Enable (hopefully) correct beziers. Add full spline tesselation from JPCSP, disabled

Disabled real splines as it's way too slow, needs a complete rewrite. But works, except
for normal generation.
This commit is contained in:
Henrik Rydgard 2013-09-23 18:33:13 +02:00
parent 8c343fafdc
commit bdbf6c5237

View file

@ -19,6 +19,10 @@
#include "Core/MemMap.h"
#include "GPU/Math3D.h"
// Splines are too slow, need optimization.
const bool realTesselationBezier = true;
const bool realTesselationSpline = false;
// PSP compatible format so we can use the end of the pipeline
struct SimpleVertex {
float uv[2];
@ -44,7 +48,7 @@ u32 TransformDrawEngine::NormalizeVertices(u8 *outPtr, u8 *bufPtr, const u8 *inP
SimpleVertex *sverts = (SimpleVertex *)outPtr;
const u8 defaultColor[4] = {
u8 defaultColor[4] = {
gstate.getMaterialAmbientR(),
gstate.getMaterialAmbientG(),
gstate.getMaterialAmbientB(),
@ -131,10 +135,8 @@ u32 TransformDrawEngine::NormalizeVertices(u8 *outPtr, u8 *bufPtr, const u8 *inP
return GE_VTYPE_TC_FLOAT | GE_VTYPE_COL_8888 | GE_VTYPE_NRM_FLOAT | GE_VTYPE_POS_FLOAT | (vertType & GE_VTYPE_IDX_MASK);
}
#define START_OPEN_U 1
#define END_OPEN_U 2
#define START_OPEN_V 4
#define END_OPEN_V 8
#define START_OPEN 1
#define END_OPEN 2
static float lerp(float a, float b, float x) {
return a + x * (b - a);
@ -148,9 +150,8 @@ static void lerpColor(u8 a[4], u8 b[4], float x, u8 out[4]) {
// We decode all vertices into a common format for easy interpolation and stuff.
// Not fast but can be optimized later.
struct HWSplinePatch {
struct BezierPatch {
SimpleVertex *points[16];
int type;
// These are used to generate UVs.
int u_index, v_index;
@ -205,6 +206,65 @@ struct HWSplinePatch {
}
};
struct SplinePatch {
SimpleVertex **points;
int count_u;
int count_v;
int type_u;
int type_v;
/*
// Interpolate colors between control points (bilinear, should be good enough).
void sampleColor(float u, float v, u8 color[4]) const {
u *= 3.0f;
v *= 3.0f;
int iu = (int)floorf(u);
int iv = (int)floorf(v);
int iu2 = iu + 1;
int iv2 = iv + 1;
float fracU = u - iu;
float fracV = v - iv;
if (iu2 >= count_u) iu2 = count_u - 1;
if (iv2 >= count_v) iv2 = count_v - 1;
int tl = iu + count_u * iv;
int tr = iu2 + count_u * iv;
int bl = iu + count_u * iv2;
int br = iu2 + count_u * iv2;
u8 upperColor[4], lowerColor[4];
lerpColor(points[tl]->color, points[tr]->color, fracU, upperColor);
lerpColor(points[bl]->color, points[br]->color, fracU, lowerColor);
lerpColor(upperColor, lowerColor, fracV, color);
}
void sampleTexUV(float u, float v, float &tu, float &tv) const {
u *= 3.0f;
v *= 3.0f;
int iu = (int)floorf(u);
int iv = (int)floorf(v);
int iu2 = iu + 1;
int iv2 = iv + 1;
float fracU = u - iu;
float fracV = v - iv;
if (iu2 >= count_u) iu2 = count_u - 1;
if (iv2 >= count_v) iv2 = count_v - 1;
int tl = iu + count_u * iv;
int tr = iu2 + count_u * iv;
int bl = iu + count_u * iv2;
int br = iu2 + count_u * iv2;
float upperTU = lerp(points[tl]->uv[0], points[tr]->uv[0], fracU);
float upperTV = lerp(points[tl]->uv[1], points[tr]->uv[1], fracU);
float lowerTU = lerp(points[bl]->uv[0], points[br]->uv[0], fracU);
float lowerTV = lerp(points[bl]->uv[1], points[br]->uv[1], fracU);
tu = lerp(upperTU, lowerTU, fracV);
tv = lerp(upperTV, lowerTV, fracV);
}*/
};
static void CopyTriangle(u8 *&dest, SimpleVertex *v1, SimpleVertex *v2, SimpleVertex* v3) {
