pcsx2/GS.c
2007-04-02 01:06:17 +00:00

1707 lines
No EOL
40 KiB
C

/* Pcsx2 - Pc Ps2 Emulator
* Copyright (C) 2002-2003 Pcsx2 Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
// rewritten by zerofrog to add multithreading/gs caching to GS and VU1
#include "Common.h"
#include <xmmintrin.h>
#include <assert.h>
#include "ir5900.h"
#include "VUmicro.h"
#ifdef WIN32_VIRTUAL_MEM
#define gif ((DMACh*)&PS2MEM_HW[0xA000])
#else
#define gif ((DMACh*)&psH[0xA000])
#endif
#define ENABLE_GS_CACHING_SIZE 0x4000 // min size
//#define _RINGBUF_DEBUG
#ifdef WIN32_VIRTUAL_MEM
#define PS2GS_BASE(mem) ((PS2MEM_BASE+0x12000000)+(mem&0x13ff))
#else
u8 g_RealGSMem[0x2000];
#define PS2GS_BASE(mem) (g_RealGSMem+(mem&0x13ff))
#endif
#ifdef GSCAPTURE
u32 g_loggs = 0;
u32 g_gstransnum = 0;
u32 g_gslimit = 0;
u32 g_gsfinalnum = 0;
#endif
// dummy GS for processing SIGNAL, FINISH, and LABEL commands
typedef struct
{
u32 nloop : 15;
u32 eop : 1;
u32 dummy0 : 16;
u32 dummy1 : 14;
u32 pre : 1;
u32 prim : 11;
u32 flg : 2;
u32 nreg : 4;
u32 regs[2];
u32 curreg;
} GIFTAG;
static GIFTAG g_path[3];
__declspec(align(16)) static BYTE s_byRegs[3][16];
// could convert to pthreads easily, just don't have the time
HANDLE g_hGsEvent = NULL, // set when path3 is ready to be processed
g_hVuGSExit = NULL; // set when thread needs to exit
HANDLE g_hGSOpen = NULL, g_hGSDone = NULL;
HANDLE g_hVuGSThread = NULL;
u32 CSRw;
HANDLE g_hAllGsReady[3] = {NULL};
DWORD WINAPI VuGSThreadProc(LPVOID lpParam);
// g_pGSRingPos == g_pGSWritePos => fifo is empty
u8* g_pGSRingPos = NULL, // cur pos ring is at
*g_pGSWritePos = NULL; // cur pos ee thread is at
u8 *g_pGSTempWritePos = NULL, *g_pGSTempReadPos = NULL; // cur pos ee thread is at
extern int g_nCounters[];
extern void * memcpy_amd(void *dest, const void *src, size_t n);
CRITICAL_SECTION g_PageAddrSection;
u32 *g_pGSCurFreePages = NULL, *g_pGSWriteFreePages = NULL;
void gsInit()
{
if( VirtualAlloc(GS_PAGEADDRS, GSPAGES_STRIDE*(0x10000000>>GS_SHIFT), MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE) != GS_PAGEADDRS ) {
MessageBox(NULL, "Cannot alloc GS page buffer\n", "Error", MB_OK);
exit(0);
}
memset(GS_PAGEADDRS, 0, GSPAGES_STRIDE*(0x02000000>>GS_SHIFT));
if( CHECK_MULTIGS ) {
g_hGsEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
g_hVuGSExit = CreateEvent(NULL, FALSE, FALSE, NULL);
g_hGSOpen = CreateEvent(NULL, FALSE, FALSE, NULL);
g_hGSDone = CreateEvent(NULL, FALSE, FALSE, NULL);
SysPrintf("gsInit\n");
g_pGSRingPos = VirtualAlloc(GS_RINGBUFFERBASE, GS_RINGBUFFERSIZE, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
if( g_pGSRingPos != GS_RINGBUFFERBASE ) {
MessageBox(NULL, "Cannot alloc GS ring buffer\n", "Error", MB_OK);
exit(0);
}
g_pGSTempReadPos = g_pGSTempWritePos = VirtualAlloc(GS_RINGTEMPBASE, GS_RINGTEMPSIZE, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
if( g_pGSTempWritePos != GS_RINGTEMPBASE ) {
MessageBox(NULL, "Cannot alloc GS RingTemp buffer\n", "Error", MB_OK);
exit(0);
}
InitializeCriticalSection(&g_PageAddrSection);
InterlockedExchangePointer(&g_pGSWritePos, GS_RINGBUFFERBASE);
g_hVuGSThread = CreateThread(NULL, 0, VuGSThreadProc, NULL, 0, NULL);
}
}
void gsWaitGS()
{
while( g_pGSRingPos != g_pGSWritePos )
Sleep(1);
}
void gsShutdown()
{
VirtualFree(GS_PAGEADDRS, GSPAGES_STRIDE*(0x02000000>>GS_SHIFT), MEM_DECOMMIT|MEM_RELEASE);
if( CHECK_MULTIGS ) {
SetEvent(g_hVuGSExit);
SysPrintf("Closing gs thread\n");
WaitForSingleObject(g_hVuGSThread, INFINITE);
CloseHandle(g_hVuGSThread);
CloseHandle(g_hGsEvent);
CloseHandle(g_hVuGSExit);
CloseHandle(g_hGSOpen);
CloseHandle(g_hGSDone);
g_pGSWriteFreePages = g_pGSCurFreePages = NULL;
g_pGSTempReadPos = NULL;
DeleteCriticalSection(&g_PageAddrSection);
VirtualFree(GS_RINGBUFFERBASE, GS_RINGBUFFERSIZE, MEM_DECOMMIT|MEM_RELEASE);
VirtualFree(GS_RINGTEMPBASE, GS_RINGTEMPSIZE, MEM_DECOMMIT|MEM_RELEASE);
}
else GSclose();
}
static void GSRingTempReserve(u32 size)
{
u8* writepos = g_pGSTempWritePos;
assert( size <= GS_RINGTEMPSIZE );
// there always has to be memory
if( g_pGSTempWritePos + size > GS_RINGTEMPEND ) {
if( writepos < g_pGSTempReadPos ) {
do {
SetEvent(g_hGsEvent);
Sleep(1);
} while( writepos < g_pGSTempReadPos );
}
// notify GS
writepos = GS_RINGTEMPBASE;
}
if( writepos < g_pGSTempReadPos && writepos+size >= g_pGSTempReadPos ) {
