// Copyright (c) 2023- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #ifndef offsetof #include #endif #include "Common/CPUDetect.h" #include "Core/MIPS/IR/IRInst.h" #include "Core/MIPS/IR/IRAnalysis.h" #include "Core/MIPS/RiscV/RiscVRegCache.h" #include "Core/MIPS/JitCommon/JitState.h" #include "Core/Reporting.h" using namespace RiscVGen; using namespace RiscVJitConstants; RiscVRegCache::RiscVRegCache(MIPSComp::JitOptions *jo) : IRNativeRegCacheBase(jo) { // TODO: Update these when using RISC-V V. config_.totalNativeRegs = NUM_RVGPR + NUM_RVFPR; config_.mapUseVRegs = false; config_.mapFPUSIMD = false; } void RiscVRegCache::Init(RiscVEmitter *emitter) { emit_ = emitter; } void RiscVRegCache::SetupInitialRegs() { IRNativeRegCacheBase::SetupInitialRegs(); // Treat R_ZERO a bit specially, but it's basically static alloc too. nrInitial_[R_ZERO].mipsReg = MIPS_REG_ZERO; nrInitial_[R_ZERO].normalized32 = true; // Since we also have a fixed zero, mark it as a static allocation. mrInitial_[MIPS_REG_ZERO].loc = MIPSLoc::REG_IMM; mrInitial_[MIPS_REG_ZERO].nReg = R_ZERO; mrInitial_[MIPS_REG_ZERO].imm = 0; mrInitial_[MIPS_REG_ZERO].isStatic = true; } const int *RiscVRegCache::GetAllocationOrder(MIPSLoc type, MIPSMap flags, int &count, int &base) const { base = X0; if (type == MIPSLoc::REG) { // X8 and X9 are the most ideal for static alloc because they can be used with compression. // Otherwise we stick to saved regs - might not be necessary. static const int allocationOrder[] = { X8, X9, X12, X13, X14, X15, X5, X6, X7, X16, X17, X18, X19, X20, X21, X22, X23, X28, X29, X30, X31, }; static const int allocationOrderStaticAlloc[] = { X12, X13, X14, X15, X5, X6, X7, X16, X17, X21, X22, X23, X28, X29, X30, X31, }; if (jo_->useStaticAlloc) { count = ARRAY_SIZE(allocationOrderStaticAlloc); return allocationOrderStaticAlloc; } else { count = ARRAY_SIZE(allocationOrder); return allocationOrder; } } else if (type == MIPSLoc::FREG) { // F8 through F15 are used for compression, so they are great. static const int allocationOrder[] = { F8, F9, F10, F11, F12, F13, F14, F15, F0, F1, F2, F3, F4, F5, F6, F7, F16, F17, F18, F19, F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30, F31, }; count = ARRAY_SIZE(allocationOrder); return allocationOrder; } else { _assert_msg_(false, "Allocation order not yet implemented"); count = 0; return nullptr; } } const RiscVRegCache::StaticAllocation *RiscVRegCache::GetStaticAllocations(int &count) const { static const StaticAllocation allocs[] = { { MIPS_REG_SP, X8, MIPSLoc::REG, true }, { MIPS_REG_V0, X9, MIPSLoc::REG }, { MIPS_REG_V1, X18, MIPSLoc::REG }, { MIPS_REG_A0, X19, MIPSLoc::REG }, { MIPS_REG_RA, X20, MIPSLoc::REG }, }; if (jo_->useStaticAlloc) { count = ARRAY_SIZE(allocs); return allocs; } return IRNativeRegCacheBase::GetStaticAllocations(count); } void RiscVRegCache::EmitLoadStaticRegisters() { int count; const StaticAllocation *allocs = GetStaticAllocations(count); for (int i = 0; i < count; i++) { int offset = GetMipsRegOffset(allocs[i].mr); if (allocs[i].pointerified && jo_->enablePointerify) { emit_->LWU((RiscVReg)allocs[i].nr, CTXREG, offset); emit_->ADD((RiscVReg)allocs[i].nr, (RiscVReg)allocs[i].nr, MEMBASEREG); } else { emit_->LW((RiscVReg)allocs[i].nr, CTXREG, offset); } } } void RiscVRegCache::EmitSaveStaticRegisters() { int count; const StaticAllocation *allocs = GetStaticAllocations(count); // This only needs to run once (by Asm) so checks don't need to be fast. for (int i = 0; i < count; i++) { int offset = GetMipsRegOffset(allocs[i].mr); emit_->SW((RiscVReg)allocs[i].nr, CTXREG, offset); } } void RiscVRegCache::FlushBeforeCall() { // These registers are not preserved by function calls. // They match between X0 and F0, conveniently. for (int i = 5; i <= 7; ++i) { FlushNativeReg(X0 + i); FlushNativeReg(F0 + i); } for (int i = 10; i <= 17; ++i) { FlushNativeReg(X0 + i); FlushNativeReg(F0 + i); } for (int i = 28; i <= 31; ++i) { FlushNativeReg(X0 + i); FlushNativeReg(F0 + i); } } bool RiscVRegCache::IsNormalized32(IRReg mipsReg) { _dbg_assert_(IsValidGPR(mipsReg)); if (XLEN == 32) return true; if (mr[mipsReg].loc == MIPSLoc::REG || mr[mipsReg].loc == MIPSLoc::REG_IMM) { return nr[mr[mipsReg].nReg].normalized32; } return false; } RiscVGen::RiscVReg RiscVRegCache::Normalize32(IRReg mipsReg, RiscVGen::RiscVReg destReg) { _dbg_assert_(IsValidGPR(mipsReg)); _dbg_assert_(destReg == INVALID_REG || (destReg > X0 && destReg <= X31)); RiscVReg reg = (RiscVReg)mr[mipsReg].nReg; if (XLEN == 32) return reg; switch (mr[mipsReg].loc) { case MIPSLoc::IMM: case MIPSLoc::MEM: _assert_msg_(false, "Cannot normalize an imm or mem"); return INVALID_REG; case MIPSLoc::REG: case MIPSLoc::REG_IMM: if (!nr[mr[mipsReg].nReg].normalized32) { if (destReg == INVALID_REG) { emit_->SEXT_W((RiscVReg)mr[mipsReg].nReg, (RiscVReg)mr[mipsReg].nReg); nr[mr[mipsReg].nReg].normalized32 = true; nr[mr[mipsReg].nReg].pointerified = false; } else { emit_->SEXT_W(destReg, (RiscVReg)mr[mipsReg].nReg); } } else if (destReg != INVALID_REG) { emit_->SEXT_W(destReg, (RiscVReg)mr[mipsReg].nReg); } break; case MIPSLoc::REG_AS_PTR: _dbg_assert_(nr[mr[mipsReg].nReg].normalized32 == false); if (destReg == INVALID_REG) { // If we can pointerify, SEXT_W will be enough. if (!jo_->enablePointerify) AdjustNativeRegAsPtr(mr[mipsReg].nReg, false); emit_->SEXT_W((RiscVReg)mr[mipsReg].nReg, (RiscVReg)mr[mipsReg].nReg); mr[mipsReg].loc = MIPSLoc::REG; nr[mr[mipsReg].nReg].normalized32 = true; nr[mr[mipsReg].nReg].pointerified = false; } else if (!jo_->enablePointerify) { emit_->SUB(destReg, (RiscVReg)mr[mipsReg].nReg, MEMBASEREG); emit_->SEXT_W(destReg, destReg); } else { emit_->SEXT_W(destReg, (RiscVReg)mr[mipsReg].nReg); } break; default: _assert_msg_(false, "Should not normalize32 floats"); break; } return destReg == INVALID_REG ? reg : destReg; } RiscVReg RiscVRegCache::TryMapTempImm(IRReg r) { _dbg_assert_(IsValidGPR(r)); // If already mapped, no need for a temporary. if (IsGPRMapped(r)) { return R(r); } if (mr[r].loc == MIPSLoc::IMM) { if (mr[r].imm == 0) { return R_ZERO; } // Try our luck - check