pcsx-redux/third_party/EASTL/test/source/TestFixedString.cpp
Nicolas 'Pixel' Noble d63f87a7f4 Adding EASTL.
2022-06-29 19:37:35 -07:00

448 lines
12 KiB
C++

/////////////////////////////////////////////////////////////////////////////
// Copyright (c) Electronic Arts Inc. All rights reserved.
/////////////////////////////////////////////////////////////////////////////
#include <EABase/eabase.h>
EA_DISABLE_GCC_WARNING(-Warray-bounds)
#include "EASTLTest.h"
#include <EASTL/fixed_string.h>
#include <EASTL/fixed_substring.h>
#ifdef _MSC_VER
#pragma warning(push, 0)
#endif
#include <string.h>
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
using namespace eastl;
// Template instantations.
// These tell the compiler to compile all the functions for the given class.
template class eastl::fixed_string<char8_t, 1, true>;
template class eastl::fixed_string<char16_t, 1, true>;
template class eastl::fixed_string<char32_t, 1, true>;
template class eastl::fixed_string<char8_t, 128, false>;
template class eastl::fixed_string<char16_t, 128, false>;
template class eastl::fixed_string<char32_t, 128, false>;
template class eastl::fixed_string<char8_t, 128, true, MallocAllocator>;
template class eastl::fixed_string<char16_t, 128, true, MallocAllocator>;
template class eastl::fixed_string<char32_t, 128, true, MallocAllocator>;
template class eastl::fixed_string<char8_t, 128, false, MallocAllocator>;
template class eastl::fixed_string<char16_t, 128, false, MallocAllocator>;
template class eastl::fixed_string<char32_t, 128, false, MallocAllocator>;
template class eastl::fixed_substring<char8_t>;
template class eastl::fixed_substring<char16_t>;
/*
// This does not compile, since the fixed_string allocator (among other things) is
// templated on sizeof(T), not just T. Thus, the full type is required at the time
// of instantiation, but it is not available.
// See EATech Core JIRA issue ETCR-1608 for more information.
struct StructWithContainerOfStructs
{
eastl::fixed_string<StructWithContainerOfStructs,4> children;
};
*/
int TestFixedSubstring()
{
int nErrorCount = 0;
{
const char* pSource1 = "hello world";
const char* pSource2 = "hola mundo";
basic_string<char> str(pSource1);
fixed_substring<char> sub(str, 2, 5);
EATEST_VERIFY(sub.size() == 5);
EATEST_VERIFY(sub[0] == 'l');
EATEST_VERIFY(sub == "llo w");
sub.assign(pSource2);
EATEST_VERIFY(sub.size() == 10);
EATEST_VERIFY(sub[0] == pSource2[0]);
EATEST_VERIFY(sub == pSource2);
fixed_substring<char> sub2(sub);
EATEST_VERIFY(sub2.size() == 10);
EATEST_VERIFY(sub2[0] == pSource2[0]);
EATEST_VERIFY(sub2 == pSource2);
sub.assign(sub2, 1, 3);
EATEST_VERIFY(sub.size() == 3);
EATEST_VERIFY(sub == "ola");
sub.assign(pSource2, 3);
EATEST_VERIFY(sub.size() == 3);
EATEST_VERIFY(sub == "hol");
sub.assign(pSource2, pSource2 + 4);
EATEST_VERIFY(sub.size() == 4);
EATEST_VERIFY(sub == "hola");
sub = pSource1;
EATEST_VERIFY(sub.size() == strlen(pSource1));
EATEST_VERIFY(sub == pSource1);
}
{ // Test fixed_substring with a C character array
char pArray[256];
fixed_substring<char> str(pArray, 255);
str.resize(5);
EATEST_VERIFY(str.size() == 5);
str[0] = 'a';
EATEST_VERIFY(str[0] == 'a');
str.sprintf("Hello %s", "world");
EATEST_VERIFY(str == "Hello world");
str += " Hola mundo";
EATEST_VERIFY(str == "Hello world Hola mundo");
str.pop_back();
EATEST_VERIFY(str == "Hello world Hola mund");
str.replace(6, 5, "abcdefghijlk");
EATEST_VERIFY(str == "Hello abcdefghijlk Hola mund");
str.clear();
EATEST_VERIFY(str.empty());
EATEST_VERIFY(str == "");
}
return nErrorCount;
}
int TestFixedString()
{
int nErrorCount = 0;
{
fixed_string<char, 64>::CtorSprintf cs;
fixed_string<char, 64> s8(cs, "hello world %d.", 1);
EATEST_VERIFY(s8 == "hello world 1.");
EATEST_VERIFY(s8.capacity() == 63); // 63 because the 64 includes the terminating 0, but capacity() subtracts the terminating 0 usage.