do {
SetEvent(g_hGsEvent);
Sleep(1);
} while( writepos < g_pGSTempReadPos && writepos+size >= g_pGSTempReadPos );
}
g_pGSTempWritePos = writepos;
}
static u8* GSRingTempCopy(u32 size)
{
u8* writepos;
assert( size <= GS_RINGTEMPSIZE );
//GSRingTempReserve(size);
writepos = g_pGSTempWritePos;
g_pGSTempWritePos += size;
assert( g_pGSTempWritePos <= GS_RINGTEMPEND );
//SysPrintf("writepos copy: %x %d\n", writepos, size);
return writepos;
}
typedef u8* PU8;
u8* GSRingBufCopy(void* mem, u32 size, u32 type)
{
u8* writepos = g_pGSWritePos;
u8* tempbuf;
assert( size < 0x10000*16 );
assert( writepos < GS_RINGBUFFEREND );
assert( ((u32)writepos & 15) == 0 );
assert( (size&15) == 0);
size += 16;
tempbuf = *(volatile PU8*)&g_pGSRingPos;
if( writepos + size > GS_RINGBUFFEREND ) {
// skip to beginning
while( writepos < tempbuf || tempbuf == GS_RINGBUFFERBASE ) {
SetEvent(g_hGsEvent);
Sleep(1);
tempbuf = *(volatile PU8*)&g_pGSRingPos;
}
// notify GS
if( writepos != GS_RINGBUFFEREND ) {
*(u32*)writepos = GS_RINGTYPE_RESTART;
}
writepos = GS_RINGBUFFERBASE;
}
while( writepos < tempbuf && (writepos+size >= g_pGSRingPos || (writepos+size == GS_RINGBUFFEREND && g_pGSRingPos == GS_RINGBUFFERBASE)) ) {
SetEvent(g_hGsEvent);
Sleep(1);
tempbuf = *(volatile PU8*)&g_pGSRingPos;
}
#ifdef WIN32_VIRTUAL_MEM
if( ENABLE_GS_CACHING && size >= ENABLE_GS_CACHING_SIZE && mem != NULL && (u8*)mem < PS2MEM_BASE+0x10000000 ) {
u32 val;
u32 i;
u32* page = GS_PAGEADDRS+(((u32)((u8*)mem-PS2MEM_BASE)&0x01ffffff)>>GS_SHIFT)*(GSPAGES_MEMADDRS+1);
u32 numpages = (((u32)mem+size-1)>>GS_SHIFT) - ((u32)mem>>GS_SHIFT)+1;
// inc all pages
for(i = 0; i < numpages; ++i) {
if( (u8)page[0] >= GSPAGES_MEMADDRS )
break;
val = InterlockedExchangeAdd(page, 0x40000001);
assert( (u8)val < GSPAGES_MEMADDRS );
// upper 2 bits are index
page[(val>>30)+1] = (u32)writepos;
page += GSPAGES_MEMADDRS+1;
}
if( i == numpages ) {
// succeeded, so fill necessary data
*(u32*)writepos = GS_RINGTYPE_MEMREF|type|(((size-16)>>4)<<16);
*(u32*)(writepos+4) = (u32)mem;
*(u32*)(writepos+8) = (u32)(page-(GSPAGES_MEMADDRS+1)*numpages);
*(u32*)(writepos+12) = (u32)numpages;
writepos += 16;
#ifndef _RINGBUF_DEBUG
if( writepos == GS_RINGBUFFEREND ) writepos = GS_RINGBUFFERBASE;
InterlockedExchangePointer(&g_pGSWritePos, writepos);
// SetEvent(g_hGsEvent);
// while( g_pGSWritePos != g_pGSRingPos ) Sleep(1);
return NULL;
#else
return writepos;
#endif
}
SysPrintf("not enough pages %x, %d\n", mem, size);
// BUG, the interlocked exchange add should be done in a crit section!
// dec the current pages
while(i-- > 0) {
page -= GSPAGES_MEMADDRS+1;
InterlockedExchangeAdd(page, -0x40000001);
}
// don't have enough mem, so fall through
}
#endif
// just copy
*(u32*)writepos = type|(((size-16)>>4)<<16);
return writepos+16;
}
void GSRingBufVSync(int field)
{
u8* writepos = g_pGSWritePos;
u8* tempbuf;
assert( writepos + 16 <= GS_RINGBUFFEREND );
tempbuf = *(volatile PU8*)&g_pGSRingPos;
if( writepos < tempbuf && writepos+16 >= tempbuf ) {
do {
SetEvent(g_hGsEvent);
Sleep(1);
tempbuf = *(volatile PU8*)&g_pGSRingPos;
} while(writepos < tempbuf && writepos+16 >= tempbuf );
}
*(u32*)writepos = GS_RINGTYPE_VSYNC;
*(int*)(writepos+4) = field;
writepos += 16;
if( writepos == GS_RINGBUFFEREND ) writepos = GS_RINGBUFFERBASE;
InterlockedExchangePointer(&g_pGSWritePos, writepos);
if( !CHECK_DUALCORE )
SetEvent(g_hGsEvent);
}
// called from gs thread or exception handler
static void GSFreeRingBuf(u8* pringbuf)
{
u32 mem = *(u32*)(pringbuf+4) & ~0xfff;
u32* pageaddr = *(u32**)(pringbuf+8);
u32 pages = *(u32*)(pringbuf+12);
u32 val, index;
mem &= ~0xfff;
while(pages-- > 0 ) {
val = pageaddr[0];
assert( (val&0xff) > 0 );
index = (((val>>30)-(val&7))&3);
if( pageaddr[ index + 1 ] != (u32)pringbuf ) {
// deleting before others, so remove it from the entry
for(val = 1; val < 5; ++val ) {
if( pageaddr[val] == (u32)pringbuf ) {
val--;
// shift the rest
while(index != val) {
pageaddr[1+(val)%GSPAGES_MEMADDRS] = pageaddr[(val-1)%GSPAGES_MEMADDRS+1];
val = (val-1)%GSPAGES_MEMADDRS;
}
break;
}
}
}
InterlockedExchangeAdd(pageaddr, -1);
mem += 0x1000;
pageaddr += GSPAGES_MEMADDRS+1;
}
}
void GSFreePage(u32* page)
{
u32 indices, num;
u32 gssize;
u8* gsmem, *ringmem;
num = *(u32*)page;
