D3DCLEAR_TARGET) != 0, (mask & D3DCLEAR_STENCIL) != 0); device_->Clear(0, NULL, mask, SwapRB(clearColor), clearDepth, clearColor >> 24); int scissorX2 = gstate.getScissorX2() + 1; int scissorY2 = gstate.getScissorY2() + 1; framebufferManager_->SetSafeSize(scissorX2, scissorY2); if (g_Config.bBlockTransferGPU && (gstate_c.featureFlags & GPU_USE_CLEAR_RAM_HACK) && gstate.isClearModeColorMask() && (gstate.isClearModeAlphaMask() || gstate.FrameBufFormat() == GE_FORMAT_565)) { int scissorX1 = gstate.getScissorX1(); int scissorY1 = gstate.getScissorY1(); ApplyClearToMemory(scissorX1, scissorY1, scissorX2, scissorY2, clearColor); } } } gpuStats.numDrawCalls += numDrawCalls; gpuStats.numVertsSubmitted += vertexCountInDrawCalls; indexGen.Reset(); decodedVerts_ = 0; numDrawCalls = 0; vertexCountInDrawCalls = 0; decodeCounter_ = 0; dcid_ = 0; prevPrim_ = GE_PRIM_INVALID; gstate_c.vertexFullAlpha = true; framebufferManager_->SetColorUpdated(gstate_c.skipDrawReason); // Now seems as good a time as any to reset the min/max coords, which we may examine later. gstate_c.vertBounds.minU = 512; gstate_c.vertBounds.minV = 512; gstate_c.vertBounds.maxU = 0; gstate_c.vertBounds.maxV = 0; host->GPUNotifyDraw(); } bool DrawEngineDX9::IsCodePtrVertexDecoder(const u8 *ptr) const { return decJitCache_->IsInSpace(ptr); } void DrawEngineDX9::TessellationDataTransferDX9::SendDataToShader(const float * pos, const float * tex, const float * col, int size, bool hasColor, bool hasTexCoords) { } } // namespace