EATEST_VERIFY(s8.max_size() == 63);
s8.append_sprintf(" More hello %d.", 2);
EATEST_VERIFY(s8 == "hello world 1. More hello 2.");
EATEST_VERIFY(s8.capacity() == 63);
}
{
fixed_string<wchar_t, 64>::CtorSprintf cs;
fixed_string<wchar_t, 64> sW(cs, L"hello world %d.", 1);
EATEST_VERIFY(sW == L"hello world 1.");
EATEST_VERIFY(sW.capacity() == 63); // 63 because the 64 includes the terminating 0, but capacity() subtracts the terminating 0 usage.
sW.append_sprintf(L" More hello %d.", 2);
EATEST_VERIFY(sW == L"hello world 1. More hello 2.");
EATEST_VERIFY(sW.capacity() == 63); // 63 because the 64 includes the terminating 0, but capacity() subtracts the terminating 0 usage.
}
{
typedef fixed_string<char8_t, 64, true> FixedString64;
typedef fixed_string<char8_t, 64, false> FixedString64NoOverflow;
FixedString64::CtorSprintf cs;
FixedString64::CtorDoNotInitialize cdni;
// fixed_string();
FixedString64 fs1;
EATEST_VERIFY(fs1.size() == 0);
EATEST_VERIFY(fs1.capacity() == 63);
FixedString64NoOverflow fsNo;
EATEST_VERIFY(fs1.can_overflow() == true);
EATEST_VERIFY(fsNo.can_overflow() == false);
EATEST_VERIFY(fs1.full() == false);
EATEST_VERIFY(fs1.has_overflowed() == false);
const char8_t* pCStr = fs1.c_str();
EATEST_VERIFY(*pCStr == 0);
// fixed_string(const this_type& x);
FixedString64 fs2(fs1);
EATEST_VERIFY(fs2.size() == 0);
EATEST_VERIFY(fs2.capacity() == 63);
fs1 = EA_CHAR8("abc");
FixedString64 fs3(fs1);
EATEST_VERIFY(fs3.size() == 3);
EATEST_VERIFY(fs3.capacity() == 63);
EATEST_VERIFY(fs3 == EA_CHAR8("abc"));
// fixed_string(const this_type& x, size_type position, size_type n = npos);
FixedString64 fs4(fs1, 1, 2);
EATEST_VERIFY(fs4.size() == 2);
EATEST_VERIFY(fs4.capacity() == 63);
EATEST_VERIFY(fs4 == EA_CHAR8("bc"));
// fixed_string(const value_type* p, size_type n);
FixedString64 fs5(EA_CHAR8("abcdef"), 6);
EATEST_VERIFY(fs5.size() == 6);
EATEST_VERIFY(fs5.capacity() == 63);
EATEST_VERIFY(fs5 == EA_CHAR8("abcdef"));
// fixed_string(const value_type* p);
FixedString64 fs6(EA_CHAR8("abcdef"));
EATEST_VERIFY(fs6.size() == 6);
EATEST_VERIFY(fs6.capacity() == 63);
EATEST_VERIFY(fs6 == EA_CHAR8("abcdef"));
// fixed_string(size_type n, const value_type& value);
FixedString64 fs7(8, 'a');
EATEST_VERIFY(fs7.size() == 8);
EATEST_VERIFY(fs7.capacity() == 63);
EATEST_VERIFY(fs7 == EA_CHAR8("aaaaaaaa"));
// fixed_string(const value_type* pBegin, const value_type* pEnd);
FixedString64 fs8(&fs6[0], &fs6[5]);
EATEST_VERIFY(fs8.size() == 5);
EATEST_VERIFY(fs8.capacity() == 63);
EATEST_VERIFY(fs8 == EA_CHAR8("abcde"));
// fixed_string(CtorDoNotInitialize, size_type n);
FixedString64 fs9(cdni, 7);
EATEST_VERIFY(fs9.size() == 7);
EATEST_VERIFY(fs9.capacity() == 63);