// count approximately the size needed to be allocated
indices = ((num>>30)-(num&0xff))&3;
num &= 0xff;
gssize = 0;
while(num-- > 0) {
// first copy to a new memory
ringmem = *(u8**)(page + 1 + indices);
gssize += (*(u32*)ringmem >> 16) << 4;
// go to the next index
indices = (indices+1)%GSPAGES_MEMADDRS;
}
GSRingTempReserve(gssize);
// lock section to start freeing
EnterCriticalSection(&g_PageAddrSection);
// check again since could have changed
num = *(u32*)page;
if( (u8)num ) {
// note that values might be different
indices = ((num>>30)-(num&0xff))&3;
num &= 0xff;
while(num-- > 0) {
// first copy to a new memory
ringmem = *(u8**)(page + 1 + indices);
assert( !(*(u32*)ringmem & GS_RINGTYPE_MEMNOFREE) );
gssize = (*(u32*)ringmem >> 16) << 4;
gsmem = GSRingTempCopy(gssize);
memcpy(gsmem, *(u8**)(ringmem+4), gssize);
GSFreeRingBuf(ringmem);
// indicate that using different mem
*(u8**)(ringmem+4) = gsmem;
*(u32*)ringmem |= GS_RINGTYPE_MEMNOFREE;
// go to the next index
indices = (indices+1)%GSPAGES_MEMADDRS;
}
}
LeaveCriticalSection(&g_PageAddrSection);
}
void gsReset()
{
SysPrintf("GIF reset\n");
// GSDX crashes
//if( GSreset ) GSreset();
memset(GS_PAGEADDRS, 0, GSPAGES_STRIDE*(0x02000000>>GS_SHIFT));
if( CHECK_MULTIGS ) {
ResetEvent(g_hGsEvent);
ResetEvent(g_hVuGSExit);
g_pGSRingPos = g_pGSWritePos;
g_pGSCurFreePages = g_pGSWriteFreePages;
g_pGSTempReadPos = g_pGSTempWritePos = GS_RINGTEMPBASE;
}
memset(g_path, 0, sizeof(g_path));
memset(s_byRegs, 0, sizeof(s_byRegs));
#ifndef WIN32_VIRTUAL_MEM
memset(g_RealGSMem, 0, 0x2000);
#endif
GSCSRr = 0x551B4000; // Set the FINISH bit to 1 for now
GSIMR = 0x7f00;
psHu32(GIF_STAT) = 0;
psHu32(GIF_CTRL) = 0;
psHu32(GIF_MODE) = 0;
}
void gsGIFReset()
{
memset(g_path, 0, sizeof(g_path));
#ifndef WIN32_VIRTUAL_MEM
memset(g_RealGSMem, 0, 0x2000);
#endif
if( GSgifSoftReset != NULL )
GSgifSoftReset(7);
// else
// GSreset();
GSCSRr = 0x551B4000; // Set the FINISH bit to 1 for now
GSIMR = 0x7f00;
psHu32(GIF_STAT) = 0;
psHu32(GIF_CTRL) = 0;
psHu32(GIF_MODE) = 0;
}
void CSRwrite(u32 value)
{
GSwriteCSR(value);
GSCSRr = ((GSCSRr&~value)&0x1f)|(GSCSRr&~0x1f);
if( value & 0x100 ) { // FLUSH
//SysPrintf("GS_CSR FLUSH GS fifo: %x (CSRr=%x)\n", value, GSCSRr);
}
CSRw |= value & ~0x60;
if (value & 0x200) { // resetGS
//GSCSRr = 0x400E; // The host FIFO neeeds to be empty too or GSsync will fail (saqib)
//GSIMR = 0xff00;
if( GSgifSoftReset != NULL )
GSgifSoftReset(7);
else GSreset();
GSCSRr = 0x551B4002; // Set the FINISH bit to 1 - GS is always at a finish state as we don't have a FIFO(saqib)
//Since when!! Refraction, since 4/21/06 (zerofrog)
GSIMR = 0x7F00; //This is bits 14-8 thats all that should be 1
// and this too (fixed megaman ac)
GSwriteCSR(GSCSRr);
}
}
static void IMRwrite(u32 value) {
GSIMR = (value & 0x1f00)|0x6000;
}
void gsWrite8(u32 mem, u8 value) {
switch (mem) {
case 0x12001000: // GS_CSR
CSRwrite((CSRw & ~0x000000ff) | value); break;
case 0x12001001: // GS_CSR
CSRwrite((CSRw & ~0x0000ff00) | (value << 8)); break;
case 0x12001002: // GS_CSR
CSRwrite((CSRw & ~0x00ff0000) | (value << 16)); break;
case 0x12001003: // GS_CSR
CSRwrite((CSRw & ~0xff000000) | (value << 24)); break;
default:
*PS2GS_BASE(mem) = value;
}
#ifdef HW_LOG
HW_LOG("GS write 8 at %8.8lx with data %8.8lx\n", mem, value);
#endif
}
void gsConstWrite8(u32 mem, int mmreg)
{
switch (mem&~3) {
case 0x12001000: // GS_CSR
_eeMoveMMREGtoR(EAX, mmreg);
iFlushCall(0);
MOV32MtoR(ECX, (u32)&CSRw);
AND32ItoR(EAX, 0xff<<(mem&3)*8);
AND32ItoR(ECX, ~(0xff<<(mem&3)*8));
OR32ItoR(EAX, ECX);
PUSH32R(EAX);
CALLFunc((u32)CSRwrite);
ADD32ItoR(ESP, 4);
break;
default:
_eeWriteConstMem8( (u32)PS2GS_BASE(mem), mmreg );
break;
}
}
extern void UpdateVSyncRate();
void gsWrite16(u32 mem, u16 value) {
switch (mem) {
case 0x12000010: // GS_SMODE1
if((value & 0x6000) == 0x6000) Config.PsxType |= 1; // PAL
else Config.PsxType &= ~1; // NTSC
*(u16*)PS2GS_BASE(mem) = value;
UpdateVSyncRate();
break;
case 0x12000020: // GS_SMODE2
if(value & 0x1) Config.PsxType |= 2; // Interlaced
else Config.PsxType &= ~2; // Non-Interlaced
*(u16*)PS2GS_BASE(mem) = value;
break;
case 0x12001000: // GS_CSR
CSRwrite( (CSRw&0xffff0000) | value);
break;
case 0x12001002: // GS_CSR
CSRwrite( (CSRw&0xffff) | ((u32)value<<16));
break;