int vertexSize = sizeof(SimpleVertex);
memcpy(dest, v1, vertexSize);
@ -229,7 +289,6 @@ inline float bern1deriv(float x) { return 9 * x * x - 12 * x + 3; }
inline float bern2deriv(float x) { return 3 * (2 - 3 * x) * x; }
inline float bern3deriv(float x) { return 3 * x * x; }
// http://en.wikipedia.org/wiki/Bernstein_polynomial
Vec3f Bernstein3D(const Vec3f p0, const Vec3f p1, const Vec3f p2, const Vec3f p3, float x) {
return p0 * bern0(x) + p1 * bern1(x) + p2 * bern2(x) + p3 * bern3(x);
@ -239,25 +298,226 @@ Vec3f Bernstein3DDerivative(const Vec3f p0, const Vec3f p1, const Vec3f p2, cons
return p0 * bern0deriv(x) + p1 * bern1deriv(x) + p2 * bern2deriv(x) + p3 * bern3deriv(x);
}
void TesselatePatch(u8 *&dest, int &count, const HWSplinePatch &patch, u32 origVertType) {
const float third = 1.0f / 3.0f;
bool realTesselation = false;
// TODO: Unroll this to a closed form instead of a recursive function.
// All those integer divisions should not be necessary either.
float spline_n(int i, int j, float u, int *knot) {
if (j == 0) {
if (knot[i] <= u && u < knot[i + 1])
return 1;
return 0;
}
float res = 0;
if (knot[i + j] - knot[i] != 0)
res += (u - knot[i]) / (knot[i + j] - knot[i]) * spline_n(i, j - 1, u, knot);
if (knot[i + j + 1] - knot[i + 1] != 0)
res += (knot[i + j + 1] - u) / (knot[i + j + 1] - knot[i + 1]) * spline_n(i + 1, j - 1, u, knot);
return res;
}
if (!realTesselation) {
// knot should be an array of int, sized n + 5
void spline_knot(int n, int type, int *knot) {
memset(knot, 0, sizeof(int) * (n + 5));
for(int i = 0; i < n - 1; ++i)
knot[i + 3] = i;
if ((type & 1) == 0) {
knot[0] = -3;
knot[1] = -2;
knot[2] = -1;
}
if ((type & 2) == 0) {
knot[n + 2] = n - 1;
knot[n + 3] = n;
knot[n + 4] = n + 1;
} else {
knot[n + 2] = n - 2;
knot[n + 3] = n - 2;
knot[n + 4] = n - 2;
}
}
void TesselateSplinePatch(u8 *&dest, int &count, const SplinePatch &spatch, u32 origVertType) {
const float third = 1.0f / 3.0f;
if (!realTesselationSpline) {
// Fast and easy way - just draw the control points, generate some very basic normal vector substitutes.
// Very inaccurate but okay for Loco Roco. Maybe should keep it as an option because it's fast.
const int tile_min_u = (spatch.type_u & START_OPEN) ? 0 : 1;
const int tile_min_v = (spatch.type_v & START_OPEN) ? 0 : 1;
const int tile_max_u = (spatch.type_u & END_OPEN) ? spatch.count_u - 1 : spatch.count_u - 2;
const int tile_max_v = (spatch.type_v & END_OPEN) ? spatch.count_v - 1 : spatch.count_v - 2;
for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) {
for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) {
int point_index = tile_u + tile_v * spatch.count_u;
SimpleVertex v0 = *spatch.points[point_index];
SimpleVertex v1 = *spatch.points[point_index+1];
SimpleVertex v2 = *spatch.points[point_index+spatch.count_u];
SimpleVertex v3 = *spatch.points[point_index+spatch.count_u+1];
// Generate UV. TODO: Do this even if UV specified in control points?
if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
float u = tile_u * third;
float v = tile_v * third;
v0.uv[0] = u;
v0.uv[1] = v;
v1.uv[0] = u + third;
v1.uv[1] = v;
v2.uv[0] = u;
v2.uv[1] = v + third;
v3.uv[0] = u + third;
v3.uv[1] = v + third;
}
// Generate normal if lighting is enabled (otherwise there's no point).