// fixed_string(CtorSprintf, const value_type* pFormat, ...);
FixedString64 fs10(cs, EA_CHAR8("%d"), 37);
EATEST_VERIFY(fs10.size() == 2);
EATEST_VERIFY(fs10.capacity() == 63);
EATEST_VERIFY(fs10 == EA_CHAR8("37"));
// this_type& operator=(const const value_type* p);
// this_type& operator=(const this_type& x);
fs9 = EA_CHAR8("hello");
EATEST_VERIFY(fs9 == EA_CHAR8("hello"));
fs9 = fs10;
EATEST_VERIFY(fs9 == fs10);
EATEST_VERIFY(fs9 == EA_CHAR8("37"));
// void swap(this_type& x);
swap(fs7, fs9);
EATEST_VERIFY(fs7 == EA_CHAR8("37"));
EATEST_VERIFY(fs9 == EA_CHAR8("aaaaaaaa"));
// void set_capacity(size_type n);
fs9.set_capacity(100);
EATEST_VERIFY(fs9.size() == 8);
EATEST_VERIFY(fs9.capacity() == 100);
EATEST_VERIFY(fs9.full() == true);
EATEST_VERIFY(fs9.has_overflowed() == true);
fs9.set_capacity(100); // EATEST_VERIFY that this has no effect.
EATEST_VERIFY(fs9.size() == 8);
EATEST_VERIFY(fs9.capacity() == 100);
EATEST_VERIFY(fs9.full() == true);
EATEST_VERIFY(fs9.has_overflowed() == true);
fs9.resize(100);
fs9.set_capacity(100);
EATEST_VERIFY(fs9.size() == 100);
EATEST_VERIFY(fs9.capacity() == 100);
EATEST_VERIFY(fs9.full() == true);
EATEST_VERIFY(fs9.has_overflowed() == true);
fs9.set_capacity(1);
EATEST_VERIFY(fs9.size() == 1);
EATEST_VERIFY(fs9.capacity() < fs9.max_size()); // We don't test for capacity == 1, because with fixed_strings, the fixed-size capacity is the lowest it ever gets.
EATEST_VERIFY(fs9.full() == false);
EATEST_VERIFY(fs9.has_overflowed() == false);
fs9.set_capacity(0);
EATEST_VERIFY(fs9.size() == 0);
EATEST_VERIFY(fs9.capacity() < fs9.max_size()); // We don't test for capacity == 1, because with fixed_strings, the fixed-size capacity is the lowest it ever gets.
EATEST_VERIFY(fs9.full() == false);
EATEST_VERIFY(fs9.has_overflowed() == false);
// Exercise the freeing of memory in set_capacity.
fixed_string<char8_t, 64, true> fs88;
eastl_size_t capacity = fs88.capacity();
fs88.resize(capacity);
fs88.set_capacity(capacity * 2);
EATEST_VERIFY(fs88.capacity() >= (capacity * 2));
// void reset_lose_memory();
fs6.reset_lose_memory();
EATEST_VERIFY(fs6.size() == 0);
EATEST_VERIFY(fs5.capacity() == 63);
// size_type max_size() const;
EATEST_VERIFY(fs7.max_size() == 63);
// global operator +
{
// fixed_string operator+(const fixed_string& a, const fixed_string& b);
// fixed_string operator+(value_type* p, const fixed_string& b);
// fixed_string operator+(value_type c, const fixed_string& b);
// fixed_string operator+(const fixed_string& a, const value_type* p);
// fixed_string operator+(const fixed_string& a, value_type c);
typedef fixed_string<char, 8, true> FSTest; // Make it a small size so it's easily overflowed when we want.