case 0x12001010: // GS_IMR
SysPrintf("writing to IMR 16\n");
IMRwrite(value);
break;
default:
*(u16*)PS2GS_BASE(mem) = value;
}
#ifdef HW_LOG
HW_LOG("GS write 16 at %8.8lx with data %8.8lx\n", mem, value);
#endif
}
void recSetSMODE1()
{
iFlushCall(0);
AND32ItoR(EAX, 0x6000);
CMP32ItoR(EAX, 0x6000);
j8Ptr[5] = JNE8(0);
// PAL
OR32ItoM( (u32)&Config.PsxType, 1);
j8Ptr[6] = JMP8(0);
x86SetJ8( j8Ptr[5] );
// NTSC
AND32ItoM( (u32)&Config.PsxType, ~1 );
x86SetJ8( j8Ptr[6] );
CALLFunc((u32)UpdateVSyncRate);
}
void recSetSMODE2()
{
TEST32ItoR(EAX, 1);
j8Ptr[5] = JZ8(0);
// Interlaced
OR32ItoM( (u32)&Config.PsxType, 2);
j8Ptr[6] = JMP8(0);
x86SetJ8( j8Ptr[5] );
// Non-Interlaced
AND32ItoM( (u32)&Config.PsxType, ~2 );
x86SetJ8( j8Ptr[6] );
}
void gsConstWrite16(u32 mem, int mmreg)
{
switch (mem&~3) {
case 0x12000010: // GS_SMODE1
assert( !(mem&3));
_eeMoveMMREGtoR(EAX, mmreg);
_eeWriteConstMem16( (u32)PS2GS_BASE(mem), mmreg );
recSetSMODE1();
break;
case 0x12000020: // GS_SMODE2
assert( !(mem&3));
_eeMoveMMREGtoR(EAX, mmreg);
_eeWriteConstMem16( (u32)PS2GS_BASE(mem), mmreg );
recSetSMODE2();
break;
case 0x12001000: // GS_CSR
assert( !(mem&2) );
_eeMoveMMREGtoR(EAX, mmreg);
iFlushCall(0);
MOV32MtoR(ECX, (u32)&CSRw);
AND32ItoR(EAX, 0xffff<<(mem&2)*8);
AND32ItoR(ECX, ~(0xffff<<(mem&2)*8));
OR32ItoR(EAX, ECX);
PUSH32R(EAX);
CALLFunc((u32)CSRwrite);
ADD32ItoR(ESP, 4);
break;
default:
_eeWriteConstMem16( (u32)PS2GS_BASE(mem), mmreg );
break;
}
}
void gsWrite32(u32 mem, u32 value)
{
assert( !(mem&3));
switch (mem) {
case 0x12000010: // GS_SMODE1
if((value & 0x6000) == 0x6000) Config.PsxType |= 1; // PAL
else Config.PsxType &= ~1; // NTSC
*(u32*)PS2GS_BASE(mem) = value;
UpdateVSyncRate();
break;
case 0x12000020: // GS_SMODE2
if(value & 0x1) Config.PsxType |= 2; // Interlaced
else Config.PsxType &= ~2; // Non-Interlaced
*(u32*)PS2GS_BASE(mem) = value;
break;
case 0x12001000: // GS_CSR
CSRwrite(value);
break;
case 0x12001010: // GS_IMR
IMRwrite(value);
break;
default:
*(u32*)PS2GS_BASE(mem) = value;
}
#ifdef HW_LOG
HW_LOG("GS write 32 at %8.8lx with data %8.8lx\n", mem, value);
#endif
}
// (value&0x1f00)|0x6000
void gsConstWriteIMR(int mmreg)
{
const u32 mem = 0x12001010;
if( mmreg & MEM_XMMTAG ) {
SSE2_MOVD_XMM_to_M32((u32)PS2GS_BASE(mem), mmreg&0xf);
AND32ItoM((u32)PS2GS_BASE(mem), 0x1f00);
OR32ItoM((u32)PS2GS_BASE(mem), 0x6000);
}
else if( mmreg & MEM_MMXTAG ) {
SetMMXstate();
MOVDMMXtoM((u32)PS2GS_BASE(mem), mmreg&0xf);
AND32ItoM((u32)PS2GS_BASE(mem), 0x1f00);
OR32ItoM((u32)PS2GS_BASE(mem), 0x6000);
}
else if( mmreg & MEM_EECONSTTAG ) {
MOV32ItoM( (u32)PS2GS_BASE(mem), (g_cpuConstRegs[(mmreg>>16)&0x1f].UL[0]&0x1f00)|0x6000);
}
else {
AND32ItoR(mmreg, 0x1f00);
OR32ItoR(mmreg, 0x6000);
MOV32RtoM( (u32)PS2GS_BASE(mem), mmreg );
}
}
void gsConstWrite32(u32 mem, int mmreg) {
switch (mem) {
case 0x12000010: // GS_SMODE1
_eeMoveMMREGtoR(EAX, mmreg);
_eeWriteConstMem32( (u32)PS2GS_BASE(mem), mmreg );
recSetSMODE1();
break;
case 0x12000020: // GS_SMODE2
_eeMoveMMREGtoR(EAX, mmreg);
_eeWriteConstMem32( (u32)PS2GS_BASE(mem), mmreg );
recSetSMODE2();
break;
case 0x12001000: // GS_CSR
_recPushReg(mmreg);
iFlushCall(0);
CALLFunc((u32)CSRwrite);
ADD32ItoR(ESP, 4);
break;
case 0x12001010: // GS_IMR
gsConstWriteIMR(mmreg);
break;
default:
_eeWriteConstMem32( (u32)PS2GS_BASE(mem), mmreg );
break;
}
}
void gsWrite64(u32 mem, u64 value) {
switch (mem) {
case 0x12000010: // GS_SMODE1
if((value & 0x6000) == 0x6000) Config.PsxType |= 1; // PAL
else Config.PsxType &= ~1; // NTSC
UpdateVSyncRate();
*(u64*)PS2GS_BASE(mem) = value;
break;
case 0x12000020: // GS_SMODE2
if(value & 0x1) Config.PsxType |= 2; // Interlaced
else Config.PsxType &= ~2; // Non-Interlaced
*(u64*)PS2GS_BASE(mem) = value;
break;
case 0x12001000: // GS_CSR
CSRwrite((u32)value);
break;
case 0x12001010: // GS_IMR
IMRwrite((u32)value);
break;
default:
*(u64*)PS2GS_BASE(mem) = value;
}
#ifdef HW_LOG
HW_LOG("GS write 64 at %8.8lx with data %8.8lx_%8.8lx\n", mem, ((u32*)&value)[1], (u32)value);
#endif
}
void gsConstWrite64(u32 mem, int mmreg)
{
switch (mem) {
case 0x12000010: // GS_SMODE1
_eeMoveMMREGtoR(EAX, mmreg);
_eeWriteConstMem64((u32)PS2GS_BASE(mem), mmreg);
recSetSMODE1();
break;
case 0x12000020: // GS_SMODE2
_eeMoveMMREGtoR(EAX, mmreg);
