pcsx2/pcsx2/R5900.cpp
Jake.Stine fe6f45e45e Updated the Copyright to reflect the passing of another year. :)
Updated the pcsx2_suite_2008.sln; changed SPU2ghz to SPU2-X.

git-svn-id: http://pcsx2.googlecode.com/svn/trunk@502 96395faa-99c1-11dd-bbfe-3dabce05a288
2009-02-15 23:23:46 +00:00

693 lines
20 KiB
C++

/* Pcsx2 - Pc Ps2 Emulator
* Copyright (C) 2002-2009 Pcsx2 Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "PrecompiledHeader.h"
#include "Common.h"
#include "Counters.h"
#include "Memory.h"
#include "Hw.h"
#include "DebugTools/Debug.h"
#include "R3000A.h"
#include "VUmicro.h"
#include "COP0.h"
#include "GS.h"
#include "IPU/IPU.h"
#include "Vif.h"
#include "VifDma.h"
#include "SPR.h"
#include "Sif.h"
#include "Paths.h"
using namespace R5900; // for R5900 disasm tools
s32 EEsCycle; // used to sync the IOP to the EE
u32 EEoCycle;
//static int inter;
PCSX2_ALIGNED16(cpuRegisters cpuRegs);
PCSX2_ALIGNED16(fpuRegisters fpuRegs);
PCSX2_ALIGNED16(tlbs tlb[48]);
R5900cpu *Cpu = NULL;
u32 bExecBIOS = 0; // set if the BIOS has already been executed
static bool cpuIsInitialized = false;
static uint eeWaitCycles = 1024;
bool eeEventTestIsActive = false;
// A run-once procedure for initializing the emulation state.
// Can be done anytime after allocating memory, and before calling Cpu->Execute().
// Multiple calls to this function are automatically ignored.
/*void cpuInit()
{
DevCon::WriteLn( "cpuInit > %s", params cpuIsInitialized ? "Initializing..." : "Skipping (already initialized)" );
if( cpuIsInitialized ) return;
cpuIsInitialized = true;
// non memInit() currently since we don't support soft resets. memory is initialized in full
// instead during cpuReset() [using memReset()]
//memInit();
}*/
void cpuReset()
{
mtgsWaitGS(); // GS better be done processing before we reset the EE, just in case.
//cpuInit(); // more just-in-caseness!
//if( !cpuIsInitialized )
{
cpuIsInitialized = true;
}
memReset();
psxMemReset();
vuMicroMemReset();
memzero_obj(cpuRegs);
memzero_obj(fpuRegs);
memzero_obj(tlb);
cpuRegs.pc = 0xbfc00000; ///set pc reg to stack
cpuRegs.CP0.n.Config = 0x440;
cpuRegs.CP0.n.Status.val = 0x70400004; //0x10900000 <-- wrong; // COP0 enabled | BEV = 1 | TS = 1
cpuRegs.CP0.n.PRid = 0x00002e20; // PRevID = Revision ID, same as R5900
fpuRegs.fprc[0] = 0x00002e00; // fpu Revision..
fpuRegs.fprc[31] = 0x01000001; // fpu Status/Control
g_nextBranchCycle = cpuRegs.cycle + 4;
EEsCycle = 0;
EEoCycle = cpuRegs.cycle;
eeWaitCycles = CHECK_WAITCYCLE_HACK ? 3072 : 768;
// Cyclerate hacks effectively speed up the rate of event tests, so we can safely boost
// the WaitCycles value here for x2 and x3 modes:
if( CHECK_EE_CYCLERATE > 1 )
eeWaitCycles += 1024;
hwReset();
vif0Reset();
vif1Reset();
rcntInit();
psxReset();
}
void cpuShutdown()
{
//if( !cpuIsInitialized ) return;
//cpuIsInitialized = false;
mtgsWaitGS();
hwShutdown();
// biosShutdown();
psxShutdown();
disR5900FreeSyms();
}
void cpuException(u32 code, u32 bd)
{
cpuRegs.branch = 0; // Tells the interpreter that an exception occurred during a branch.
