pcsx-redux/third_party/EASTL/test/source/TestMemory.cpp
Nicolas 'Pixel' Noble d63f87a7f4 Adding EASTL.
2022-06-29 19:37:35 -07:00

731 lines
25 KiB
C++

/////////////////////////////////////////////////////////////////////////////
// Copyright (c) Electronic Arts Inc. All rights reserved.
/////////////////////////////////////////////////////////////////////////////
#include "EASTLTest.h"
#include <EASTL/memory.h>
#include <EASTL/utility.h>
#include <EASTL/vector.h>
#include <EAStdC/EAMemory.h>
#include <EAStdC/EAAlignment.h>
// Regression for user reported operator new problem (12/8/2009):
class AssetHandler
{
public:
inline static void* operator new(size_t size, const char* /*text*/, unsigned int /*flags*/)
{
return ::operator new(size);
}
inline static void operator delete(void* p)
{
return ::operator delete(p);
}
};
typedef eastl::vector<AssetHandler> AssetHandlerArray;
// Regression test for a default memory fill optimization that defers to memset instead of explicitly
// value-initialization each element in a vector individually. This test ensures that the value of the memset is
// consistent with an explicitly value-initialized element (namely when the container holds a scalar value that is
// memset to zero).
template <typename T>
int TestValueInitOptimization()
{
int nErrorCount = 0;
const int ELEM_COUNT = 100;
{
eastl::vector<T> v1;
eastl::vector<ValueInitOf<T>> v2;
v1.resize(ELEM_COUNT);
v2.resize(ELEM_COUNT);
for (int i = 0; i < ELEM_COUNT; i++)
{ EATEST_VERIFY(v1[i] == v2[i].get()); }
}
{
eastl::vector<T> v1(ELEM_COUNT);
eastl::vector<ValueInitOf<T>> v2(ELEM_COUNT);
for (int i = 0; i < ELEM_COUNT; i++)
{ EATEST_VERIFY(v1[i] == v2[i].get()); }
}
EATEST_VERIFY(nErrorCount == 0);
return nErrorCount;
}
// LCTestObject
//
// Helps test the late_constructed utility.
// Has an unusual alignment so we can test that aspect of late_constructed.
//
struct EA_ALIGN(64) LCTestObject
{
int mX; //
static int64_t sTOCount; // Count of all current existing objects.
static int64_t sTOCtorCount; // Count of times any ctor was called.
static int64_t sTODtorCount; // Count of times dtor was called.
explicit LCTestObject(int x = 0)
: mX(x)
{
++sTOCount;
++sTOCtorCount;
}
LCTestObject(int x0, int x1, int x2)
: mX(x0 + x1 + x2)
{
++sTOCount;
++sTOCtorCount;
}
LCTestObject(const LCTestObject& testObject)
: mX(testObject.mX)
{
++sTOCount;
++sTOCtorCount;
}
#if !defined(EA_COMPILER_NO_RVALUE_REFERENCES)
LCTestObject(TestObject&& testObject)
: mX(testObject.mX)
{
++sTOCount;
++sTOCtorCount;
}
#endif
LCTestObject& operator=(const LCTestObject& testObject)
{
mX = testObject.mX;
return *this;
}
#if !defined(EA_COMPILER_NO_RVALUE_REFERENCES)
LCTestObject& operator=(LCTestObject&& testObject)
{
eastl::swap(mX, testObject.mX);
return *this;
}
#endif
~LCTestObject()
{
--sTOCount;
++sTODtorCount;
}
};
int64_t LCTestObject::sTOCount = 0;
int64_t LCTestObject::sTOCtorCount = 0;
int64_t LCTestObject::sTODtorCount = 0;
eastl::late_constructed<LCTestObject, true, true> gLCTestObjectTrueTrue;
eastl::late_constructed<LCTestObject, false, true> gLCTestObjectFalseTrue;
eastl::late_constructed<LCTestObject, false, false> gLCTestObjectFalseFalse;
eastl::late_constructed<LCTestObject, true, false> gLCTestObjectTrueFalse;
///////////////////////////////////////////////////////////////////////////////
// TestMemory
//
int TestMemory()
{
using namespace eastl;
int nErrorCount = 0;
TestObject::Reset();
{
// get_temporary_buffer(ptrdiff_t n, size_t alignment, size_t alignmentOffset, char* pName);
pair<int*, ptrdiff_t> pr1 = get_temporary_buffer<int>(100, 1, 0, EASTL_NAME_VAL("Temp int array"));
memset(pr1.first, 0, 100 * sizeof(int));
return_temporary_buffer(pr1.first);
// Note that
pair<TestObject*, ptrdiff_t> pr2 = get_temporary_buffer<TestObject>(300);
memset(pr2.first, 0, 300 * sizeof(TestObject));
return_temporary_buffer(pr2.first, pr2.second);
}
EATEST_VERIFY(TestObject::IsClear());
TestObject::Reset();
{
LCTestObject* pLCTO;
LCTestObject::sTOCount = 0;
LCTestObject::sTOCtorCount = 0;
LCTestObject::sTODtorCount = 0;
// Verify alignment requirements.