_eeWriteConstMem64((u32)PS2GS_BASE(mem), mmreg);
recSetSMODE2();
break;
case 0x12001000: // GS_CSR
_recPushReg(mmreg);
iFlushCall(0);
CALLFunc((u32)CSRwrite);
ADD32ItoR(ESP, 4);
break;
case 0x12001010: // GS_IMR
gsConstWriteIMR(mmreg);
break;
default:
_eeWriteConstMem64((u32)PS2GS_BASE(mem), mmreg);
break;
}
}
void gsConstWrite128(u32 mem, int mmreg)
{
switch (mem) {
case 0x12000010: // GS_SMODE1
_eeMoveMMREGtoR(EAX, mmreg);
_eeWriteConstMem128( (u32)PS2GS_BASE(mem), mmreg);
recSetSMODE1();
break;
case 0x12000020: // GS_SMODE2
_eeMoveMMREGtoR(EAX, mmreg);
_eeWriteConstMem128( (u32)PS2GS_BASE(mem), mmreg);
recSetSMODE2();
break;
case 0x12001000: // GS_CSR
_recPushReg(mmreg);
iFlushCall(0);
CALLFunc((u32)CSRwrite);
ADD32ItoR(ESP, 4);
break;
case 0x12001010: // GS_IMR
// (value&0x1f00)|0x6000
gsConstWriteIMR(mmreg);
break;
default:
_eeWriteConstMem128( (u32)PS2GS_BASE(mem), mmreg);
break;
}
}
u8 gsRead8(u32 mem)
{
#ifdef HW_LOG
//HW_LOG("GS read 8 %8.8lx, at %8.8lx\n", *(u8*)(PS2MEM_BASE+(mem&~0xc00)), mem);
#endif
return *(u8*)PS2GS_BASE(mem);
}
int gsConstRead8(u32 x86reg, u32 mem, u32 sign)
{
_eeReadConstMem8(x86reg, (u32)PS2GS_BASE(mem), sign);
return 0;
}
u16 gsRead16(u32 mem)
{
#ifdef HW_LOG
//HW_LOG("GS read 16 %8.8lx, at %8.8lx\n", *(u16*)(PS2MEM_BASE+(mem&~0xc00)), mem);
#endif
return *(u16*)PS2GS_BASE(mem);
}
int gsConstRead16(u32 x86reg, u32 mem, u32 sign)
{
_eeReadConstMem16(x86reg, (u32)PS2GS_BASE(mem), sign);
return 0;
}
u32 gsRead32(u32 mem) {
#ifdef HW_LOG
//HW_LOG("GS read 32 %8.8lx, at %8.8lx\n", *(u32*)(PS2MEM_BASE+(mem&~0xc00)), mem);
#endif
return *(u32*)PS2GS_BASE(mem);
}
int gsConstRead32(u32 x86reg, u32 mem)
{
_eeReadConstMem32(x86reg, (u32)PS2GS_BASE(mem));
return 0;
}
u64 gsRead64(u32 mem)
{
#ifdef HW_LOG
//HW_LOG("GS read 64 %8.8lx (%8.8x), at %8.8lx\n", *(u64*)(PS2MEM_BASE+(mem&~0xc00)), mem);
#endif
return *(u64*)PS2GS_BASE(mem);
}
void gsConstRead64(u32 mem, int mmreg)
{
if( IS_XMMREG(mmreg) ) SSE_MOVLPS_M64_to_XMM(mmreg&0xff, (u32)PS2GS_BASE(mem));
else {
MOVQMtoR(mmreg, (u32)PS2GS_BASE(mem));
SetMMXstate();
}
}
void gsConstRead128(u32 mem, int xmmreg)
{
_eeReadConstMem128( xmmreg, (u32)PS2GS_BASE(mem));
}
void gsIrq() {
hwIntcIrq(0);
}
static void GSRegHandlerSIGNAL(u32* data)
{
GSSIGLBLID->SIGID = (GSSIGLBLID->SIGID&~data[1])|(data[0]&data[1]);
if (CSRw & 0x1) {
GSCSRr |= 1; // signal
//CSRw &= ~1;
}
if (!(GSIMR&0x100) )
gsIrq();
}
static void GSRegHandlerFINISH(u32* data)
{
if (CSRw & 0x2) {
//CSRw &= ~2;
GSCSRr |= 2; // finish
}
if (!(GSIMR&0x200) )
gsIrq();
}
static void GSRegHandlerLABEL(u32* data)
{
GSSIGLBLID->LBLID = (GSSIGLBLID->LBLID&~data[1])|(data[0]&data[1]);
}
typedef void (*GIFRegHandler)(u32* data);
static GIFRegHandler s_GSHandlers[3] = { GSRegHandlerSIGNAL, GSRegHandlerFINISH, GSRegHandlerLABEL };
// ffx pal, ntsc, jap
#define GSHACK_FFX (ElfCRC==0xbb3d833a||ElfCRC==0xa39517ab||ElfCRC==0x6A4EFE60)
// simulates a GIF tag
u32 GSgifTransferDummy(int path, u32 *pMem, u32 size)
{
int nreg, i, nloop;
u32 curreg;
u32 tempreg;
GIFTAG* ptag = &g_path[path];
#ifdef GSCAPTURE
u32 tempcount = 0;
#endif
if( path == 0 ) {
nloop = 0;
}
else {
nloop = ptag->nloop;
curreg = ptag->curreg;
nreg = ptag->nreg == 0 ? 16 : ptag->nreg;
}
while(size > 0)
{
if(nloop == 0) {
ptag = (GIFTAG*)pMem;
nreg = ptag->nreg == 0 ? 16 : ptag->nreg;
#ifdef GSCAPTURE
if( g_loggs && g_gstransnum == 19 && tempcount++ > g_gslimit ) {
break;
}
#endif
pMem+= 4;
size--;
if(ptag->nloop == 0 ) {
if( path == 0 ) {
// ffx hack
if( GSHACK_FFX )
continue;
}
g_path[path].nloop = 0;
// motogp graphics show
if( !ptag->eop )
continue;
return size;
}
tempreg = ptag->regs[0];
for(i = 0; i < nreg; ++i, tempreg >>= 4) {
if( i == 8 ) tempreg = ptag->regs[1];
s_byRegs[path][i] = tempreg&0xf;
}
nloop = ptag->nloop;
curreg = 0;
}
switch(ptag->flg)
{
case 0: // PACKED
{
for(; size > 0; size--, pMem += 4)
{
if( s_byRegs[path][curreg] == 0xe && (pMem[2]&0xff) >= 0x60 ) {
if( (pMem[2]&0xff) < 0x64 )
s_GSHandlers[pMem[2]&0x3](pMem);
}
curreg++;
if (nreg == curreg) {
curreg = 0;
if( nloop-- <= 1 ) {
size--;
pMem += 4;
break;
}
}
}
if( nloop > 0 ) {
assert(size == 0);
g_path[path] = *ptag;
g_path[path].nloop = nloop;
g_path[path].curreg = curreg;
return 0;
}
break;
}
case 1: // REGLIST
{
size *= 2;
tempreg = ptag->regs[0];