u32 offset;
cpuRegs.CP0.n.Cause = code & 0xffff;
if(cpuRegs.CP0.n.Status.b.ERL == 0){ //Error Level 0-1
if(((code & 0x7C) >= 0x8) && ((code & 0x7C) <= 0xC)) offset = 0x0; //TLB Refill
else if ((code & 0x7C) == 0x0) offset = 0x200; //Interrupt
else offset = 0x180; // Everything else
if (cpuRegs.CP0.n.Status.b.EXL == 0) {
cpuRegs.CP0.n.Status.b.EXL = 1;
if (bd) {
Console::Notice("branch delay!!");
cpuRegs.CP0.n.EPC = cpuRegs.pc - 4;
cpuRegs.CP0.n.Cause |= 0x80000000;
} else {
cpuRegs.CP0.n.EPC = cpuRegs.pc;
cpuRegs.CP0.n.Cause &= ~0x80000000;
}
} else {
offset = 0x180; //Overrride the cause
//Console::Notice("cpuException: Status.EXL = 1 cause %x", params code);
}
if (cpuRegs.CP0.n.Status.b.BEV == 0) {
cpuRegs.pc = 0x80000000 + offset;
} else {
cpuRegs.pc = 0xBFC00200 + offset;
}
} else { //Error Level 2
Console::Error("*PCSX2* FIX ME: Level 2 cpuException");
if((code & 0x38000) <= 0x8000 ) { //Reset / NMI
cpuRegs.pc = 0xBFC00000;
Console::Notice("Reset request");
UpdateCP0Status();
return;
} else if((code & 0x38000) == 0x10000) offset = 0x80; //Performance Counter
else if((code & 0x38000) == 0x18000) offset = 0x100; //Debug
else Console::Error("Unknown Level 2 Exception!! Cause %x", params code);
if (cpuRegs.CP0.n.Status.b.EXL == 0) {
cpuRegs.CP0.n.Status.b.EXL = 1;
if (bd) {
Console::Notice("branch delay!!");
cpuRegs.CP0.n.EPC = cpuRegs.pc - 4;
cpuRegs.CP0.n.Cause |= 0x80000000;
} else {
cpuRegs.CP0.n.EPC = cpuRegs.pc;
cpuRegs.CP0.n.Cause &= ~0x80000000;
}
} else {
offset = 0x180; //Overrride the cause
Console::Notice("cpuException: Status.EXL = 1 cause %x", params code);
}
if (cpuRegs.CP0.n.Status.b.DEV == 0) {
cpuRegs.pc = 0x80000000 + offset;
} else {
cpuRegs.pc = 0xBFC00200 + offset;
}
}
UpdateCP0Status();
}
void cpuTlbMiss(u32 addr, u32 bd, u32 excode) {
Console::Error("cpuTlbMiss pc:%x, cycl:%x, addr: %x, status=%x, code=%x", params cpuRegs.pc, cpuRegs.cycle, addr, cpuRegs.CP0.n.Status.val, excode);
if (bd) {
Console::Notice("branch delay!!");
}
assert(0); // temporary
cpuRegs.CP0.n.BadVAddr = addr;
cpuRegs.CP0.n.Context &= 0xFF80000F;
cpuRegs.CP0.n.Context |= (addr >> 9) & 0x007FFFF0;
cpuRegs.CP0.n.EntryHi = (addr & 0xFFFFE000) | (cpuRegs.CP0.n.EntryHi & 0x1FFF);
cpuRegs.CP0.n.Cause = excode;
if (!(cpuRegs.CP0.n.Status.val & 0x2)) { // EXL bit
cpuRegs.CP0.n.EPC = cpuRegs.pc - 4;
}
if ((cpuRegs.CP0.n.Status.val & 0x1) == 0) {
cpuRegs.pc = 0x80000000;
} else {
cpuRegs.pc = 0x80000180;
}
cpuRegs.CP0.n.Status.b.EXL = 1;
UpdateCP0Status();
// Log=1; varLog|= 0x40000000;
}
void cpuTlbMissR(u32 addr, u32 bd) {
cpuTlbMiss(addr, bd, EXC_CODE_TLBL);
}
void cpuTlbMissW(u32 addr, u32 bd) {
cpuTlbMiss(addr, bd, EXC_CODE_TLBS);
}
void JumpCheckSym(u32 addr, u32 pc) {
#if 0
// if (addr == 0x80051770) { SysPrintf("Log!: %s\n", PSM(cpuRegs.GPR.n.a0.UL[0])); Log=1; varLog|= 0x40000000; }
if (addr == 0x8002f150) { SysPrintf("printk: %s\n", PSM(cpuRegs.GPR.n.a0.UL[0])); }