// This is a really poor quality algorithm, we get facet normals.
if (gstate.isLightingEnabled()) {
Vec3f norm = Cross(v1.pos - v0.pos, v2.pos - v0.pos);
norm.Normalize();
if (gstate.patchfacing & 1)
norm *= -1.0f;
v0.nrm = norm;
v1.nrm = norm;
v2.nrm = norm;
v3.nrm = norm;
}
CopyTriangle(dest, &v0, &v2, &v1);
CopyTriangle(dest, &v1, &v2, &v3);
count += 6;
}
}
} else {
// Full correct tessellation of spline patches.
// Does not yet generate normals and is atrociously slow (see spline_s...)
// First, generate knot vectors.
int n = spatch.count_u - 1;
int m = spatch.count_v - 1;
int *knot_u = new int[n + 5];
int *knot_v = new int[m + 5];
spline_knot(n, spatch.type_u, knot_u);
spline_knot(m, spatch.type_v, knot_v);
int patch_div_s = gstate.getPatchDivisionU();
int patch_div_t = gstate.getPatchDivisionV();
// Increase tesselation based on the size. Should be approximately right?
// JPCSP is wrong at least because their method results in square loco roco.
patch_div_s = (spatch.count_u - 3) * patch_div_s / 3;
patch_div_t = (spatch.count_v - 3) * patch_div_t / 3;
if (patch_div_s == 0) patch_div_s = 1;
if (patch_div_t == 0) patch_div_t = 1;
// TODO: Remove this cap when spline_s has been optimized.
if (patch_div_s > 20) patch_div_s = 20;
if (patch_div_t > 20) patch_div_t = 20;
// First compute all the vertices and put them in an array
SimpleVertex *vertices = new SimpleVertex[(patch_div_s + 1) * (patch_div_t + 1)];
bool computeNormals = gstate.isLightingEnabled();
for (int tile_v = 0; tile_v < patch_div_t + 1; tile_v++) {
float v = ((float)tile_v * (float)(m - 2) / (float)(patch_div_t + 0.00001f)); // epsilon to prevent division by 0 in spline_s
for (int tile_u = 0; tile_u < patch_div_s + 1; tile_u++) {
float u = ((float)tile_u * (float)(n - 2) / (float)(patch_div_s + 0.00001f));
SimpleVertex *vert = &vertices[tile_v * (patch_div_s + 1) + tile_u];
vert->pos.SetZero();
if (origVertType & GE_VTYPE_NRM_MASK) {
vert->nrm.SetZero();
} else {
vert->nrm.SetZero();
vert->nrm.z = 1.0f;
}
if (origVertType & GE_VTYPE_COL_MASK) {
memset(vert->color, 0, 4);
} else {
memcpy(vert->color, spatch.points[0]->color, 4);
}
if (origVertType & GE_VTYPE_TC_MASK) {
vert->uv[0] = 0.0f;
vert->uv[1] = 0.0f;
} else {
vert->uv[0] = ((float)tile_u / (float)patch_div_s);
vert->uv[1] = ((float)tile_v / (float)patch_div_t);
}
// Collect influences from surrounding control points.
// Should be possible to limit to a smaller range than looping through the entire patch...
// Also, it should be possible to do something similar to what we do in bezier where we only
// evaluate the spline 5 times instead of n * m, taking advantage of the fundamentally linear
// nature of this stuff to separate into horizontal and vertical passes.
for (int ii = 0; ii < spatch.count_u; ++ii) {
for (int jj = 0; jj < spatch.count_v; ++jj) {
float u_spline = spline_n(ii, 3, u, knot_u);
float v_spline = spline_n(jj, 3, v, knot_v);
float f = u_spline * v_spline;
if (f > 0.0f) {
SimpleVertex *a = spatch.points[spatch.count_u * jj + ii];
vert->pos += a->pos * f;
if (origVertType & GE_VTYPE_TC_MASK) {
vert->uv[0] += a->uv[0] * f;
vert->uv[1] += a->uv[1] * f;
}
if (origVertType & GE_VTYPE_COL_MASK) {
vert->color[0] += a->color[0] * f;
vert->color[1] += a->color[1] * f;
vert->color[2] += a->color[2] * f;
vert->color[3] += a->color[3] * f;
}
if (origVertType & GE_VTYPE_NRM_MASK) {
vert->nrm += a->nrm * f;
}
}
}
}
if (origVertType & GE_VTYPE_NRM_MASK) {
vert->nrm.Normalize();
}
}
}
delete [] knot_u;
delete [] knot_v;
// Tesselate. TODO: Use indices so we only need to emit 4 vertices per pair of triangles instead of six.