for(i = 0; i < nreg; ++i, tempreg >>= 4) {
if( i == 8 ) tempreg = ptag->regs[1];
assert( (tempreg&0xf) < 0x64 );
s_byRegs[path][i] = tempreg&0xf;
}
for(; size > 0; pMem+= 2, size--)
{
if( s_byRegs[path][curreg] >= 0x60 )
s_GSHandlers[s_byRegs[path][curreg]&3](pMem);
curreg++;
if (nreg == curreg) {
curreg = 0;
if( nloop-- <= 1 ) {
size--;
pMem += 2;
break;
}
}
}
if( size & 1 ) pMem += 2;
size /= 2;
if( nloop > 0 ) {
assert(size == 0);
g_path[path] = *ptag;
g_path[path].nloop = nloop;
g_path[path].curreg = curreg;
return 0;
}
break;
}
case 2: // GIF_IMAGE (FROM_VFRAM)
case 3:
{
// simulate
if( (int)size < nloop ) {
g_path[path] = *ptag;
g_path[path].nloop = nloop-size;
return 0;
}
else {
pMem += nloop*4;
size -= nloop;
nloop = 0;
}
break;
}
}
if( path == 0 && ptag->eop ) {
g_path[0].nloop = 0;
return size;
}
}
g_path[path] = *ptag;
g_path[path].curreg = curreg;
g_path[path].nloop = nloop;
return size;
}
int gsInterrupt() {
#ifdef GS_LOG
GS_LOG("gsInterrupt: %8.8x\n", cpuRegs.cycle);
#endif
if(gif->qwc > 0) {
if( !(psHu32(DMAC_CTRL) & 0x1) ) {
SysPrintf("gs dma masked\n");
return 0;
}
dmaGIF();
return 0;
}
gif->chcr &= ~0x100;
GSCSRr &= ~0xC000; //Clear FIFO stuff
GSCSRr |= 0x4000; //FIFO empty
psHu32(GIF_STAT)&= ~0xE00; // OPH=0 | APATH=0
psHu32(GIF_STAT)&= ~0x1F000000; // QFC=0
hwDmacIrq(DMAC_GIF);
return 1;
}
#ifdef GSCAPTURE
#define WRITINGDMA_TRANSFER(pMem, qwc) \
extern u32 g_loggs, g_gstransnum, g_gsfinalnum; \
if( !g_loggs || (g_loggs && g_gstransnum++ < g_gsfinalnum)) { \
GSgifTransfer3(pMem, qwc-GSgifTransferDummy(2, pMem, qwc)); \
} \
#else
#define WRITINGDMA_TRANSFER(pMem, qwc) GSgifTransfer3(pMem, qwc);
#endif
#define WRITERING_DMA(pMem, qwc) { \
if( CHECK_MULTIGS) { \
u8* pgsmem = GSRingBufCopy(pMem, (qwc)<<4, GS_RINGTYPE_P3); \
if( pgsmem != NULL ) { \
memcpy_amd(pgsmem, pMem, (qwc)<<4); \
\
pgsmem += (qwc)<<4; \
assert( pgsmem <= GS_RINGBUFFEREND ); \
if( pgsmem == GS_RINGBUFFEREND ) pgsmem = GS_RINGBUFFERBASE; \
InterlockedExchangePointer(&g_pGSWritePos, pgsmem); \
GSgifTransferDummy(2, pMem, qwc); \
} \
\
if( !CHECK_DUALCORE ) SetEvent(g_hGsEvent); \
} \
else { \
FreezeMMXRegs(1); \
FreezeXMMRegs(1); \
WRITINGDMA_TRANSFER(pMem, qwc); \
} \
} \
int _GIFchain() {
u32 qwc = gif->qwc;
u32 *pMem;
if (qwc == 0) return 0;
pMem = (u32*)dmaGetAddr(gif->madr);
if (pMem == NULL) {
// reset path3, fixes dark cloud 2
if( GSgifSoftReset != NULL )
GSgifSoftReset(4);
SysPrintf("NULL GIFchain\n");
return -1;
}
WRITERING_DMA(pMem, qwc);
gif->madr+= qwc*16;
gif->qwc = 0;
return (qwc)*BIAS;
}
#define GIFchain() \
if (gif->qwc) { \
cycles+= _GIFchain(); /* guessing */ \
}
int gscount = 0;
static int prevcycles = 0;
static u32* prevtag = NULL;
void dmaGIF() {
u32 *ptag;
int done=0;
int cycles=prevcycles;
u32 id;
if ((psHu32(DMAC_CTRL) & 0xC) == 0xC/* &&
(gif->tadr == psHu32(0xe050))*/) { // GIF MFIFO
return;
}
if( (psHu32(GIF_CTRL) & 8) ) {
// temporarily stop
SysPrintf("Gif dma temp paused?\n");
return;
}
#ifdef GIF_LOG
GIF_LOG("dmaGIF chcr = %lx, madr = %lx, qwc = %lx\n"
" tadr = %lx, asr0 = %lx, asr1 = %lx\n",
gif->chcr, gif->madr, gif->qwc,
gif->tadr, gif->asr0, gif->asr1);
#endif
if (psHu32(GIF_MODE) & 0x4) {
} else
if (vif1Regs->mskpath3 || psHu32(GIF_MODE) & 0x1) {
gif->chcr &= ~0x100;
psHu32(GIF_STAT)&= ~0xE00; // OPH=0 | APATH=0
hwDmacIrq(2);
return;
}
if ((psHu32(DMAC_CTRL) & 0xC0) == 0x80) { // STD == GIF
//SysPrintf("GS Stall Control Source = %x, Drain = %x\n", (psHu32(0xe000) >> 4) & 0x3, (psHu32(0xe000) >> 6) & 0x3);
if( gif->madr >= psHu32(DMAC_STADR) ) {
return;
}
}
GSCSRr &= ~0xC000; //Clear FIFO stuff
GSCSRr |= 0x8000; //FIFO full
psHu32(GIF_STAT)|= 0xE00; // OPH=1 | APATH=3
psHu32(GIF_STAT)|= 0x10000000; // FQC=31, hack ;)
if( prevcycles != 0 ) {
assert( prevtag != NULL );
ptag = prevtag;
// transfer interrupted, so continue
GIFchain();
if (gif->chcr & 0x80 && ptag[0] >> 31) { //Check TIE bit of CHCR and IRQ bit of tag
#ifdef GIF_LOG
GIF_LOG("dmaIrq Set\n");
#endif
done = 1;
}
}
// Transfer Dn_QWC from Dn_MADR to GIF
if ((gif->chcr & 0xc) == 0 || gif->qwc > 0) { // Normal Mode
//gscount++;
GIFchain();
}
else {
// Chain Mode
while (done == 0) { // Loop while Dn_CHCR.STR is 1
ptag = (u32*)dmaGetAddr(gif->tadr); //Set memory pointer to TADR
if (ptag == NULL) { //Is ptag empty?
