/* * FFT/IFFT transforms * Copyright (c) 2008 Loren Merritt * Copyright (c) 2002 Fabrice Bellard * Partly based on libdjbfft by D. J. Bernstein * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * FFT/IFFT transforms. */ #include #include #define _USE_MATH_DEFINES #include #include "mem.h" #include "fft.h" #define sqrthalf (float)M_SQRT1_2 void imdct_calc(FFTContext *s, FFTSample *output, const FFTSample *input); void imdct_half(FFTContext *s, FFTSample *output, const FFTSample *input); /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */ COSTABLE(16); COSTABLE(32); COSTABLE(64); COSTABLE(128); COSTABLE(256); COSTABLE(512); COSTABLE(1024); static FFTSample * const av_cos_tabs[] = { NULL, NULL, NULL, NULL, av_cos_16, av_cos_32, av_cos_64, av_cos_128, av_cos_256, av_cos_512, av_cos_1024, }; void fft_calc(FFTContext *s, FFTComplex *z); static int split_radix_permutation(int i, int n, int inverse) { int m; if(n <= 2) return i&1; m = n >> 1; if(!(i&m)) return split_radix_permutation(i, m, inverse)*2; m >>= 1; if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1; else return split_radix_permutation(i, m, inverse)*4 - 1; } void ff_init_ff_cos_tabs(int index) { int i; int m = 1<= 16; else if (i < n/2) return is_second_half_of_fft32(i, n/2); else if (i < 3*n/4) return is_second_half_of_fft32(i - n/2, n/4); else return is_second_half_of_fft32(i - 3*n/4, n/4); } int ff_fft_init(FFTContext *s, int nbits, int inverse) { int i, j, n; if (nbits < 2 || nbits > 16) goto fail; s->nbits = nbits; n = 1 << nbits; s->revtab = (uint16_t *)av_malloc(n * sizeof(uint16_t)); if (!s->revtab) goto fail; s->tmp_buf = (FFTComplex *)av_malloc(n * sizeof(FFTComplex)); if (!s->tmp_buf) goto fail; s->inverse = inverse; for(j=4; j<=nbits; j++) { ff_init_ff_cos_tabs(j); } for(i=0; iinverse) & (n - 1); s->revtab[index] = j; } return 0; fail: av_freep(&s->revtab); av_freep(&s->tmp_buf); return -1; } void ff_fft_end(FFTContext *s) { av_freep(&s->revtab); av_freep(&s->tmp_buf); } #define BF(x, y, a, b) do { \ x = a - b; \ y = a + b; \ } while (0) #define BUTTERFLIES(a0,a1,a2,a3) {\ BF(t3, t5, t5, t1);\ BF(a2.re, a0.re, a0.re, t5);\ BF(a3.im, a1.im, a1.im, t3);\ BF(t4, t6, t2, t6);\ BF(a3.re, a1.re, a1.re, t4);\ BF(a2.im, a0.im, a0.im, t6);\ } // force loading all the inputs before storing any. // this is slightly slower for small data, but avoids store->load aliasing // for addresses separated by large powers of 2. #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\ FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\ BF(t3, t5, t5, t1);\ BF(a2.re, a0.re, r0, t5);\ BF(a3.im, a1.im, i1, t3);\ BF(t4, t6, t2, t6);\ BF(a3.re, a1.re, r1, t4);\ BF(a2.im, a0.im, i0, t6);\ } #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\ CMUL(t1, t2, a2.re, a2.im, wre, -wim);\ CMUL(t5, t6, a3.re, a3.im, wre, wim);\ BUTTERFLIES(a0,a1,a2,a3)\ } #define TRANSFORM_ZERO(a0,a1,a2,a3) {\ t1 = a2.re;\ t2 = a2.im;\ t5 = a3.re;\ t6 = a3.im;\ BUTTERFLIES(a0,a1,a2,a3)\ } /* z[0...8n-1], w[1...2n-1] */ #define PASS(name)\ static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\ {\ FFTDouble t1, t2, t3, t4, t5, t6;\ int o1 = 2*n;\ int o2 = 4*n;\ int o3 = 6*n;\ const FFTSample *wim = wre+o1;\ n--;\ \ TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\ TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\ do {\ z += 2;\ wre += 2;\ wim -= 2;\ TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\ TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\ } while(--n);\ } PASS(pass) #undef BUTTERFLIES #define BUTTERFLIES BUTTERFLIES_BIG PASS(pass_big) #define DECL_FFT(n,n2,n4)\ static void fft##n(FFTComplex *z)\ {\ fft##n2(z);\ fft##n4(z+n4*2);\ fft##n4(z+n4*3);\ pass(z,av_cos_##n,n4/2);\ } static void fft4(FFTComplex *z) { FFTDouble