FSTest a("abc");
FSTest b("def");
FSTest c(a + b);
EATEST_VERIFY(c == "abcdef");
c = a + "ghi";
EATEST_VERIFY(c == "abcghi");
c = "ghi" + a;
EATEST_VERIFY(c == "ghiabc");
c = a + 'g';
EATEST_VERIFY(c == "abcg");
c = 'g' + a;
EATEST_VERIFY(c == "gabc");
// fixed_string operator+(fixed_string&& a, fixed_string&& b);
// fixed_string operator+(fixed_string&& a, const fixed_string& b);
// fixed_string operator+(const value_type* p, fixed_string&& b);
// fixed_string operator+(fixed_string&& a, const value_type* p);
// fixed_string operator+(fixed_string&& a, value_type b);
c = eastl::move(a) + eastl::move(b);
EATEST_VERIFY(c == "abcdef");
c.clear();
FSTest a1("abc");
FSTest b1("def");
c = eastl::move(a1) + b1;
EATEST_VERIFY(c == "abcdef");
c.clear();
FSTest b2("def");
c = "abc" + eastl::move(b2);
EATEST_VERIFY(c == "abcdef");
c.clear();
FSTest a3("abc");
c = eastl::move(a3) + "def";
EATEST_VERIFY(c == "abcdef");
c.clear();
FSTest a4("abc");
c = eastl::move(a4) + 'd';
EATEST_VERIFY(c == "abcd");
c.clear();
}
// bool operator==(const fixed_string<& a, const fixed_string& b)
// bool operator!=(const fixed_string<& a, const fixed_string& b)
EATEST_VERIFY( fs7 != fs8);
EATEST_VERIFY(!(fs7 == fs8));
fs7 = fs8;
EATEST_VERIFY( fs7 == fs8);
EATEST_VERIFY(!(fs7 != fs8));
}
{ // Test overflow allocator specification
typedef fixed_string<char8_t, 64, true, MallocAllocator> FixedString64Malloc;
FixedString64Malloc fs;
fs.push_back('a');
EATEST_VERIFY(fs.size() == 1);
EATEST_VERIFY(fs[0] == 'a');
fs.resize(95);
fs[94] = 'b';
EATEST_VERIFY(fs[0] == 'a');
EATEST_VERIFY(fs[94] == 'b');
EATEST_VERIFY(fs.size() == 95);
fs.clear();
EATEST_VERIFY(fs.empty());
fs.push_back('a');
EATEST_VERIFY(fs.size() == 1);
EATEST_VERIFY(fs[0] == 'a');
fs.resize(195);
fs[194] = 'b';
EATEST_VERIFY(fs[0] == 'a');
EATEST_VERIFY(fs[194] == 'b');
EATEST_VERIFY(fs.size() == 195);
}
{
// Test construction of a container with an overflow allocator constructor argument.
MallocAllocator overflowAllocator;
void* p = overflowAllocator.allocate(1);
fixed_string<char8_t, 64, true, MallocAllocator> c(overflowAllocator);
c.resize(65);
EATEST_VERIFY(c.get_overflow_allocator().mAllocCount == 2); // 1 for above, and 1 for overflowing from 64 to 65.
overflowAllocator.deallocate(p, 1);
}
{
// Regression for compile failure when EASTL_NO_RVALUE_REFERENCES is 0.
typedef eastl::fixed_string<char, 32, true, MallocAllocator> TestString;
TestString ts1;
TestString ts2(ts1 + "Test");
EATEST_VERIFY(ts1.empty() && ts2.size() == 4);
}
{
// Test equality tests of differently-sized fixed_strings.
/* Disabled because this isn't currently supported by fixed_string.
typedef fixed_string<char8_t, 64, true, MallocAllocator> FixedString64Malloc;
typedef fixed_string<char8_t, 32> FixedString32;
FixedString64Malloc s64M;
FixedString32 s32;
EATEST_VERIFY(s64M == s32);
*/
}
nErrorCount += TestFixedSubstring();
return nErrorCount;
}