psHu32(DMAC_STAT)|= 1<<15; //If yes, set BEIS (BUSERR) in DMAC_STAT register
break;
}
cycles+=1; // Add 1 cycles from the QW read for the tag
// Transfer dma tag if tte is set
if (gif->chcr & 0x40) {
//u32 temptag[4];
#ifdef GIF_LOG
//SysPrintf("GIF TTE: %x_%x\n", ptag[3], ptag[2]);
#endif
// temptag[2] = ptag[2];
// temptag[3] = ptag[3];
// GSgifTransfer3(temptag, 1);
}
gif->chcr = ( gif->chcr & 0xFFFF ) | ( (*ptag) & 0xFFFF0000 ); //Transfer upper part of tag to CHCR bits 31-15
id = (ptag[0] >> 28) & 0x7; //ID for DmaChain copied from bit 28 of the tag
gif->qwc = (u16)ptag[0]; //QWC set to lower 16bits of the tag
gif->madr = ptag[1]; //MADR = ADDR field
#ifdef GIF_LOG
GIF_LOG("dmaChain %8.8x_%8.8x size=%d, id=%d, addr=%lx\n",
ptag[1], ptag[0], gif->qwc, id, gif->madr);
#endif
done = hwDmacSrcChainWithStack(gif, id);
if (!done && (psHu32(DMAC_CTRL) & 0xC0) == 0x80) { // STD == GIF
// there are still bugs, need to also check if gif->madr +16*qwc >= stadr, if not, stall
if( gif->madr >= psHu32(DMAC_STADR) ) {
// stalled
psHu32(GIF_STAT)&= ~0x1f000E00; // OPH=0 | APATH=0
GSCSRr &= ~0xC000; //Clear FIFO stuff
GSCSRr |= 0x4000; //FIFO empty
prevcycles = cycles;
prevtag = ptag;
hwDmacIrq(13);
FreezeMMXRegs(0);
FreezeXMMRegs(0);
return;
}
}
GIFchain(); //Transfers the data set by the switch
if ((gif->chcr & 0x80) && ptag[0] >> 31) { //Check TIE bit of CHCR and IRQ bit of tag
#ifdef GIF_LOG
GIF_LOG("dmaIrq Set\n");
#endif
//SysPrintf("GIF TIE\n");
// SysPrintf("GSdmaIrq Set\n");
done = 1;
//gif->qwc = 0;
break;
}
}
}
prevtag = NULL;
prevcycles = 0;
INT(2, cycles);
FreezeMMXRegs(0);
FreezeXMMRegs(0);
}
static int mfifocycles;
int mfifoGIFrbTransfer() {
u32 maddr = psHu32(DMAC_RBOR);
int msize = psHu32(DMAC_RBSR)+16;
u32 *src;
/* Check if the transfer should wrap around the ring buffer */
if ((gif->madr+gif->qwc*16) > (maddr+msize)) {
int s1 = (maddr+msize) - gif->madr;
int s2 = gif->qwc*16 - s1;
/* it does, so first copy 's1' bytes from 'addr' to 'data' */
src = (u32*)PSM(gif->madr);
if (src == NULL) return -1;
WRITERING_DMA(src, s1&~15);
/* and second copy 's2' bytes from 'maddr' to '&data[s1]' */
src = (u32*)PSM(maddr);
if (src == NULL) return -1;
WRITERING_DMA(src, s2&~15);
} else {
/* it doesn't, so just transfer 'qwc*16' words
from 'gif->madr' to GS */
src = (u32*)PSM(gif->madr);
if (src == NULL) return -1;
WRITERING_DMA(src, gif->qwc);
}
gif->madr+= gif->qwc*16;
//gif->madr = psHu32(DMAC_RBOR) + (gif->madr & psHu32(DMAC_RBSR));
return 0;
}
int mfifoGIFchain() {
u32 maddr = psHu32(DMAC_RBOR);
int msize = psHu32(DMAC_RBSR)+16;
u32 *pMem;
/* Is QWC = 0? if so there is nothing to transfer */
if (gif->qwc == 0) return 0;
if (gif->madr >= maddr &&
gif->madr < (maddr+msize)) {
if (mfifoGIFrbTransfer() == -1) return -1;
} else {
pMem = (u32*)dmaGetAddr(gif->madr);
if (pMem == NULL) return -1;
WRITERING_DMA(pMem, gif->qwc);
gif->madr+= gif->qwc*16;
}
mfifocycles+= (gif->qwc) * BIAS; /* guessing */
gif->qwc = 0;
return 0;
}
void mfifoGIFtransfer(int qwc) {
u32 *ptag;
int id;
int done = 0;
mfifocycles = 0;
#ifdef GIF_LOG
GIF_LOG("mfifoGIFtransfer qwc=0x%x\n", qwc);
#endif
if((gif->chcr & 0x100) == 0)SysPrintf("MFIFO GIF not ready %x\n", gif->chcr);
while (qwc > 0 && done == 0) { // Loop while Dn_CHCR.STR is 1
gif->tadr = psHu32(DMAC_RBOR) + (gif->tadr & psHu32(DMAC_RBSR));
ptag = (u32*)dmaGetAddr(gif->tadr);
id = (ptag[0] >> 28) & 0x7;
gif->qwc = (u16)ptag[0];
gif->madr = ptag[1];
mfifocycles += 2;
#ifdef GIF_LOG
GIF_LOG("dmaChain %8.8x_%8.8x size=%d, id=%d, addr=%lx\n",
ptag[1], ptag[0], gif->qwc, id, gif->madr);
#endif
// if(gif->chcr & 0x40)
// GSgifTransfer3(ptag, 1);
switch (id) {
case 0: // refe
gif->tadr += 16;
qwc = 0;
INT(11,mfifocycles);
done = 1;
break;
case 1: // cnt
gif->madr = gif->tadr + 16;
qwc-= gif->qwc + 1;
// Set the taddr to the next tag
gif->tadr += 16 + (gif->qwc * 16);
break;
case 3: // ref
case 4: // refs
gif->tadr += 16;
qwc--;
break;
case 7: // end
gif->madr = gif->tadr + 16;
gif->tadr = gif->madr + (gif->qwc * 16);
qwc = 0;
INT(11,mfifocycles);
done = 1;
break;
}
if (mfifoGIFchain() == -1) {
break;
}
if ((gif->chcr & 0x80) && (ptag[0] >> 31)) {
#ifdef GIF_LOG
GIF_LOG("dmaIrq Set\n");
#endif
INT(11,mfifocycles);
//SysPrintf("mfifoGIFTransfer: dmaIrq Set\n");
//qwc = 0;
done = 1;
}
}
if(done == 0 && qwc == 0)hwDmacIrq(14);
/*if(qwc == 0 && gif->chcr & 0x100) {
hwDmacIrq(14);
return;
}*/
//INT(11,cycles);
//hwDmacIrq(2);
}
int gifMFIFOInterrupt() {
mfifocycles = 0;
gif->chcr &= ~0x100;
hwDmacIrq(DMAC_GIF);
return 1;
}