for (int tile_v = 0; tile_v < patch_div_t; ++tile_v) {
for (int tile_u = 0; tile_u < patch_div_s; ++tile_u) {
float u = ((float)tile_u / (float)patch_div_s);
float v = ((float)tile_v / (float)patch_div_t);
SimpleVertex *v0 = &vertices[tile_v * (patch_div_s + 1) + tile_u];
SimpleVertex *v1 = &vertices[tile_v * (patch_div_s + 1) + tile_u + 1];
SimpleVertex *v2 = &vertices[(tile_v + 1) * (patch_div_s + 1) + tile_u];
SimpleVertex *v3 = &vertices[(tile_v + 1) * (patch_div_s + 1) + tile_u + 1];
CopyTriangle(dest, v0, v2, v1);
CopyTriangle(dest, v1, v2, v3);
count += 6;
}
}
delete [] vertices;
}
}
void TesselateBezierPatch(u8 *&dest, int &count, const BezierPatch &patch, u32 origVertType) {
const float third = 1.0f / 3.0f;
if (!realTesselationBezier) {
// Fast and easy way - just draw the control points, generate some very basic normal vector subsitutes.
// Very inaccurate though but okay for Loco Roco. Maybe should keep it as an option.
const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1;
const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1;
const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2;
const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2;
float u_base = patch.u_index / 3.0f;
float v_base = patch.v_index / 3.0f;
for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) {
for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) {
for (int tile_v = 0; tile_v < 3; tile_v++) {
for (int tile_u = 0; tile_u < 3; tile_u++) {
int point_index = tile_u + tile_v * 4;
SimpleVertex v0 = *patch.points[point_index];
@ -298,16 +558,11 @@ void TesselatePatch(u8 *&dest, int &count, const HWSplinePatch &patch, u32 origV
}
}
} else {
// Full tesselation of spline patches.
// TODO: This still has serious bugs, for example in Loco Roco, and there are gaps between patches for unknown reasons.
// Full correct tesselation of bezier patches.
// Note: Does not handle splines correctly.
int tess_u = gstate.getPatchDivisionU();
int tess_v = gstate.getPatchDivisionV();
const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : tess_u / 3;
const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : tess_v / 3;
const int tile_max_u = (patch.type & END_OPEN_U) ? tess_u : (tess_u + 0) * 2 / 3;
const int tile_max_v = (patch.type & END_OPEN_V) ? tess_v : (tess_v + 0) * 2 / 3;
// First compute all the vertices and put them in an array
SimpleVertex *vertices = new SimpleVertex[(tess_u + 1) * (tess_v + 1)];
@ -319,7 +574,7 @@ void TesselatePatch(u8 *&dest, int &count, const HWSplinePatch &patch, u32 origV
float v = ((float)tile_v / (float)tess_v);
float bu = u;
float bv = v;
// TODO: Should be able to precompute the four curves per U, then just Bernstein per V. Will benefit large tesselation factors.
Vec3f pos1 = Bernstein3D(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, bu);
Vec3f pos2 = Bernstein3D(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, bu);
@ -337,15 +592,15 @@ void TesselatePatch(u8 *&dest, int &count, const HWSplinePatch &patch, u32 origV
Vec3f derivV = Bernstein3DDerivative(pos1, pos2, pos3, pos4, bv);
// TODO: Interpolate normals instead of generating them, if available?
vert.nrm = Cross(derivU, derivV).Normalized(); //.SetZero();
vert.nrm = Cross(derivU, derivV).Normalized();
if (gstate.patchfacing & 1)
vert.nrm *= -1.0f;
} else {
vert.nrm.SetZero();
}
vert.pos = Bernstein3D(pos1, pos2, pos3, pos4, bv);
if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
// Generate texcoord
vert.uv[0] = u + patch.u_index * third;
@ -364,8 +619,8 @@ void TesselatePatch(u8 *&dest, int &count, const HWSplinePatch &patch, u32 origV
}
// Tesselate. TODO: Use indices so we only need to emit 4 vertices per pair of triangles instead of six.