// We don't verify that gLCTestObjectTrueTrue.get() is aligned for all platforms because some platforms can't do that with global memory.
static_assert(eastl::alignment_of<typename late_constructed<LCTestObject>::value_type>::value == 64, "late_constructed alignment failure.");
static_assert(eastl::alignment_of<typename late_constructed<LCTestObject>::storage_type>::value == 64, "late_constructed alignment failure.");
static_assert(eastl::alignment_of<late_constructed<LCTestObject> >::value >= 64, "late_constructed alignment failure.");
// late_constructed / gLCTestObjectTrueTrue
EATEST_VERIFY((LCTestObject::sTOCount == 0) && (LCTestObject::sTOCtorCount == 0) && (LCTestObject::sTODtorCount == 0));
EATEST_VERIFY(!gLCTestObjectTrueTrue.is_constructed());
pLCTO = gLCTestObjectTrueTrue.get(); // This will auto-construct LCTestObject.
EATEST_VERIFY(pLCTO != NULL);
EATEST_VERIFY(gLCTestObjectTrueTrue.is_constructed());
EATEST_VERIFY((LCTestObject::sTOCount == 1) && (LCTestObject::sTOCtorCount == 1) && (LCTestObject::sTODtorCount == 0));
gLCTestObjectTrueTrue->mX = 17;
EATEST_VERIFY(gLCTestObjectTrueTrue->mX == 17);
EATEST_VERIFY((LCTestObject::sTOCount == 1) && (LCTestObject::sTOCtorCount == 1) && (LCTestObject::sTODtorCount == 0));
gLCTestObjectTrueTrue.destruct();
EATEST_VERIFY((LCTestObject::sTOCount == 0) && (LCTestObject::sTOCtorCount == 1) && (LCTestObject::sTODtorCount == 1));
EATEST_VERIFY(!gLCTestObjectTrueTrue.is_constructed());
gLCTestObjectTrueTrue->mX = 18;
EATEST_VERIFY(gLCTestObjectTrueTrue->mX == 18);
EATEST_VERIFY(gLCTestObjectTrueTrue.is_constructed());
EATEST_VERIFY((LCTestObject::sTOCount == 1) && (LCTestObject::sTOCtorCount == 2) && (LCTestObject::sTODtorCount == 1));
gLCTestObjectTrueTrue.destruct();
(*gLCTestObjectTrueTrue).mX = 19;
EATEST_VERIFY(gLCTestObjectTrueTrue->mX == 19);
EATEST_VERIFY((LCTestObject::sTOCount == 1) && (LCTestObject::sTOCtorCount == 3) && (LCTestObject::sTODtorCount == 2));
gLCTestObjectTrueTrue.destruct();
LCTestObject::sTOCount = 0;
LCTestObject::sTOCtorCount = 0;
LCTestObject::sTODtorCount = 0;
// late_constructed / gLCTestObjectFalseTrue
EATEST_VERIFY((LCTestObject::sTOCount == 0) && (LCTestObject::sTOCtorCount == 0) && (LCTestObject::sTODtorCount == 0));
EATEST_VERIFY(!gLCTestObjectFalseTrue.is_constructed());
pLCTO = gLCTestObjectFalseTrue.get(); // This will not auto-construct LCTestObject.