if (addr == 0x8002aba0) return;
if (addr == 0x8002f450) return;
if (addr == 0x800dd520) return;
// if (addr == 0x80049300) SysPrintf("register_blkdev: %x\n", cpuRegs.GPR.n.a0.UL[0]);
if (addr == 0x8013cb70) { SysPrintf("change_root: %x\n", cpuRegs.GPR.n.a0.UL[0]); }
// if (addr == 0x8013d1e8) { SysPrintf("Log!\n"); Log++; if (Log==2) exit(0); varLog|= 0x40000000; }
// if (addr == 0x00234e88) { SysPrintf("StoreImage\n"); Log=1; /*psMu32(0x234e88) = 0x03e00008; psMu32(0x234e8c) = 0;*/ }
#endif
/* if ((pc >= 0x00131D50 &&
pc < 0x00132454) ||
(pc >= 0x00786a90 &&
pc < 0x00786ac8))*/
/*if (varLog & 0x40000000) {
char *str;
char *strf;
str = disR5900GetSym(addr);
if (str != NULL) {
strf = disR5900GetUpperSym(pc);
if (strf) {
SysPrintf("Func %8.8x: %s (called by %8.8x: %s)\n", addr, str, pc, strf);
} else {
SysPrintf("Func %8.8x: %s (called by %x)\n", addr, str, pc);
}
if (!strcmp(str, "printf")) { SysPrintf("%s\n", (char*)PSM(cpuRegs.GPR.n.a0.UL[0])); }
if (!strcmp(str, "printk")) { SysPrintf("%s\n", (char*)PSM(cpuRegs.GPR.n.a0.UL[0])); }
}
}*/
}
void JumpCheckSymRet(u32 addr) {
/*if (varLog & 0x40000000) {
char *str;
str = disR5900GetUpperSym(addr);
if (str != NULL) {
SysPrintf("Return : %s, v0=%8.8x\n", str, cpuRegs.GPR.n.v0.UL[0]);
}
}*/
}
__forceinline void _cpuTestMissingINTC() {
if (cpuRegs.CP0.n.Status.val & 0x400 &&
psHu32(INTC_STAT) & psHu32(INTC_MASK)) {
if ((cpuRegs.interrupt & (1 << 30)) == 0) {
SysPrintf("*PCSX2*: Error, missing INTC Interrupt\n");
}
}
}
__forceinline void _cpuTestMissingDMAC() {
if (cpuRegs.CP0.n.Status.val & 0x800 &&
(psHu16(0xe012) & psHu16(0xe010) ||
psHu16(0xe010) & 0x8000)) {
if ((cpuRegs.interrupt & (1 << 31)) == 0) {
SysPrintf("*PCSX2*: Error, missing DMAC Interrupt\n");
}
}
}
void cpuTestMissingHwInts() {
if ((cpuRegs.CP0.n.Status.val & 0x10007) == 0x10001) {
_cpuTestMissingINTC();
_cpuTestMissingDMAC();
// _cpuTestTIMR();
}
}
// sets a branch test to occur some time from an arbitrary starting point.
__forceinline int cpuSetNextBranch( u32 startCycle, s32 delta )
{
// typecast the conditional to signed so that things don't blow up
// if startCycle is greater than our next branch cycle.
if( (int)(g_nextBranchCycle - startCycle) > delta )
{
g_nextBranchCycle = startCycle + delta;
return 1;
}
return 0;
}
// sets a branch to occur some time from the current cycle
__forceinline int cpuSetNextBranchDelta( s32 delta )
{
return cpuSetNextBranch( cpuRegs.cycle, delta );
}
// tests the cpu cycle agaisnt the given start and delta values.
// Returns true if the delta time has passed.
__forceinline int cpuTestCycle( u32 startCycle, s32 delta )
{
// typecast the conditional to signed so that things don't explode
// if the startCycle is ahead of our current cpu cycle.
return (int)(cpuRegs.cycle - startCycle) >= delta;
}
// tells the EE to run the branch test the next time it gets a chance.