t1, t2, t3, t4, t5, t6, t7, t8; BF(t3, t1, z[0].re, z[1].re); BF(t8, t6, z[3].re, z[2].re); BF(z[2].re, z[0].re, t1, t6); BF(t4, t2, z[0].im, z[1].im); BF(t7, t5, z[2].im, z[3].im); BF(z[3].im, z[1].im, t4, t8); BF(z[3].re, z[1].re, t3, t7); BF(z[2].im, z[0].im, t2, t5); } static void fft8(FFTComplex *z) { FFTDouble t1, t2, t3, t4, t5, t6; fft4(z); BF(t1, z[5].re, z[4].re, -z[5].re); BF(t2, z[5].im, z[4].im, -z[5].im); BF(t5, z[7].re, z[6].re, -z[7].re); BF(t6, z[7].im, z[6].im, -z[7].im); BUTTERFLIES(z[0],z[2],z[4],z[6]); TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf); } static void fft16(FFTComplex *z) { FFTDouble t1, t2, t3, t4, t5, t6; FFTSample cos_16_1 = av_cos_16[1]; FFTSample cos_16_3 = av_cos_16[3]; fft8(z); fft4(z+8); fft4(z+12); TRANSFORM_ZERO(z[0],z[4],z[8],z[12]); TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf); TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3); TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1); } DECL_FFT(32,16,8) DECL_FFT(64,32,16) DECL_FFT(128,64,32) DECL_FFT(256,128,64) DECL_FFT(512,256,128) #define pass pass_big DECL_FFT(1024,512,256) static void (* const fft_dispatch[])(FFTComplex*) = { fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024, }; void fft_calc(FFTContext *s, FFTComplex *z) { fft_dispatch[s->nbits-2](z); } #include #include #include "fft.h" #include "mem.h" /** * init MDCT or IMDCT computation. */ int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale) { int n, n4, i; double alpha, theta; int tstep; memset(s, 0, sizeof(*s)); n = 1 << nbits; s->mdct_bits = nbits; s->mdct_size = n; n4 = n >> 2; s->mdct_permutation = FF_MDCT_PERM_NONE; if (ff_fft_init(s, s->mdct_bits - 2, inverse) < 0) goto fail; s->tcos = (FFTSample *)av_malloc_array(n / 2, sizeof(FFTSample)); if (!s->tcos) goto fail; switch (s->mdct_permutation) { case FF_MDCT_PERM_NONE: s->tsin = s->tcos + n4; tstep = 1; break; case FF_MDCT_PERM_INTERLEAVE: s->tsin = s->tcos + 1; tstep = 2; break; default: goto fail; } theta = 1.0 / 8.0 + (scale < 0 ? n4 : 0); scale = sqrt(fabs(scale)); for (i = 0; i < n4; i++) { alpha = 2 * M_PI * (i + theta) / n; s->tcos[i * tstep] = -cos(alpha) * scale; s->tsin[i * tstep] = -sin(alpha) * scale; } return 0; fail: ff_mdct_end(s); return -1; } /** * Compute the middle half of the inverse MDCT of size N = 2^nbits, * thus excluding the parts that can be derived by symmetry * @param output N/2 samples * @param input N/2 samples */ void imdct_half(FFTContext *s, FFTSample *output, const FFTSample *input) { int k, n8, n4, n2, n, j; const uint16_t *revtab = s->revtab; const FFTSample *tcos = s->tcos; const FFTSample *tsin = s->tsin; const FFTSample *in1, *in2; FFTComplex *z = (FFTComplex *)output; n = 1 << s->mdct_bits; n2 = n >> 1; n4 = n >> 2; n8 = n >> 3; /* pre rotation */ in1 = input; in2 = input + n2 - 1; for (k = 0; k < n4; k++) { j = revtab[k]; CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]); in1 += 2; in2 -= 2; } fft_calc(s, z); /* post rotation + reordering */ for (k = 0; k < n8; k++) { FFTSample r0, i0, r1, i1; CMUL(r0, i1, z[n8 - k - 1].im, z[n8 - k - 1].re, tsin[n8 - k - 1], tcos[n8 - k - 1]); CMUL(r1, i0, z[n8 + k].im, z[n8 + k].re, tsin[n8 + k], tcos[n8 + k]); z[n8 - k - 1].re = r0; z[n8 - k - 1].im = i0; z[n8 + k].re = r1; z[n8 + k].im = i1; } } /** * Compute inverse MDCT of size N = 2^nbits * @param output N samples * @param input N/2 samples */ void imdct_calc(FFTContext *s, FFTSample *output, const FFTSample *input) { int k; int n = 1 << s->mdct_bits; int n2 = n >> 1; int n4 = n >> 2; imdct_half(s, output + n4, input); for (k = 0; k < n4; k++) { output[k] = -output[n2 - k - 1]; output[n - k - 1] = output[n2 + k]; } } void ff_mdct_end(FFTContext *s) { av_freep(&s->tcos); ff_fft_end(s); }