EATEST_VERIFY(pLCTO == NULL);
EATEST_VERIFY(!gLCTestObjectFalseTrue.is_constructed());
EATEST_VERIFY((LCTestObject::sTOCount == 0) && (LCTestObject::sTOCtorCount == 0) && (LCTestObject::sTODtorCount == 0));
gLCTestObjectFalseTrue.construct();
pLCTO = gLCTestObjectFalseTrue.get();
EATEST_VERIFY(pLCTO != NULL);
EATEST_VERIFY(gLCTestObjectFalseTrue.is_constructed());
EATEST_VERIFY((LCTestObject::sTOCount == 1) && (LCTestObject::sTOCtorCount == 1) && (LCTestObject::sTODtorCount == 0));
gLCTestObjectFalseTrue->mX = 17;
EATEST_VERIFY(gLCTestObjectFalseTrue->mX == 17);
EATEST_VERIFY((LCTestObject::sTOCount == 1) && (LCTestObject::sTOCtorCount == 1) && (LCTestObject::sTODtorCount == 0));
gLCTestObjectFalseTrue.destruct();
EATEST_VERIFY((LCTestObject::sTOCount == 0) && (LCTestObject::sTOCtorCount == 1) && (LCTestObject::sTODtorCount == 1));
EATEST_VERIFY(!gLCTestObjectFalseTrue.is_constructed());
gLCTestObjectFalseTrue.construct(14);
EATEST_VERIFY(gLCTestObjectFalseTrue->mX == 14);
gLCTestObjectFalseTrue->mX = 18;
EATEST_VERIFY(gLCTestObjectFalseTrue->mX == 18);
EATEST_VERIFY(gLCTestObjectFalseTrue.is_constructed());
EATEST_VERIFY((LCTestObject::sTOCount == 1) && (LCTestObject::sTOCtorCount == 2) && (LCTestObject::sTODtorCount == 1));
gLCTestObjectFalseTrue.destruct();
gLCTestObjectFalseTrue.construct(10, 20, 30);
EATEST_VERIFY(gLCTestObjectFalseTrue->mX == 10+20+30);
(*gLCTestObjectFalseTrue).mX = 19;
EATEST_VERIFY(gLCTestObjectFalseTrue->mX == 19);
EATEST_VERIFY((LCTestObject::sTOCount == 1) && (LCTestObject::sTOCtorCount == 3) && (LCTestObject::sTODtorCount == 2));
gLCTestObjectFalseTrue.destruct();
}
{
LCTestObject* pLCTO;
LCTestObject::sTOCount = 0;
LCTestObject::sTOCtorCount = 0;
LCTestObject::sTODtorCount = 0;
// Verify alignment requirements.
// We don't verify that gLCTestObjectTrueTrue.get() is aligned for all platforms because some platforms can't do that with global memory.
static_assert(eastl::alignment_of<typename late_constructed<LCTestObject>::value_type>::value == 64, "late_constructed alignment failure.");
static_assert(eastl::alignment_of<typename late_constructed<LCTestObject>::storage_type>::value == 64, "late_constructed alignment failure.");
static_assert(eastl::alignment_of<late_constructed<LCTestObject> >::value >= 64, "late_constructed alignment failure.");
// late_constructed / gLCTestObjectTrueFalse
EATEST_VERIFY((LCTestObject::sTOCount == 0) && (LCTestObject::sTOCtorCount == 0) && (LCTestObject::sTODtorCount == 0));
EATEST_VERIFY(!gLCTestObjectTrueFalse.is_constructed());
pLCTO = gLCTestObjectTrueFalse.get(); // This will auto-construct LCTestObject.