__forceinline void cpuSetBranch()
{
g_nextBranchCycle = cpuRegs.cycle;
}
void cpuClearInt( uint i )
{
jASSUME( i < 32 );
cpuRegs.interrupt &= ~(1 << i);
}
static __forceinline void TESTINT( u8 n, void (*callback)() )
{
if( !(cpuRegs.interrupt & (1 << n)) ) return;
if( cpuTestCycle( cpuRegs.sCycle[n], cpuRegs.eCycle[n] ) )
{
cpuClearInt( n );
callback();
}
else
cpuSetNextBranch( cpuRegs.sCycle[n], cpuRegs.eCycle[n] );
}
static __forceinline void _cpuTestInterrupts()
{
/* These are 'pcsx2 interrupts', they handle asynchronous stuff
that depends on the cycle timings */
TESTINT(1, vif1Interrupt);
TESTINT(2, gsInterrupt);
TESTINT(5, EEsif0Interrupt);
TESTINT(6, EEsif1Interrupt);
// Profile-guided Optimization (sorta)
// The following ints are rarely called. Encasing them in a conditional
// as follows helps speed up most games.
if( cpuRegs.interrupt & ( 1 | (3 << 3) | (3<<8) | (3<<10)) )
{
TESTINT(0, vif0Interrupt);
#ifndef IPU_INLINE_IRQS
TESTINT(3, ipu0Interrupt);
TESTINT(4, ipu1Interrupt);
#endif
TESTINT(8, SPRFROMinterrupt);
TESTINT(9, SPRTOinterrupt);
TESTINT(10, vifMFIFOInterrupt);
TESTINT(11, gifMFIFOInterrupt);
}
}
static __forceinline void _cpuTestTIMR()
{
cpuRegs.CP0.n.Count += cpuRegs.cycle-s_iLastCOP0Cycle;
s_iLastCOP0Cycle = cpuRegs.cycle;
// fixme: this looks like a hack to make up for the fact that the TIMR
// doesn't yet have a proper mechanism for setting itself up on a nextBranchCycle.
// A proper fix would schedule the TIMR to trigger at a specific cycle anytime
// the Count or Compare registers are modified.
if ( (cpuRegs.CP0.n.Status.val & 0x8000) &&
cpuRegs.CP0.n.Count >= cpuRegs.CP0.n.Compare && cpuRegs.CP0.n.Count < cpuRegs.CP0.n.Compare+1000 )
{
Console::Status("timr intr: %x, %x", params cpuRegs.CP0.n.Count, cpuRegs.CP0.n.Compare);
cpuException(0x808000, cpuRegs.branch);
}
}
static __forceinline void _cpuTestPERF()
{
// fixme - The interpreter and recompiler both re-calculate these values
// whenever they are read, so updating them at regular intervals *should be*
// merely a common courtesy. But when I set them up to be called less
// frequently some games would crash. I'd like to figure out why someday. [Air]
if((cpuRegs.PERF.n.pccr & 0x800003E0) == 0x80000020) {
cpuRegs.PERF.n.pcr0 += cpuRegs.cycle-s_iLastPERFCycle[0];
s_iLastPERFCycle[0] = cpuRegs.cycle;
}
if((cpuRegs.PERF.n.pccr & 0x800F8000) == 0x80008000) {
cpuRegs.PERF.n.pcr1 += cpuRegs.cycle-s_iLastPERFCycle[1];
s_iLastPERFCycle[1] = cpuRegs.cycle;
}
}
// Checks the COP0.Status for exception enablings.
// Exception handling for certain modes is *not* currently supported, this function filters
// them out. Exceptions while the exception handler is active (EIE), or exceptions of any
// level other than 0 are ignored here.
static bool cpuIntsEnabled()
{
return cpuRegs.CP0.n.Status.b.EIE && cpuRegs.CP0.n.Status.b.IE &&
!cpuRegs.CP0.n.Status.b.EXL && (cpuRegs.CP0.n.Status.b.ERL == 0);
}
// if cpuRegs.cycle is greater than this cycle, should check cpuBranchTest for updates
u32 g_nextBranchCycle = 0;
// Shared portion of the branch test, called from both the Interpreter
// and the recompiler. (moved here to help alleviate redundant code)
__forceinline bool _cpuBranchTest_Shared()
{
eeEventTestIsActive = true;
g_nextBranchCycle = cpuRegs.cycle + eeWaitCycles;
EEsCycle += cpuRegs.cycle - EEoCycle;
EEoCycle = cpuRegs.cycle;
if( EEsCycle > 0 )
iopBranchAction = true;
// ---- Counters -------------
bool vsyncEvent = false;
rcntUpdate_hScanline();
if( cpuTestCycle( nextsCounter, nextCounter ) )
{
vsyncEvent = rcntUpdate();
_cpuTestPERF();
}
_cpuTestTIMR();
// ---- Interrupts -------------
// Handles all interrupts except 30 and 31, which are handled later.
if( cpuRegs.interrupt & ~(3<<30) )
_cpuTestInterrupts();
// ---- IOP -------------
// * It's important to run a psxBranchTest before calling ExecuteBlock. This
// is because the IOP does not always perform branch tests before returning
// (during the prev branch) and also so it can act on the state the EE has
// given it before executing any code.