for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) {
for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) {
for (int tile_v = 0; tile_v < tess_v; ++tile_v) {
for (int tile_u = 0; tile_u < tess_u; ++tile_u) {
float u = ((float)tile_u / (float)tess_u);
float v = ((float)tile_v / (float)tess_v);
@ -414,30 +669,16 @@ void TransformDrawEngine::SubmitSpline(void* control_points, void* indices, int
ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, sizeof(SimpleVertex));
}
const DecVtxFormat& vtxfmt = vdecoder->GetDecVtxFmt();
int num_patches_u = count_u - 3;
int num_patches_v = count_v - 3;
// TODO: Do something less idiotic to manage this buffer
HWSplinePatch* patches = new HWSplinePatch[num_patches_u * num_patches_v];
for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) {
for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) {
HWSplinePatch& patch = patches[patch_u + patch_v * num_patches_u];
for (int point = 0; point < 16; ++point) {
int idx = (patch_u + point%4) + (patch_v + point/4) * count_u;
if (indices)
patch.points[point] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]);
else
patch.points[point] = simplified_control_points + idx;
}
patch.type = (type_u | (type_v << 2));
if (patch_u != 0) patch.type &= ~START_OPEN_U;
if (patch_v != 0) patch.type &= ~START_OPEN_V;
if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U;
if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V;
patch.u_index = patch_u;
patch.v_index = patch_v;
}
SimpleVertex **points = new SimpleVertex *[count_u * count_v];
// Make an array of pointers to the control points, to get rid of indices.
for (int idx = 0; idx < count_u * count_v; idx++) {
if (indices)
points[idx] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]);
else
points[idx] = simplified_control_points + idx;
}
u8 *decoded2 = decoded + 65536 * 36;
@ -445,11 +686,16 @@ void TransformDrawEngine::SubmitSpline(void* control_points, void* indices, int
int count = 0;
u8 *dest = decoded2;
for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
HWSplinePatch& patch = patches[patch_idx];
TesselatePatch(dest, count, patch, origVertType);
}
delete[] patches;
SplinePatch patch;
patch.type_u = type_u;
patch.type_v = type_v;
patch.count_u = count_u;
patch.count_v = count_v;
patch.points = points;
TesselateSplinePatch(dest, count, patch, origVertType);
delete[] points;
u32 vertTypeWithoutIndex = vertType & ~GE_VTYPE_IDX_MASK;
@ -491,10 +737,10 @@ void TransformDrawEngine::SubmitBezier(void* control_points, void* indices, int
// Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing)
int num_patches_u = (count_u - 1) / 3;
int num_patches_v = (count_v - 1) / 3;
HWSplinePatch* patches = new HWSplinePatch[num_patches_u * num_patches_v];
BezierPatch* patches = new BezierPatch[num_patches_u * num_patches_v];
for (int patch_u = 0; patch_u < num_patches_u; patch_u++) {
for (int patch_v = 0; patch_v < num_patches_v; patch_v++) {
HWSplinePatch& patch = patches[patch_u + patch_v * num_patches_u];
BezierPatch& patch = patches[patch_u + patch_v * num_patches_u];
for (int point = 0; point < 16; ++point) {
int idx = (patch_u * 3 + point%4) + (patch_v * 3 + point/4) * count_u;
if (indices)
@ -504,7 +750,6 @@ void TransformDrawEngine::SubmitBezier(void* control_points, void* indices, int
}
patch.u_index = patch_u * 3;
patch.v_index = patch_v * 3;
patch.type = START_OPEN_U | START_OPEN_V | END_OPEN_U | END_OPEN_V;
}
}
@ -514,8 +759,8 @@ void TransformDrawEngine::SubmitBezier(void* control_points, void* indices, int
u8 *dest = decoded2;
for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
HWSplinePatch& patch = patches[patch_idx];
TesselatePatch(dest, count, patch, origVertType);
BezierPatch& patch = patches[patch_idx];
TesselateBezierPatch(dest, count, patch, origVertType);
}
delete[] patches;