EATEST_VERIFY(pLCTO != NULL);
EATEST_VERIFY(gLCTestObjectTrueFalse.is_constructed());
EATEST_VERIFY((LCTestObject::sTOCount == 1) && (LCTestObject::sTOCtorCount == 1) && (LCTestObject::sTODtorCount == 0));
gLCTestObjectTrueFalse->mX = 17;
EATEST_VERIFY(gLCTestObjectTrueFalse->mX == 17);
EATEST_VERIFY((LCTestObject::sTOCount == 1) && (LCTestObject::sTOCtorCount == 1) && (LCTestObject::sTODtorCount == 0));
gLCTestObjectTrueFalse.destruct();
EATEST_VERIFY((LCTestObject::sTOCount == 0) && (LCTestObject::sTOCtorCount == 1) && (LCTestObject::sTODtorCount == 1));
EATEST_VERIFY(!gLCTestObjectTrueFalse.is_constructed());
gLCTestObjectTrueFalse->mX = 18;
EATEST_VERIFY(gLCTestObjectTrueFalse->mX == 18);
EATEST_VERIFY(gLCTestObjectTrueFalse.is_constructed());
EATEST_VERIFY((LCTestObject::sTOCount == 1) && (LCTestObject::sTOCtorCount == 2) && (LCTestObject::sTODtorCount == 1));
gLCTestObjectTrueFalse.destruct();
(*gLCTestObjectTrueFalse).mX = 19;
EATEST_VERIFY(gLCTestObjectTrueFalse->mX == 19);
EATEST_VERIFY((LCTestObject::sTOCount == 1) && (LCTestObject::sTOCtorCount == 3) && (LCTestObject::sTODtorCount == 2));
gLCTestObjectTrueFalse.destruct();
LCTestObject::sTOCount = 0;
LCTestObject::sTOCtorCount = 0;
LCTestObject::sTODtorCount = 0;
// late_constructed / gLCTestObjectFalseFalse
EATEST_VERIFY((LCTestObject::sTOCount == 0) && (LCTestObject::sTOCtorCount == 0) && (LCTestObject::sTODtorCount == 0));
EATEST_VERIFY(!gLCTestObjectFalseFalse.is_constructed());
pLCTO = gLCTestObjectFalseFalse.get(); // This will not auto-construct LCTestObject.
EATEST_VERIFY(pLCTO == NULL);
EATEST_VERIFY(!gLCTestObjectFalseFalse.is_constructed());
EATEST_VERIFY((LCTestObject::sTOCount == 0) && (LCTestObject::sTOCtorCount == 0) && (LCTestObject::sTODtorCount == 0));
gLCTestObjectFalseFalse.construct();
pLCTO = gLCTestObjectFalseFalse.get();
EATEST_VERIFY(pLCTO != NULL);
EATEST_VERIFY(gLCTestObjectFalseFalse.is_constructed());
EATEST_VERIFY((LCTestObject::sTOCount == 1) && (LCTestObject::sTOCtorCount == 1) && (LCTestObject::sTODtorCount == 0));
gLCTestObjectFalseFalse->mX = 17;
EATEST_VERIFY(gLCTestObjectFalseFalse->mX == 17);
EATEST_VERIFY((LCTestObject::sTOCount == 1) && (LCTestObject::sTOCtorCount == 1) && (LCTestObject::sTODtorCount == 0));
gLCTestObjectFalseFalse.destruct();
EATEST_VERIFY((LCTestObject::sTOCount == 0) && (LCTestObject::sTOCtorCount == 1) && (LCTestObject::sTODtorCount == 1));
EATEST_VERIFY(!gLCTestObjectFalseFalse.is_constructed());
gLCTestObjectFalseFalse.construct(14);