for an exact match in another rvreg. for (int i = 0; i < TOTAL_MAPPABLE_IRREGS; ++i) { if (mr[i].loc == MIPSLoc::REG_IMM && mr[i].imm == mr[r].imm) { // Awesome, let's just use this reg. return (RiscVReg)mr[i].nReg; } } } return INVALID_REG; } RiscVReg RiscVRegCache::GetAndLockTempGPR() { RiscVReg reg = (RiscVReg)AllocateReg(MIPSLoc::REG, MIPSMap::INIT); if (reg != INVALID_REG) { nr[reg].tempLockIRIndex = irIndex_; } return reg; } RiscVReg RiscVRegCache::MapWithFPRTemp(const IRInst &inst) { return (RiscVReg)MapWithTemp(inst, MIPSLoc::FREG); } RiscVReg RiscVRegCache::MapGPR(IRReg mipsReg, MIPSMap mapFlags) { _dbg_assert_(IsValidGPR(mipsReg)); // Okay, not mapped, so we need to allocate an RV register. IRNativeReg nreg = MapNativeReg(MIPSLoc::REG, mipsReg, 1, mapFlags); return (RiscVReg)nreg; } RiscVReg RiscVRegCache::MapGPRAsPointer(IRReg reg) { return (RiscVReg)MapNativeRegAsPointer(reg); } RiscVReg RiscVRegCache::MapFPR(IRReg mipsReg, MIPSMap mapFlags) { _dbg_assert_(IsValidFPR(mipsReg)); _dbg_assert_(mr[mipsReg + 32].loc == MIPSLoc::MEM || mr[mipsReg + 32].loc == MIPSLoc::FREG); IRNativeReg nreg = MapNativeReg(MIPSLoc::FREG, mipsReg + 32, 1, mapFlags); if (nreg != -1) return (RiscVReg)nreg; return INVALID_REG; } void RiscVRegCache::AdjustNativeRegAsPtr(IRNativeReg nreg, bool state) { RiscVReg r = (RiscVReg)(X0 + nreg); _assert_(r >= X0 && r <= X31); if (state) { #ifdef MASKED_PSP_MEMORY // This destroys the value... _dbg_assert_(!nr[nreg].isDirty); emit_->SLLIW(r, r, 2); emit_->SRLIW(r, r, 2); emit_->ADD(r, r, MEMBASEREG); #else // Clear the top bits to be safe. if (cpu_info.RiscV_Zba) { emit_->ADD_UW(r, r, MEMBASEREG); } else { _assert_(XLEN == 64); emit_->SLLI(r, r, 32); emit_->SRLI(r, r, 32); emit_->ADD(r, r, MEMBASEREG); } #endif nr[nreg].normalized32 = false; } else { #ifdef MASKED_PSP_MEMORY _dbg_assert_(!nr[nreg].isDirty); #endif emit_->SUB(r, r, MEMBASEREG); nr[nreg].normalized32 = false; } } bool RiscVRegCache::IsNativeRegCompatible(IRNativeReg nreg, MIPSLoc type, MIPSMap flags, int lanes) { // No special flags except VREG, skip the check for a little speed. if (type != MIPSLoc::VREG) return true; return IRNativeRegCacheBase::IsNativeRegCompatible(nreg, type, flags, lanes); } void RiscVRegCache::LoadNativeReg(IRNativeReg nreg, IRReg first, int lanes) { RiscVReg r = (RiscVReg)(X0 + nreg); _dbg_assert_(r > X0); _dbg_assert_(first != MIPS_REG_ZERO); if (r <= X31) { _assert_(lanes == 1 || (lanes == 2 && first == IRREG_LO)); if (lanes == 1) emit_->LW(r, CTXREG, GetMipsRegOffset(first)); else if (lanes == 2) emit_->LD(r, CTXREG, GetMipsRegOffset(first)); else _assert_(false); nr[nreg].normalized32 = true; } else { _dbg_assert_(r >= F0 && r <= F31); // Multilane not yet supported. _assert_(lanes == 1); if (mr[first].loc == MIPSLoc::FREG) { emit_->FL(32, r, CTXREG, GetMipsRegOffset(first)); } else { _assert_msg_(mr[first].loc == MIPSLoc::FREG, "Cannot store this type: %d", (int)mr[first].loc); } } } void RiscVRegCache::StoreNativeReg(IRNativeReg nreg, IRReg first, int lanes) { RiscVReg r = (RiscVReg)(X0 + nreg); _dbg_assert_(r > X0); _dbg_assert_(first != MIPS_REG_ZERO); if (r <= X31) { // Multilane not yet supported. _assert_(lanes == 1 || (lanes == 2 && first == IRREG_LO)); _assert_(mr[first].loc == MIPSLoc::REG || mr[first].loc == MIPSLoc::REG_IMM); if (lanes == 1) emit_->SW(r, CTXREG, GetMipsRegOffset(first)); else if (lanes == 2) emit_->SD(r, CTXREG, GetMipsRegOffset(first)); else _assert_(false); } else { _dbg_assert_(r >= F0 && r <= F31); // Multilane not yet supported. _assert_(lanes == 1); if (mr[first].loc == MIPSLoc::FREG) { emit_->FS(32, r, CTXREG, GetMipsRegOffset(first)); } else { _assert_msg_(mr[first].loc == MIPSLoc::FREG, "Cannot store this type: %d", (int)mr[first].loc); } } } void RiscVRegCache::SetNativeRegValue(IRNativeReg nreg, uint32_t imm) { RiscVReg r = (RiscVReg)(X0 + nreg); if (r == R_ZERO && imm == 0) return; _dbg_assert_(r > X0 && r <= X31); emit_->LI(r, (int32_t)imm); // We always use 32-bit immediates, so this is normalized now. nr[nreg].normalized32 = true; } void RiscVRegCache::StoreRegValue(IRReg mreg, uint32_t imm) { _assert_(IsValidGPRNoZero(mreg)); // Try to optimize using a different reg. RiscVReg storeReg = INVALID_REG; // Zero is super easy. if (imm == 0) { storeReg = R_ZERO; } else { // Could we get lucky? Check for an exact match in another rvreg. for (int i = 0; i < TOTAL_MAPPABLE_IRREGS; ++i) { if (mr[i].loc == MIPSLoc::REG_IMM && mr[i].imm == imm) { // Awesome, let's just store this reg. storeReg = (RiscVReg)mr[i].nReg; break; } } if (storeReg == INVALID_REG) { emit_->LI(SCRATCH1, imm); storeReg = SCRATCH1; } } emit_->SW(storeReg, CTXREG, GetMipsRegOffset(mreg)); } RiscVReg RiscVRegCache::R(IRReg mipsReg) { _dbg_assert_(IsValidGPR(mipsReg)); _dbg_assert_(mr[mipsReg].loc == MIPSLoc::REG || mr[mipsReg].loc == MIPSLoc::REG_IMM); if (mr[mipsReg].loc == MIPSLoc::REG || mr[mipsReg].loc == MIPSLoc::REG_IMM) { return (RiscVReg)mr[mipsReg].nReg; } else { ERROR_LOG_REPORT(JIT, "Reg %i not in riscv reg", mipsReg); return INVALID_REG; // BAAAD } } RiscVReg RiscVRegCache::RPtr(IRReg mipsReg) { _dbg_assert_(IsValidGPR(mipsReg)); _dbg_assert_(mr[mipsReg].loc == MIPSLoc::REG || mr[mipsReg].loc == MIPSLoc::REG_IMM || mr[mipsReg].loc == MIPSLoc::REG_AS_PTR); if (mr[mipsReg].loc == MIPSLoc::REG_AS_PTR) { return (RiscVReg)mr[mipsReg].nReg; } else if (mr[mipsReg].loc == MIPSLoc::REG || mr[mipsReg].loc == MIPSLoc::REG_IMM) { int rv = mr[mipsReg].nReg; _dbg_assert_(nr[rv].pointerified); if (nr[rv].pointerified) { return (RiscVReg)mr[mipsReg].nReg; } else { ERROR_LOG(JIT, "Tried to use a non-pointer register as a pointer"); return INVALID_REG; } } else { ERROR_LOG_REPORT(JIT, "Reg %i not in riscv reg", mipsReg); return INVALID_REG; // BAAAD } } RiscVReg RiscVRegCache::F(IRReg mipsReg) { _dbg_assert_(IsValidFPR(mipsReg)); _dbg_assert_(mr[mipsReg + 32].loc == MIPSLoc::FREG); if (mr[mipsReg + 32].loc == MIPSLoc::FREG) { return (RiscVReg)mr[mipsReg + 32].nReg; } else { ERROR_LOG_REPORT(JIT, "Reg %i not in riscv reg", mipsReg); return INVALID_REG; // BAAAD } }