//
// * The IOP cannot always be run. If we run IOP code every time through the
// cpuBranchTest, the IOP generally starts to run way ahead of the EE.
psxBranchTest();
if( iopBranchAction )
{
//if( EEsCycle < -450 )
// Console::WriteLn( " IOP ahead by: %d cycles", params -EEsCycle );
// Experimental and Probably Unnecessry Logic -->
// Check if the EE already has an exception pending, and if so we shouldn't
// waste too much time updating the IOP. Theory being that the EE and IOP should
// run closely in sync during raised exception events. But in practice it didn't
// seem to make much of a difference.
// Note: The IOP is very good about chaining blocks together so it tends to
// run lots of cycles, even with only 32 (4 IOP) cycles specified here. That's
// probably why it doesn't improve sync much.
/*bool eeExceptPending = cpuIntsEnabled() &&
//( cpuRegs.CP0.n.Status.b.EIE && cpuRegs.CP0.n.Status.b.IE && (cpuRegs.CP0.n.Status.b.ERL == 0) ) &&
//( (cpuRegs.CP0.n.Status.val & 0x10007) == 0x10001 ) &&
( (cpuRegs.interrupt & (3<<30)) != 0 );
if( eeExceptPending )
{
// ExecuteBlock returns a negative value, so subtract it from the cycle count
// specified to get the total cycles processed! :D
int cycleCount = std::min( EEsCycle, (s32)(eeWaitCycles>>4) );
int cyclesRun = cycleCount - psxCpu->ExecuteBlock( cycleCount );
EEsCycle -= cyclesRun;
//Console::Notice( "IOP Exception-Pending Execution -- EEsCycle: %d", params EEsCycle );
}
else*/
{
EEsCycle = psxCpu->ExecuteBlock( EEsCycle );
}
iopBranchAction = false;
}
// ---- VU0 -------------
if (VU0.VI[REG_VPU_STAT].UL & 0x1)
{
// We're in a BranchTest. All dynarec registers are flushed
// so there is no need to freeze registers here.
CpuVU0.ExecuteBlock();
// This might be needed to keep the EE and VU0 in sync.
// A better fix will require hefty changes to the VU recs. -_-
if(VU0.VI[REG_VPU_STAT].UL & 0x1)
cpuSetNextBranchDelta( 768 );
}
// Note: We don't update the VU1 here because it runs it's micro-programs in
// one shot always. That is, when a program is executed the VU1 doesn't even
// bother to return until the program is completely finished.
// ---- Schedule Next Event Test --------------
if( EEsCycle > 192 )
{
// EE's running way ahead of the IOP still, so we should branch quickly to give the
// IOP extra timeslices in short order.
cpuSetNextBranchDelta( 48 );
//Console::Notice( "EE ahead of the IOP -- Rapid Branch! %d", params EEsCycle );
}
// The IOP could be running ahead/behind of us, so adjust the iop's next branch by its
// relative position to the EE (via EEsCycle)
cpuSetNextBranchDelta( ((g_psxNextBranchCycle-psxRegs.cycle)*8) - EEsCycle );
// Apply the hsync counter's nextCycle
cpuSetNextBranch( counters[4].sCycle, counters[4].CycleT );
// Apply vsync and other counter nextCycles
cpuSetNextBranch( nextsCounter, nextCounter );
eeEventTestIsActive = false;
// ---- INTC / DMAC Exceptions -----------------
// Raise the INTC and DMAC interrupts here, which usually throw exceptions.
// This should be done last since the IOP and the VU0 can raise several EE
// exceptions.