EATEST_VERIFY(gLCTestObjectFalseFalse->mX == 14);
gLCTestObjectFalseFalse->mX = 18;
EATEST_VERIFY(gLCTestObjectFalseFalse->mX == 18);
EATEST_VERIFY(gLCTestObjectFalseFalse.is_constructed());
EATEST_VERIFY((LCTestObject::sTOCount == 1) && (LCTestObject::sTOCtorCount == 2) && (LCTestObject::sTODtorCount == 1));
gLCTestObjectFalseFalse.destruct();
gLCTestObjectFalseFalse.construct(10, 20, 30);
EATEST_VERIFY(gLCTestObjectFalseFalse->mX == 10+20+30);
(*gLCTestObjectFalseFalse).mX = 19;
EATEST_VERIFY(gLCTestObjectFalseFalse->mX == 19);
EATEST_VERIFY((LCTestObject::sTOCount == 1) && (LCTestObject::sTOCtorCount == 3) && (LCTestObject::sTODtorCount == 2));
gLCTestObjectFalseFalse.destruct();
}
LCTestObject::sTOCount = 0;
LCTestObject::sTOCtorCount = 0;
LCTestObject::sTODtorCount = 0;
{
eastl::late_constructed<LCTestObject, true, false> lc;
lc.construct();
}
EATEST_VERIFY((LCTestObject::sTOCount == 1) && (LCTestObject::sTOCtorCount == 1) && (LCTestObject::sTODtorCount == 0));
LCTestObject::sTOCount = 0;
LCTestObject::sTOCtorCount = 0;
LCTestObject::sTODtorCount = 0;
{
eastl::late_constructed<LCTestObject, false, false> lc;
lc.construct();
}
EATEST_VERIFY((LCTestObject::sTOCount == 1) && (LCTestObject::sTOCtorCount == 1) && (LCTestObject::sTODtorCount == 0));
// We use the vector container to supply a RandomAccessIterator.
// We use the list container to supply a BidirectionalIterator.
// We use the slist container to supply a ForwardIterator.
// We use our generic_input_iterator adapter to supply an InputIterator.
// eastl::vector<int> intVector;
// eastl::list<int> intList;
// eastl::slist<int> intSlist;
// template <typename ForwardIterator, typename ForwardIteratorDest>
// inline ForwardIteratorDest uninitialized_relocate_start(ForwardIterator first, ForwardIterator last, ForwardIteratorDest dest)
// template <typename ForwardIterator, typename ForwardIteratorDest>
// inline ForwardIteratorDest uninitialized_relocate_commit(ForwardIterator first, ForwardIterator last, ForwardIteratorDest dest)
// template <typename ForwardIterator, typename ForwardIteratorDest>
// inline ForwardIteratorDest uninitialized_relocate_abort(ForwardIterator first, ForwardIterator last, ForwardIteratorDest dest)
// template <typename ForwardIterator, typename ForwardIteratorDest>
// inline ForwardIteratorDest uninitialized_relocate(ForwardIterator first, ForwardIterator last, ForwardIteratorDest dest)
// This test does little more than verify that the code compiles.