extern long pDsp;
DWORD WINAPI VuGSThreadProc(LPVOID lpParam)
{
HANDLE handles[2] = { g_hGsEvent, g_hVuGSExit };
//SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_ABOVE_NORMAL);
u8* writepos;
u32 tag;
u32 counter = 0;
{
int ret;
HANDLE openhandles[2] = { g_hGSOpen, g_hVuGSExit };
if( WaitForMultipleObjects(2, openhandles, FALSE, INFINITE) == WAIT_OBJECT_0+1 ) {
return 0;
}
ret = GSopen((void *)&pDsp, "PCSX2", 1);
GSCSRr = 0x551B4000; // 0x55190000
SysPrintf("gsOpen done\n");
if (ret != 0) { SysMessage (_("Error Opening GS Plugin")); return -1; }
SetEvent(g_hGSDone);
}
SysPrintf("Starting GS thread\n");
while(1) {
if( !CHECK_DUALCORE ) {
if( WaitForMultipleObjects(2, handles, FALSE, INFINITE) == WAIT_OBJECT_0+1 ) {
GSclose();
return 0;
}
}
else if( (counter++ & 0xffff) == 0 ) {
if( WaitForSingleObject(g_hVuGSExit, 0) == WAIT_OBJECT_0 ) {
GSclose();
return 0;
}
}
if( g_pGSRingPos != g_pGSWritePos ) {
do {
writepos = *(volatile PU8*)&g_pGSWritePos;
while( g_pGSRingPos != writepos ) {
assert( g_pGSRingPos < GS_RINGBUFFEREND );
// process until writepos
tag = *(u32*)g_pGSRingPos;
switch( tag&0xffff ) {
case GS_RINGTYPE_RESTART:
InterlockedExchangePointer(&g_pGSRingPos, GS_RINGBUFFERBASE);
if( GS_RINGBUFFERBASE == writepos )
goto ExitGS;
continue;
case GS_RINGTYPE_P1:
GSgifTransfer1((u32*)(g_pGSRingPos+16), 0);
InterlockedExchangeAdd((PLONG)&g_pGSRingPos, 16 + ((tag>>16)<<4));
break;
case GS_RINGTYPE_P2:
GSgifTransfer2((u32*)(g_pGSRingPos+16), tag>>16);
InterlockedExchangeAdd((PLONG)&g_pGSRingPos, 16 + ((tag>>16)<<4));
break;
case GS_RINGTYPE_P3:
GSgifTransfer3((u32*)(g_pGSRingPos+16), tag>>16);
InterlockedExchangeAdd((PLONG)&g_pGSRingPos, 16 + ((tag>>16)<<4));
break;
case GS_RINGTYPE_VSYNC:
GSvsync(*(int*)(g_pGSRingPos+4));
InterlockedExchangeAdd((PLONG)&g_pGSRingPos, 16);
break;
#ifdef GS_ENABLE_CACHING
case GS_RINGTYPE_P2|GS_RINGTYPE_MEMREF:
case GS_RINGTYPE_P2|GS_RINGTYPE_MEMREF|GS_RINGTYPE_MEMNOFREE:
EnterCriticalSection(&g_PageAddrSection);
// read again since could have changed
tag = *(u32*)g_pGSRingPos;
GSgifTransfer2(*(u32**)(g_pGSRingPos+4), tag>>16);
if( ENABLE_GS_CACHING ) {
if( !(tag & GS_RINGTYPE_MEMNOFREE) ) {
GSFreeRingBuf(g_pGSRingPos);
}
else {
// using temp memory, so release
g_pGSTempReadPos = *(u8**)(g_pGSRingPos+4) + ((tag>>16)<<4);
}
}
LeaveCriticalSection(&g_PageAddrSection);
#ifdef _RINGBUF_DEBUG
InterlockedExchangeAdd((PLONG)&g_pGSRingPos, 16 + ((tag>>16)<<4));
#else
InterlockedExchangeAdd((PLONG)&g_pGSRingPos, 16);
#endif
break;
case GS_RINGTYPE_P3|GS_RINGTYPE_MEMREF:
case GS_RINGTYPE_P3|GS_RINGTYPE_MEMREF|GS_RINGTYPE_MEMNOFREE:
EnterCriticalSection(&g_PageAddrSection);
// read again since could have changed
tag = *(u32*)g_pGSRingPos;
#ifdef _RINGBUF_DEBUG
assert( memcmp(*(u32**)(g_pGSRingPos+4), g_pGSRingPos+16, (tag>>16)*16) == 0 );
#endif
GSgifTransfer3(*(u32**)(g_pGSRingPos+4), tag>>16);
if( ENABLE_GS_CACHING ) {
if( !(tag & GS_RINGTYPE_MEMNOFREE) ) {
GSFreeRingBuf(g_pGSRingPos);
}
else {
// using temp memory, so release
g_pGSTempReadPos = *(u8**)(g_pGSRingPos+4) + ((tag>>16)<<4);
}
}
LeaveCriticalSection(&g_PageAddrSection);
#ifdef _RINGBUF_DEBUG
InterlockedExchangeAdd((PLONG)&g_pGSRingPos, 16 + ((tag>>16)<<4));
#else
InterlockedExchangeAdd((PLONG)&g_pGSRingPos, 16);
#endif
break;
#endif // end GS_ENABLE_CACHING
case GS_RINGTYPE_VIFFIFO:
{
u64* pMem;
assert( vif1ch->madr == *(u32*)(g_pGSRingPos+4) );
assert( vif1ch->qwc == (tag>>16) );
pMem = (u64*)dmaGetAddr(vif1ch->madr);
if (pMem == NULL) {
psHu32(DMAC_STAT)|= 1<<15;
break;
}
GSreadFIFO2(pMem, tag>>16);
// set incase read
psHu64(0x5000) = pMem[2*(tag>>16)-2];
psHu64(0x5008) = pMem[2*(tag>>16)-1];
assert( vif1ch->madr == *(u32*)(g_pGSRingPos+4) );
assert( vif1ch->qwc == (tag>>16) );
tag = (tag>>16) - (cpuRegs.cycle- *(u32*)(g_pGSRingPos+8));
if( tag & 0x80000000 ) tag = 0;
vif1Regs->stat&= ~0x1f000000;
vif1ch->qwc = 0;
INT(1, tag);
InterlockedExchangeAdd((PLONG)&g_pGSRingPos, 16);
break;
}
default:
SysPrintf("VsGSThreadProc, bad packet\n");
g_pGSRingPos = g_pGSWritePos;
//flushall();
}
assert( g_pGSRingPos <= GS_RINGBUFFEREND );
if( g_pGSRingPos == GS_RINGBUFFEREND )
InterlockedExchangePointer(&g_pGSRingPos, GS_RINGBUFFERBASE);
if( g_pGSRingPos == g_pGSWritePos ) {
break;
}
}
ExitGS:
;
} while(g_pGSRingPos != *(volatile PU8*)&g_pGSWritePos);
}
// process vu1
}
return 0;
}
int gsFreeze(gzFile f, int Mode) {
gzfreeze(PS2MEM_GS, 0x2000);
gzfreeze(&CSRw, sizeof(CSRw));
gzfreeze(g_path, sizeof(g_path));
gzfreeze(s_byRegs, sizeof(s_byRegs));
return 0;
}
#undef GIFchain