//if ((cpuRegs.CP0.n.Status.val & 0x10007) == 0x10001)
if( cpuIntsEnabled() )
{
TESTINT(30, intcInterrupt);
TESTINT(31, dmacInterrupt);
}
return vsyncEvent;
}
void cpuTestINTCInts()
{
if( cpuRegs.interrupt & (1 << 30) ) return;
//if( (cpuRegs.CP0.n.Status.val & 0x10407) != 0x10401 ) return;
if( !cpuIntsEnabled() ) return;
if( (psHu32(INTC_STAT) & psHu32(INTC_MASK)) == 0 ) return;
cpuRegs.interrupt|= 1 << 30;
cpuRegs.sCycle[30] = cpuRegs.cycle;
cpuRegs.eCycle[30] = 4; //Needs to be 4 to account for bus delays/pipelines etc
// only set the next branch delta if the exception won't be handled for
// the current branch...
if( !eeEventTestIsActive )
cpuSetNextBranchDelta( 4 );
else if(psxCycleEE > 0)
{
psxBreak += psxCycleEE; // record the number of cycles the IOP didn't run.
psxCycleEE = 0;
}
}
__forceinline void cpuTestDMACInts()
{
if ( cpuRegs.interrupt & (1 << 31) ) return;
if ((cpuRegs.CP0.n.Status.val & 0x10807) != 0x10801) return;
if ( ( (psHu16(0xe012) & psHu16(0xe010)) == 0) &&
( (psHu16(0xe010) & 0x8000) == 0) ) return;
cpuRegs.interrupt|= 1 << 31;
cpuRegs.sCycle[31] = cpuRegs.cycle;
cpuRegs.eCycle[31] = 4; //Needs to be 4 to account for bus delays/pipelines etc
// only set the next branch delta if the exception won't be handled for
// the current branch...
if( !eeEventTestIsActive )
cpuSetNextBranchDelta( 4 );
else if(psxCycleEE > 0)
{
psxBreak += psxCycleEE; // record the number of cycles the IOP didn't run.
psxCycleEE = 0;
}
}
__forceinline void cpuTestTIMRInts() {
if ((cpuRegs.CP0.n.Status.val & 0x10007) == 0x10001) {
_cpuTestPERF();
_cpuTestTIMR();
}
}
void cpuTestHwInts() {
cpuTestINTCInts();
cpuTestDMACInts();
cpuTestTIMRInts();
}
// This function performs a "hackish" execution of the BIOS stub, which initializes EE
// memory and hardware. It forcefully breaks execution when the stub is finished, prior
// to the PS2 logos being displayed. This allows us to "shortcut" right into a game
// without having to wait through the logos or endure game/bios localization checks.
void cpuExecuteBios()
{
// Set the video mode to user's default request:
// (right now we always default to NTSC)
gsSetVideoRegionType( Config.PsxType & 1 );
Console::Notice( "* PCSX2 *: ExecuteBios" );
bExecBIOS = TRUE;
while (cpuRegs.pc != 0x00200008 &&
cpuRegs.pc != 0x00100008) {
g_nextBranchCycle = cpuRegs.cycle;
Cpu->ExecuteBlock();
}
bExecBIOS = FALSE;
// {
// FILE* f = fopen("eebios.bin", "wb");
// fwrite(PSM(0x80000000), 0x100000, 1, f);
// fclose(f);
// exit(0);
// f = fopen("iopbios.bin", "wb");
// fwrite(PS2MEM_PSX, 0x80000, 1, f);
// fclose(f);
// }
// REC_CLEARM(0x00200008);
// REC_CLEARM(0x00100008);
// REC_CLEARM(cpuRegs.pc);
// Reset the EErecs here, because the bios generates "slow" blocks that have hacky
// bBiosEnd checks in them and stuff. This deletes them so that the recs replace them
// with new faster versions:
Cpu->Reset();
Console::Notice("* PCSX2 *: ExecuteBios Complete");
//GSprintf(5, "PCSX2 " PCSX2_VERSION "\nExecuteBios Complete\n");
}
__forceinline void CPU_INT( u32 n, s32 ecycle)
{
cpuRegs.interrupt|= 1 << n;
cpuRegs.sCycle[n] = cpuRegs.cycle;
cpuRegs.eCycle[n] = ecycle;
// Interrupt is happening soon: make sure both EE and IOP are aware.
if( ecycle <= 28 && psxCycleEE > 0 )
{
// If running in the IOP, force it to break immediately into the EE.
// the EE's branch test is due to run.
psxBreak += psxCycleEE; // record the number of cycles the IOP didn't run.
psxCycleEE = 0;
}
cpuSetNextBranchDelta( cpuRegs.eCycle[n] );
}