int* pEnd = eastl::uninitialized_relocate_start<int*, int*>((int*)NULL, (int*)NULL, (int*)NULL);
EATEST_VERIFY(pEnd == NULL);
pEnd = eastl::uninitialized_relocate_commit<int*, int*>((int*)NULL, (int*)NULL, (int*)NULL);
EATEST_VERIFY(pEnd == NULL);
pEnd = eastl::uninitialized_relocate_abort<int*, int*>((int*)NULL, (int*)NULL, (int*)NULL);
EATEST_VERIFY(pEnd == NULL);
pEnd = eastl::uninitialized_relocate<int*, int*>((int*)NULL, (int*)NULL, (int*)NULL);
EATEST_VERIFY(pEnd == NULL);
// template <typename InputIterator, typename ForwardIterator>
// ForwardIterator uninitialized_copy(InputIterator sourceFirst, InputIterator sourceLast, ForwardIterator destination);
pEnd = eastl::uninitialized_copy<int*, int*>((int*)NULL, (int*)NULL, (int*)NULL);
EATEST_VERIFY(pEnd == NULL);
// template <typename First, typename Last, typename Result>
// Result uninitialized_copy_ptr(First first, Last last, Result result)
pEnd = eastl::uninitialized_copy_ptr<int*, int*, int*>((int*)NULL, (int*)NULL, (int*)NULL);
EATEST_VERIFY(pEnd == NULL);
// template <typename ForwardIterator, typename T>
// void uninitialized_fill(ForwardIterator first, ForwardIterator last, const T& value)
eastl::uninitialized_fill<int*, int>((int*)NULL, (int*)NULL, (int)0);
// template <typename T>
// void uninitialized_fill_ptr(T* first, T* last, const T& value)
eastl::uninitialized_fill_ptr<int>((int*)NULL, (int*)NULL, (int)0);
// template <typename ForwardIterator, typename Count, typename T>
// void uninitialized_fill_n(ForwardIterator first, Count n, const T& value)
eastl::uninitialized_fill_n<int*, int, int>((int*)NULL, (int)0, (int)0);
// template <typename T, typename Count>
// void uninitialized_fill_n_ptr(T* first, Count n, const T& value)
eastl::uninitialized_fill_n_ptr<int, int>((int*)NULL, (int)0, (int)0);
// template <typename InputIterator, typename ForwardIterator, typename T>
// void uninitialized_copy_fill(InputIterator first1, InputIterator last1,
// ForwardIterator first2, ForwardIterator last2, const T& value)
eastl::uninitialized_copy_fill<int*, int*, int>((int*)NULL, (int*)NULL, (int*)NULL, (int*)NULL, (int)0);
// template <typename ForwardIterator, typename T, typename InputIterator>
// ForwardIterator uninitialized_fill_copy(ForwardIterator result, ForwardIterator mid, const T& value, InputIterator first, InputIterator last)
eastl::uninitialized_fill_copy<int*, int, int*>((int*)NULL, (int*)NULL, (int)0, (int*)NULL, (int*)NULL);
// template <typename InputIterator1, typename InputIterator2, typename ForwardIterator>
// ForwardIterator uninitialized_copy_copy(InputIterator1 first1, InputIterator1 last1,
// InputIterator2 first2, InputIterator2 last2,
// ForwardIterator result)
eastl::uninitialized_copy_copy<int*, int*, int*>((int*)NULL, (int*)NULL, (int*)NULL, (int*)NULL, (int*)NULL);
// uninitialized_default_construct
{
TestObject::Reset();
char testCharArray[sizeof(TestObject) * 10];
TestObject* pTestMemory = (TestObject*)(testCharArray);
eastl::uninitialized_default_construct(pTestMemory, pTestMemory + 10);
EATEST_VERIFY(TestObject::sTODefaultCtorCount == 10);
}
// uninitialized_default_construct_n
{
TestObject::Reset();
char testCharArray[sizeof(TestObject) * 10];
TestObject* pTestMemory = (TestObject*)(testCharArray);
auto endIter = eastl::uninitialized_default_construct_n(pTestMemory, 5);
EATEST_VERIFY(TestObject::sTODefaultCtorCount == 5);
EATEST_VERIFY(endIter == (pTestMemory + 5));
}
// uninitialized_value_construct
{
TestObject::Reset();
char testCharArray[sizeof(TestObject) * 10];
TestObject* pTestMemory = (TestObject*)(testCharArray);
eastl::uninitialized_value_construct(pTestMemory, pTestMemory + 10);
EATEST_VERIFY(TestObject::sTODefaultCtorCount == 10);
}
// uninitialized_value_construct_n
{
TestObject::Reset();
char testCharArray[sizeof(TestObject) * 10];
TestObject* pTestMemory = (TestObject*)(testCharArray);
auto endIter = eastl::uninitialized_value_construct_n(pTestMemory, 5);
EATEST_VERIFY(TestObject::sTODefaultCtorCount == 5);
EATEST_VERIFY(endIter == (pTestMemory + 5));
}
// Verify that uninitialized_value_construct does not do any additional initialization besides zero-initialization.
//
/// Value-Initialization:
// If T is a class, the object is default-initialized (after being zero-initialized if T's default
// constructor is not user-provided/deleted); otherwise, the object is zero-initialized.
{
struct foo
{
// foo() = default; // intentionally removed to force zero-initialization behavior
char mV;
};
static const int ARRAY_SIZE_IN_BYTES = sizeof(foo) * 10;
char testCharArray[ARRAY_SIZE_IN_BYTES];
EA::StdC::Memfill8(testCharArray, 42, ARRAY_SIZE_IN_BYTES);
foo* pTestMemory = (foo*)testCharArray;
eastl::uninitialized_value_construct(pTestMemory, pTestMemory + 10);
for (int i = 0; i < 10; i++)
{
EATEST_VERIFY(pTestMemory[i].mV == 0); // verify that memory is zero-initialized
}
}
// Verify that uninitialized_default_construct does not do any additional initialization besides the calling of a empty
// constructor.
//
// Default-initialization:
// If T is a class, the default constructor is called; otherwise, no initialization is done, resulting in
// indeterminate values.
{
struct foo
{
foo() {} // default ctor intentionally a no-op
char mV;
};
static const int ARRAY_SIZE_IN_BYTES = sizeof(foo) * 10;
char testCharArray[ARRAY_SIZE_IN_BYTES];
EA::StdC::Memfill8(testCharArray, 42, ARRAY_SIZE_IN_BYTES);
foo* pTestMemory = (foo*)testCharArray;
eastl::uninitialized_default_construct(pTestMemory, pTestMemory + 10);
for (int i = 0; i < 10; i++)
{
EATEST_VERIFY(pTestMemory[i].mV == 42); // verify original memset value is intact
}
}
// template <typename T>
// void destruct(T* p)
{
TestObject::Reset();
uint64_t testObjectMemory[((sizeof(TestObject) / sizeof(uint64_t)) + 1) * 2];
TestObject* pTestObject = new(testObjectMemory) TestObject;
destruct(pTestObject);
EATEST_VERIFY(TestObject::IsClear());
}
// template <typename T>
// void destroy_at(T* p)
{
TestObject::Reset();
uint64_t testObjectMemory[((sizeof(TestObject) / sizeof(uint64_t)) + 1) * 2];
TestObject* pTestObject = new(testObjectMemory) TestObject;
destroy_at(pTestObject);
EATEST_VERIFY(TestObject::IsClear());
}
// template <typename ForwardIterator>
// void destruct(ForwardIterator first, ForwardIterator last)
{
TestObject::Reset();
char testObjectMemory[sizeof(TestObject) * 3];
TestObject* pTestObject = new(testObjectMemory) TestObject[2];
destruct(pTestObject, pTestObject + 2);
EATEST_VERIFY(TestObject::IsClear());
}
// template <typename ForwardIterator>
// void destroy(ForwardIterator first, ForwardIterator last)
{
TestObject::Reset();
char testObjectMemory[sizeof(TestObject) * 3];
TestObject* pTestObject = new(testObjectMemory) TestObject[2];
destroy(pTestObject, pTestObject + 2);
EATEST_VERIFY(TestObject::IsClear());
}
// template <typename ForwardIterator, typename Size>
// void destroy_n(ForwardIterator first, Size n)
{
TestObject::Reset();
char testObjectMemory[sizeof(TestObject) * 3];
TestObject* pTestObject = new (testObjectMemory) TestObject[2];
destroy_n(pTestObject, 1); // destroy TestObject[0]
destroy_n(pTestObject + 1, 1); // destroy TestObject[1]
EATEST_VERIFY(TestObject::IsClear());
}
{
// Regression for user reported operator new problem (12/8/2009):
eastl::vector<AssetHandler> ahArray;
ahArray.push_back(AssetHandler());
}
// void* align(size_t alignment, size_t size, void*& ptr, size_t& space);
// void* align_advance(size_t alignment, size_t size, void*& ptr, size_t& space);
{
const size_t kBufferSize = 256;
char buffer[kBufferSize * 2];
size_t space = sizeof(buffer);
void* ptr = buffer;
void* ptrSaved;
void* ptrAligned;
size_t i;
// First get 256 bytes of space aligned to 256.
// It's a coincidence that we are using eastl::align to set up a buffer for testing eastl::align below.
ptrSaved = eastl::align(256, 256, ptr, space);
// At this point we have 256 bytes of memory aligned on 256 bytes, within buffer.
// We test allocating multiple blocks from this space at various alignments values.
// We also test that the function sets ptr to the next available location after the
// returned allocated block.
EA::StdC::Memset8(buffer, 0x00, sizeof(buffer));
EATEST_VERIFY(EA::StdC::IsAligned(ptr, 256));
// align test
// Try a number of allocation sizes.
for(size_t a = 1; a < 64; a *= 2)
{
// Do multiple sequental allocations from the storage.
for(i = 0, space = 256, ptr = ptrSaved; i < kBufferSize; i += a)
{
ptrAligned = eastl::align(a, a, ptr, space);
EATEST_VERIFY((uintptr_t)ptrAligned == ((uintptr_t)ptrSaved + i));
EATEST_VERIFY(ptr == ptrAligned);
EATEST_VERIFY(space == (kBufferSize - i));
EATEST_VERIFY(EA::StdC::IsAligned(ptrAligned, a));
EATEST_VERIFY(EA::StdC::Memcheck8(ptrAligned, 0x00, a) == NULL);
ptr = (char*)ptr + a;
space -= a;
memset(ptrAligned, 0xff, a); // Do this so that next time around we can verify this memory isn't returned.
}
EA::StdC::Memset8(buffer, 0x00, sizeof(buffer));
}
// align_advance test (similar to but not identical to the align test)
// Try a number of allocation sizes.
for(size_t a = 1; a < 64; a *= 2)
{
// Do multiple sequental allocations from the storage.
for(i = 0, space = 256, ptr = ptrSaved; i < kBufferSize; i += a)
{
ptrAligned = eastl::align_advance(a, a, ptr, space, &ptr, &space);
EATEST_VERIFY((uintptr_t)ptrAligned == ((uintptr_t)ptrSaved + i));
EATEST_VERIFY((uintptr_t)ptr == (uintptr_t)ptrAligned + a);
EATEST_VERIFY(space == (kBufferSize - i) - a);
EATEST_VERIFY(EA::StdC::IsAligned(ptrAligned, a));
EATEST_VERIFY(EA::StdC::Memcheck8(ptrAligned, 0x00, a) == NULL);
memset(ptrAligned, 0xff, a); // Do this so that next time around we can verify this memory isn't returned.
}
EA::StdC::Memset8(buffer, 0x00, sizeof(buffer));
}
}
{
// Test that align handles integral overflow correctly and returns NULL.
void* ptr;
void* ptrSaved;
size_t space;
void* pResult;
space = 64;
ptr = 0;
ptr = (char*)ptr - space;
ptrSaved = ptr;
pResult = eastl::align(1, space + 1, ptr, space); // Possible alignment, impossible size due to wraparound.
EATEST_VERIFY((pResult == NULL) && (ptr == ptrSaved));
space = 64;
ptr = 0;
ptr = (char*)ptr - space;
ptrSaved = ptr;
pResult = eastl::align(space * 2, 32, ptr, space); // Impossible alignment due to wraparound, possible size.
EATEST_VERIFY((pResult == NULL) && (ptr == ptrSaved));
}
{
nErrorCount += TestValueInitOptimization<int>();
nErrorCount += TestValueInitOptimization<char>();
nErrorCount += TestValueInitOptimization<short>();
nErrorCount += TestValueInitOptimization<float>();
nErrorCount += TestValueInitOptimization<double>();
nErrorCount += TestValueInitOptimization<void*>();
}
EATEST_VERIFY(nErrorCount == 0);
return nErrorCount;
}